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Abs t r ac t .  This paper presents a new similarity measure for object 
recognition from large libraries of line-patterns. The measure commences 
from a Bayesian consistency criterion which as been developed for locat- 
ing correspondence matches between attributed relational graphs using 
iterative relaxation operations. The aim in this paper is to simplify the 
consistency measure so that it may used in a non-iterative manner with- 
out the need to compute explicit correspondence matches. This consid- 
erably reduces the computational overheads and renders the consistency 
measure suitable for large-scale object recognition. The measure uses ro- 
bust error-kernels to gauge the similarity of pairwise attribute relations 
defined on the edges of nearest neighbour graphs. We use the similar- 
ity measure in a recognition experiment which involves a library of over 
2000 line-patterns. A sensitivity study reveals that the method is capa- 
ble of delivering a recognition accuracy of 94%. A comparative study 
reveals that the method is most effective when a Gaussian kernel or Hu- 
her's robust kernel is used to weight the attribute relations. Moreover, 
the method consistently outperforms Rucklidge's median Hansdorff dis- 
tance. 

1 I n t r o d u c t i o n  

Object  recognition from large libraries of images holds the key to tile automat ic  
manipulat ion of massive volumes of visual information. The overall goal is the 
rapid indexation of images according to their contents. The  problem can be 
viewed as having two distinct ingredients. The first of these is a compact  image 
representation tha t  is robust  to noise, occlusion and changes in imaging geom- 
etry. The second ingredient is a means of comparing descriptions. Ideally, the 
distance measure should have a degree of robustness to outliers. 

The first of these issues, i.e. of efficient object representation, has recently 
st imulated considerable interest in the literature. Examples  include both  geo- 
metric [1] and structural  hashing [2], a variety of invariants [3, 4] and pairwise 
geometric histograms [5]. However, the second issue of how to compare represen- 
tat ions has received less attention.  One exception is the recent work of Rucklidge 
[6] which has shown how the Hausdorff  distance can be used for relatively robust 
object recognition and location. 

Despite offering an interesting and effective s trategy for comparing image 
representations, there are a number  of criticisms tha t  can be leveled at the 
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use of Hausdorff distance. In the first instance, the measure is crisply defined 
over the max-rain tests between the elements of the sets of object-primitives 
being compared. Although this offers a certain degree of robustness to noise and 
outliers, it fails to adequately capture uncertainties in the image attributes being 
compared. The second shortcoming, is the failure to impose relational structure 
on the arrangements of object-primitives. In other words, a considerable wealth 
of contextual information is overlooked. The aim in this paper is to address 
these two issues in a more critical manner. Specifically, we aim to draw on our 
recently reported work on graph-matching [7] to develop a probabilistic similarity 
measure for object recognition from large structural data-bases. 

2 Pairwise Geometric  Attr ibutes  
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Fig. 1. Geometry for shape representation 

The raw information available for each line segment are its orientation (angle 
with respect to the horizontal axis) and its length (see figure 1). To illustrate 
how the pairwise feature attributes are computed suppose that we denote the 
line segments indexed (ab) and (cd) by the vectors X ab and X_cd respectively. The 
vectors are directed away from their point of intersection. The relative angle 
attribute is given by 

= arccos[- ab:- c  1 

From the relative angle we compute the directed relative angle. This is an 
extension to the attribute used by Evans et al. [5], that consists of giving the 
relative angle a positive sign if the direction of the angle from the baseline X_ab to 
its pair _Xcd is clockwise and a negative sign if it is counter-clockwise. This allows 
us to extend the range of angles describing pairs of segments from [0:r] to [-~:r] 
and therefore, reduce indexation errors associated with angular ambiguities. 

In order to describe the relative position between a pair of segments and 
resolve the local shape ambiguities produced by the relative angle attribute we 
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introduce a second attribute. The directed relative position Oxb,x  d is repre- 
sented by the normalised length ratio between the oriented baseline vector x_ab 
and the vector x_ib joining the end (b) of the baseline segment (ab) to the inter- 
section of the segment pair (ed). 

