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Abs t r ac t .  This paper addresses the automatic inference of a Gibbs dis- 
tribution dedicated to segment grouping through relaxation labeling. The 
behavior of this method is studied through the detection of a road-like 
network from a noisy set of segments extracted from an image during 
a preprocessing step. Linking segments are added to this set to recover 
lost road parts. The whole segment set is organized in a relational graph 
and the road network restoration is modeled as a labeling process. The 
solution is defined as the labeling maximizing a Gibbs distribution con- 
structed from a set of local costs computed for each graph clique. These 
cost functions, corresponding to interaction potentials, are learned auto- 
matically using multi-layer perceptrons. Supervised learning is performed 
over a training data set using only binary teaching output, "good" or 
"bad" configuration example. Several neural networks are used to over- 
come the problem of the variable complexity of clique configurations. 

1 I n t r o d u c t i o n  

Artificial vision systems usually include a hierarchy of processing units. The low- 
est levels deal with local feature detection while the highest ones are in charge of 
pat tern  recognition. In this paper  we address an intermediate level of processing 
which consists in correcting errors of the lowest level of processing using contex- 
tual information.  The paper  focuses on the detection of a road network f rom a 
set of segments extracted from the image but the approach could be extended 
to other similar problems. 

Various approaches have been proposed in li terature to address this kind of 
problems [3]. In this paper,  a method of relaxation labeling based on a Markovian 
random field model is discussed [1]. Such a model has been recently proposed in 
[8] to overcome the difficulties induced by speckle noise in SAR images. Local 
contextual a priori information is embedded in interaction potentials used to 
recover the full road network from a very noisy set of segments. These potentials 
rely on different parameters  which are set according to ad hoc considerations. 
In this paper  we propose a general scheme which consists in using multi-layer 
perceptrons to construct similar potentials from a supervised learning on a set 
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of manually labeled road networks. Different simulations are proposed to show 
the efficiency of this strategy. 

2 S e g m e n t  G r a p h  

In this section we discuss how we build a graph from an image. We suppose that  
a set of segments has been extracted from images (see fig. 1. Let us assume that 
roads can be recovered through addition of new segments linking extracted ones, 
and deletion of other segments stemming from other image structures. Hence, 
a set of new connection segments is added to the initial set following simple 
rules. A segment is added between two others if the distance between them is 
not too long and the angle they are forming is not too large. In the following 
a weight parameter is attached to each segment: high (1) if it is part of the 
former set, tow (0) if it is a new connection segment. A finest weight set could 
stem from an evaluation of the segment detector. Once all segments have been 
obtained, a segment graph can be built, with each node representing a segment, 
and relations between nodes showing if nodes share an extremity. The cliques 
of this graph are sets of segments which share the same extremity. Note that 
configurations where three segments form a triangle clique can exist but are not 
used for potential definition. 

/__\' } --. 

Fig. 1. Connection of segments. Each segment is marked here by a dot or: its center to 
allow better visualization 

3 I n t e r a c t i o n  P o t e n t i a l s  

We now address the problem of labeling the segment graph in order to recover 
the road network (1 for road, 0 for non road). We assume that local contextual 
a priori information is sufficient to solve this problem. Therefore, the solution is 
defined as the labeling corresponding to the maximum of a Gibbs distribution. 
This distribution is inferred from a set of interaction potentials attached to 

each maximal clique of the segment graph: p(l) = ½e- ~c~c  y[c](i), where I is a 
labeling, C the clique set, V[c] the potential of clique c, and Z a normalization 
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constant. Hence the problem reduces to the minimization of a sum of potentials 
acting as cost functions. Triangle cliques are endowed with 0 potential and do 
not influence the distribution. Now we have to define cost functions which will 
model the local nature of a road network. 

The system has to know that a road is most of the time a low curvature 
line, that crossings (ie cliques involving more than two nodes with label 1) are 
unusual but do exist, and that end points (cliques with only one node with label 
1) are rare (in fact they usually only happen at the edges of the image). So a 
cost function will be built, that will favour usual situations by giving them a low 
cost, and penalize unusual configurations by assigning them a high cost. The cost 
function has to be bounded because improbable situations can happen and must 
be allowed even if penalized. This cost function can be regarded as the opposite 
of a plausibility. One way of defining it is to try to put our human knowledge 
in the system, by modeling. This was the choice of Tupin [8]. But this implies 
humans are able to teach the system a good model. In fact only very general 
rules, like those given above, can be modeled this way. Tupin used a model driven 
by four parameters which were adjusted by hand. The final result was good but 
it could not be used for other applications since the rules and the parameters 
would not be appropriate. Another approach is to build an adaptive system 
which will learn to decide if a given local configuration is or is not plausible and 
then output a cost value. This is the choice we made in the present work. 

4 Learning Interaction Potentials 

Each segment of the graph can be described by its local characteristics (for 
instance its length, coordinates of center point, orientation, weight and label). 
The characteristics of all segments of a clique have to be put together into a 
black box to compute the cost, or potential of the clique. Such a black box can 
be filled with a tot of statistical methods since the output cost can be related to 
a probability density. 

So far we used a supervised method, the common multi-layer perceptron, 
trained with a standard back-propagation algorithm [7, 6]. We consider that all 
clique configurations in manually labeled segment graphs are "good" and system- 
atically use 0 (low value cost) as teaching output for these cliques. We provide 
also bad examples which are obtained by randomly changing labels of good clique 
configurations. High cost value (1) is used as teaching output for these examples. 
Giving such extreme binary teaching outputs might seem inappropriate, but in 
fact "bad" examples balance "good" ones so that in frontier regions the cost 
output will be intermediate. 