1 
'tTg=b,-X~e -- t_ + D~ 

2 D~,b 

The physical range of this attribute is (0, 1]. A relative position of 0 indicates 
that the two segments are parallel, while a relative position of 1 indicates that 
the two segment intersect at the middle point of the baseline. 

3 Relat ional  Constraints 

We aim to augment the pairwise attributes with constraints provided by the 
edge-set of the N-nearest neighbour graph. The conventional Hausdorff distance 
explores the complete set of associations between the set of tokens constituting 
the model and the data. Here our aim is to limit the set of associations to 
those that are consistent with the local structure of the neighbourhood graph. 
The motivation here is that that local object representations are more robust to 
occlusion, missing/extra features and noise. 

We represent the sets of line-patterns as 4-tuples of the form G = (17, E, U, B). 
Here the line-segments extracted from an image are indexed by the set V. More 
formally, the set V represents the nodes of our nearest neighbourhood graph. 
The edge-set of this graph E C V × V is constructed as follows. For each node in 
turn, we create an edge to the N line-segments that have the closest distances. 
Associated with the nodes and edges of the N-nearest neighbour graph are unary 
and binary attributes. The unary attributes are defined on the nodes of the 
graph and are represented by the set U = {(¢i,l~);i E V}. Specifically, the 
attributes are the line-orientation ¢i and the line-length and li. By contrast, the 
binary attributes are defined over the edge-set of the graph. The attribute set 
B = {(0~j,~)ij; (i ,j)  e E C_ V × V} consists of the set of pairwise geometric 
attributes for line-pairs connected by an edge in the N-nearest neighbour graph. 

We are concerned with attempting to recognise a single line-pattern G m =  
(Vm, Em, Urn, B,~), or model, in a data-base of possible alternatives. The alter- 
native data-patterns are denoted by Gd = (Vd, Ed, Ud, Bd), Vd E l) where 7) is 
the index-set of the data-base. 

4 Pairwise Attr ibute  Consistency 

The aim in this paper is to draw on recent work on relational graph matching to 
develop a similarity measure for rapidly comparing relational descriptions of line- 
patterns which are represented in the manner outlined in the previous section. 
Although the framework furnishes a principled Bayesian measure of relational 
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consistency, it has hitherto been used exclusively for graph-matching using itera- 
rive relaxation operations. It is hence unsuitable for rapid recognition of objects 
from large object libraries on two counts. In the first instance, graph matching 
is concerned with detailed correspondence matching rather than global object 
recognition. Secondly, the since relaxation algorithms are iterative in nature, 
they are too computationally demanding to be used when large object-libraries 
are being considered. The aim here is to provide a simplified relational consis- 
tency measure which can be used for recognition without the need to iteratively 
establish correspondence matches. 

4.1 Global Pattern Similarity 

We take as our starting point the the weak-context version of the average con- 
sistency measure developed for evidence combination by Kittler and Hancock 
[10]. Following Christmas, Kittler and Petrou [11] we measure the compatibility 
of the graphs being compared using pairwise attribute relations defined on the 
edges of the nearest-neighbour graph. To be more formal, suppose that the set of 
nodes connected to the model-graph node I is C~ = {Jl(I, J) e EM}. The corre- 
sponding set of data-graph nodes connected to the node i is C d -- {jt(i, j) E Ed}. 
With these ingredients, the consistency criterion which combines evidence for the 
match of the graph Gm onto Gd is 

Q ( a d , a m )  = 

1 1 1 
~ IC~I c d~ IC?I ~ P(( i , j )  --+ (I,J)lv'~j,vdj) (1) 

X 
iEVd ICVM jC ~ JEC'~ 

The probabilistic ingredients of the evidence combining formula need further 
explanation. The a posteriori probability P ( ( i, j) --+ (I, J) lv_ ~,j, v_~,j ) represents 
the evidence for the match of the model-graph edge (I, J) onto the data-graph 
edge (i, j)  provided by the corresponding pair of attribute relations v r~ and v g. l , J  2,3" 

Based upon our discussion of the qualitative properties of the Hausdorff 
model, we would like to use the Bayesian consistency criterion as the basis of 
a similarity measure for graph-based object recognition. To commence this de- 
velopment, we consider a very simple form for the structural error process. We 
assume that the conditional prior can be modelled as follows 

r n  _ V . d  . P ((i,j) -~ (I, J)Iv~j, v dj) = F~(I]v:, J -2,311) (2) 

where F~ (llu~ - _udll) is a distance weighting function. 
We now consider how to simplify the computation of relational consistency. 

We commence by considering the inner sum over the nodes in the model-graph 
neighbourhood C/M. Rather than averaging the edge-compatibilities over the en- 
tire set of feasible edge-wise associations, we limit the sum to the contribution 
of maximum probability. Similarly, we limit the sum over the node-wise associ- 
ations in the model graph by considering only the matched neighbourhood of 
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maximum compatibility. With these restrictions, the process of maximising the 
Bayesian consistency measure is equivalent to that of maximising the following 
relational-similarity measure 

Q(ad,Gm) : ~ max ~ m a x  (Fer( l l_v~, , j  - v id, j[[)) (3) 
I E V ,  n . J E C 7  ~ 

,:EVd jCC~ " 

With the similarity measure to-hand, the best matched line pattern is the one 
which satisfies the condition 

Q(Gd, G,~) = arg max Q(G~, Gin) 
d E50 

(4) 

4 . 2  R o b u s t  W e i g h t i n g  K e r n e l s  

We will consider several alternative robust weighting functions. The most ap- 
pealing of these is a Gaussian of the form 

We wilt also consider several alternatives suggested by the robust statistics lit- 
erature. These include 

- the sigmoidal derivative F~(p) = p-1 tanh (~-f) 

- Huber's kernel F~(p) = { 1~ if p < a 
otherwise 

- Huber's narrow-band kernel F g ( p ) :  - (1 + 1~) -1 

Stated in this way, the recognition metric has much in common with the 
graph-matching criterion recently reported by Wilson and Hancock [7]. However, 
rather than being used for primitive-by-primitive correspondence matching, in 
the work reported here we use the criterion for recognising primitive ensembles. 

4 . 3  Hausdor f f  Distance  

In our experimental evaluation of the new recognition measure, we will provide 
some comparison with the Hausdorff distance used by Rucklidge [6]. However in 
order to make the comparison meaningful, in this section we describe how the 
Hausdorff distance can be extended to graph-based object representations. 

The idea underpinning the Hausdorff distance is to compute the distance 
between two sets of unordered observations when the correspondences between 
the individual items are unknown. In object recognition, this problem presents 
itself when sets of unlabelled image primitives are being compared. 

The distance is computed by exploring the entire space of possible model-data 
associations between two sets of unstructured measurement vectors. The metric 
gauges the distance between the two sets of observations using the maximum 
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value of the minimum pairwise data associations. More formally, with the graph- 
based notation introduced in Section 3, the distance is defined to be 

HC(Gd,Gm)= max rain llv(i,j) d (~,j)cE~(I,J)CEm m _v(~,~)l ! 

Rucklidge [6] has reported a further modification of the standard Hausdorff 
distance which produces tangible performance improvements. His idea is to re- 
place the max operator by an operator that selects from the set of attribute 
distances using a median test or f - th  quantile test. His version of the Hausdorff 
distance can be written as 

H~(Gd,Gm)=F:,j)eE~{ m i n  [l_v(~,j) - v d } 

where the operator F/ selects the f- th quantile value from the set of edge- (i,j)eEd 
wise attribute distances. 

Rucklidge's median operator represents a robust procedure for selecting pair- 
wise attribute differences. Our motivation in the previous section was slightly 
different, since we used robust error kernels to weight the attributes. Rather than 
performing a quantite test we sum the attribute weights. As a final primitive- 
based distance-measure, we have therefore considered applying the Hausdorff 
tests to the summed complement of the weighting function. The new distance 
measure is defined to be 

= - Y ,jll)) HP(Gd,G,,~) ~ max ~ .  min (1 -_r',~(ll~T.~ d 
icVd (i,j)EEd y=~C¢~ (I,J)EE.~ 

(5) 

Finally, when recognition is being attempted over a large data-base of pat- 
terns, the model is taken to associate with the minimum Hausdorff distance set 
of data. The data item associated with the model is 

Om = argmi_n H(Gd, Gin) 
dC'D 

5 E x p e r i m e n t s  

We have conducted our recognition experiments with a data-base of 2000 line- 
patterns each containing over a hundred lines. The line-patterns have been ob- 
tained by applying line/edge detection algorithms to the raw grey-scale images 
followed by polygonisation. For each line-pattern in the data-base, we construct 
the six-nearest neighbour graph. 

The recognition task is posed as one of recovering the line-pattern which most 
closely resembles a digital map. The original images from which our line-patterns 
have been extracted have been obtained from a number of diverse sources. How- 
ever, a subset of the images are aerial infra-red line-scan views of southern Eng- 
land. Two of these infra-red images correspond to different views of the area 
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(a) Digital Map (b) Target 1 (c) Target 2 

Fig. 2. Images from the data-base 

covered by the digital map. These views are obtained when the line-scan device 
is flying at different altitudes. The line-scan device used to obtain the aerial 
images introduces severe barrel distortions• 

In order to explore the sensitivity of our recognition method to segmentation 
systematics, we have introduced multiple segmentation of the target images into 
the data-base. These different segmentations have been obtained by maliciously 
adjusting the control parameters of the feature extraction algorithm. In total 
their are 10 different segmentations for each of the two target images• The digital 
map, the target infra-red images and some sample segmentations are shown in 
figure 2. 
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Fuzzy Hausdofff and Huber Kernel ..... 

Fuzzy Hausdofff and Huber (narrow-band) Kernel ...... 
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Rucklidge Hausdorff Gaussian Kernel ..... 
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Fig. 3. Relative recognition performance for various distance measures 



197 

1.2 2 neighbours . . . . .  
3 neighbours ..... 
4 neighbours ........... 

1 5 neighbours . . . . .  
6 neighbours . . . . .  

om 7 neighbours ...... ~-':::::~:=~:~'::--.:-~'i~? .~ 
o 8 neighbours ...... ~ - ~ ' ~ , ' ~ ,  
¢- 0.8 9 neighbours ...... ~ ~ _ _ ~ ~ , , ~ , ,  " 

10 neighbours ~ ' " - . ' , . ~ ' \ \ L  
0.6 All n e i g h b o u r ~ ~ \ : ~ ' ~  ' 

ol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  / 
0.0001 0.001 0.01 0.1 

Log Sigma 
F i g .  4.  P~elative recogn i t i on  pe r fo rmance  for  var ious  re l a t i ona l  s t ruc tu re  

Our first set of experiments aim to illustrate the relative recognition perfor- 
mance of the different distance measures. The performance of the system in terms 
of retrieval accuracy are assessed using the standard normalised IAVRR/AVRR 
recall metric [12] which is equal to 1 for perfect retrieval accuracy. For this ex- 
periment a database composed of 850 line patterns is used and the result shown 
represent the average retrieval accuracy of 100 distinct queries. Figure 3 shows 
the recognition performance as a function of the control parameter a for each 
of the distance measures presented in section 4 in turn. From the figure it is 
clear that the best performance is obtained when the weighting kernel is either 
Gaussian or a modified narrow-band Huber. The poorest performance is ob- 
tained with the crisp Hausdorff distance coupled with the L2 norm. Rucklidge's 
modified Hausdorff distance (using median instead of max comparator [6] and 
a Gaussian kernel) does not provide an optimal recall performance for this par- 
ticular task but presents an obvious improvement over the standard Hausdorff 
distance. It is important to note that the x-axis of the plot is logarithmic and 
therefore that recognition performance is not particularly sensitive to the kernel 
width parameter ~. From this graph it can also be seen that an average correct 
retrieval rate of 94% is achievable. 

In the next set of experiments we illustrate the effect of relational structure on 
the recognition process. Figure 4 shows the recognition accuracy as a function 
of the width parameter a for a number of different graph-structures. In this 
experiment we have used the similarity measure of equation (3) with the pairwise 
attributes weighted using the Gaussiazl error-kernel, a Gaussian kernel. Here we 
compare the performance obtained with N-nearest neighbour graphs of various 
orders. We also provide results for the recognition performance obtained when 
the relational constraints are weakened. In the first such example we relax the 
requirement for neighbourhood structure, and evaluate the similarity measure 
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over the complete space of edge-wise associations. In the second example we 
remove the edge-structure and compute the similarity measure over the complete 
space of pairwise associations. The first observation that can be drawn from this 
set of experiments is that the best recognition performance is obtained when the 
order of the nearest neighbour graph is seven. However, even when the order of 
the graph is small (i.e. one neighbour) or large (i.e. ten neighbours), then the 
recognition performance exceeds that obtained when either the neighbourhood 
structure or the edge-structure is ignored. 

Histogram Distance O n l y  
Hi~ogram and Fuzzy Relafionai Distance Comloined 

; Models UnRell~sd ~o QUe 

Distance to Query 

Histogram and Haudorff (Gaussian) Distance Combined 

Dista.ce To Query 

Histogram ~nd Modified Hausdorff Distance Combhled 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Distance To Query Distanr:Z To Query ~ 

Fig. 5. Distribution of the distance measures during retrieval using the digital map 

The final set of experiments focuses on the distribution of the distance mea- 
sures. We have extracted from the data-base the 1000 best histogram matches for 
the digital map query and have used these for more detailed recognition experi- 
ments. Figure 5 compares histograms of the various distance measures for the tar- 
get images and for the remaining line-patterns. Figure 5(a) shows the distribu- 
tion of Bhatacharyya distance between the histograms in the data-base and the 
query image. The remaining three plots show the distribution of the primitive- 
based distance measures. Figure 5(b) shows the distribution of Bayesian similar- 
ity measure, Figure 5(c) shows the distribution of standard Hausdorff distance 
while Figure 5(d) shows the distribution of Rucklidge's median-based Hausdorff 
distance. The main feature to note from these distributions is that the Bayesian 
measure gives the best separation between the various segmentations of the two 
aerial images (shown in black) and the remainder of the data-base. In this case 
the I0 different aerial image segmentations are ranked above the rest of the data- 
base. In other words, there is no overlap with the remaining patterns in the data- 
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base. In each of the remaining three cases (i.e. Figures 5a,c and d) only five of 
the ten segmentations are top ranked. In other words, the primitive-based Hans- 
dorff distances fair only as well as histogram-based comparison which overlooks 
the primitive structure of the line-patterns. Moreover, the Bayesian recognition 
process does not appear to be sensitive to the segmentation and polygonisation 
process used to extract  the line-patterns from the two aerial images. 

6 Conclus ion 

In this paper we have presented a new similarity measure for comparing rela- 
tional object descriptions. The idea underpinning the measure is to gauge the 
similarity of the pairwise attr ibutes residing on the edges of a graph-structure 
that  represents the proximity structure of a set of object-primitives. The measure 
exploits the neighbourhood structure to limit tile set of comparisons required. 

For a database of 2000 objects (or line-patterns) we have shown that  a recall 
accuracy of 94% is achievable when the weighting function is Gaussian. We 
have presented a number of experiments demonstrating the performance of the 
proposed methodology. Moreover, the results obtained indicate that  the method 
is relatively insensitive to the under and over segmentation of the line-patterns. 
Moreover, the method consistently outperforms the Hansdorff distance in terms 
of its recognition performance. 
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