An important problem lays in coding the input to the black box. Kim and 
Yang [2] used a similar approach for the labeling of an image over-segmentation, 
but only pair interaction of adjacent regions were considered. Here the data 
is a clique configuration which is described by a large set of parameters. The 
number of parameters is not the same from one clique to another, depending on 
the number of segments involved in it. Some of these pa.rameters make more sense 
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than others, and some will be better used if given in another formulation. Our 
choice was to build several neural networks to overcome the problem. Indeed, 
attempts to summarize all cases in a constant number of parameters led to bad 
results. As a general principle, the number of input parameters must be as small 
as possible: for our problem, absolute coordinates of the segments in the clique 
are useless: only relative positions (angles for example) are meaningful. This has 
the advantage of making the representation invariant in translation and rotation. 
Giving too many inputs to a neural network results in useless computation, 
slower and even less efficient learning. In our case important information stem 
from segments whose labels are 1, because these segments are potential roads. 
Therefore information stemming from label 0 segments will be used only to 
evaluate fully "no road" clique configurations. 

We constructed first one network for each configuration set corresponding 
to a fixed non zero number of "road" segments (see fig. 2). This can also be 
seen as separating syntactically different cases: "end point", "no crossing", "T- 
crossing", "X-crossing" and so on. The corresponding inputs are, for each "road" 
segment, its length and weight. The labels have not to be specified because 
"no road" segments are forgotten. Angles between segments are also provided. 
Segments are described in a consistent order: clockwise for example, starting at 
random in the learning phase, and with the longest first during the minimization 
process which allows a consistent potential definition. The last configuration set 
corresponding to a no road configuration requires a different construction. We 
define a set of networks similar to previous ones but defined for a fixed "no road" 
segments number. As a matter  of fact, if all segments have the label 0 their 
relative organization may be more important than in the former case. Indeed, if 
two segments share a similar direction, a road could have been missed, and the 
configuration should be penalized. 

Dimensioning the neural networks has been done iteratively by trying differ- 
ent numbers of hidden units, learning and testing them on different data  sets. 
The networks which obtained the lowest total sum of clique potentials on the 
test data  set were kept. Networks with 1 or 2 hidden layers were tried. Depend- 
ing on the network (and its number of inputs) networks with either one hidden 
layer of about t0 neurons or two hidden layers of about 5-8 neurons on the first 
hidden layer and 2-5 on the second had the best results fbr our application. 

The way we create "bad" configuration cliques for training introduces a bias 
in the learned cost function: sometimes realistic configurations appear this way 
and should be good. Then "good" configurations are reliable, but "bad" config- 
uration sets can include errors. To overcome this we made a two-stage learning. 
After a first training, another set of equivalent neural networks is trained with 
the same data set, from which "bad" configurations evMuated "good" by the 
first networks are dropped out. 

Another point is that  in this work learning had to be done with a few simu- 
lations. This implies that the configuration space is not well sampled. To allow 
good generalization, the sample set is noised differently during each training 
iteration. 
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First stage learning / test : 

Graph 

Second stage learning : 

Fig. 2. (up): From cliques to local potentials: the appropriate neural network is chosen 
depending on the complexity of the clique configuration. (down): Second stage learning 
scheme: a first network set is used to control learning of a second set. When the 
first network disagrees with the teaching output for a "bad" configuration, learning 
is disabled for this clique 

As an adaptive process, the system can be specialized for different patterns. 
For the road detection application for instance mountain roads allow more cur- 
vature but  fewer crossings than urban roads. To specialize the system, using an 
appropriate data  set for learning is sufficient. Moreover another system could be 
specialized to river detection: rivers have their own characteristics which are a 
bit different from roads. Then competition between a road system and a river 
system could be used as a recognition tool to discriminate between roads and 
rivers, which may all be mixed up by Tupin's model. 

5 Global Detection: Simulated Annealing 

The optimal labeling for the whole graph should include mainly low cost con- 
figurations. A clique is usually endowed with several low cost configurations 
which are discriminated through the search for a global optimum. The optimal 
labeling corresponding to the minimal energy configuration of the underlying 
random field is obtained using simulated annealing. The state space is explored 
using the following topology: during each iteration, the segment set is randomly 
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partitioned in singletons, pairs and triplets. Then segment subsets are sequen- 
tially updated using the Gibbs sampler algorithm [1]. The annealing temperature 
follows a geometric decreasing with 0.965 reason. Using this fast approximate of 
the simulated annealing scheme which does not wait for stabilization at a con- 
stant temperature, convergence was obtained after about a minute calculation 
time on a Ultra-1 SUN calculator. 

6 R e s u l t s  

The behavior of the method described above has been studied using simulated 
road networks. Two sets of data  were used. The first only represented closed 
curves without any crossings. Learning was performed on five different images 
(see fig. 3), using 1000 learning iterations for each of the two steps. The gen- 
eralization results on other images of the same type (closed curves) were good: 
in most cases a closed curve was obtained after detection. In some cases it was 
not exactly the same as the expected one, but the proposed one might have 
been good (see fig. 4). The energy of the proposed solution gives an idea of the 
performance of the system: the lower the final energy, the best the solution is. 
On trained graphs of about 150-200 cliques, the final energy was generally tess 
than 2 (on a maximum equal to the number of cliques, since each had an energy 
between 0 and 1). On test graphs of approximately the same size the energy was 
between 1 and 7. 

However a problem sometimes happened when testing graphs containing 
some atypical and incorrectly evaluated data  (generally shorter or longer seg- 
ments than those in the training set): the system sometimes ended with a graph 
with all zero label segments, but with regard to the learned data these examples 
were out of the scope of the learned problem. 

The second set of images we tried were representing grids which can figure 
a urban road network in a part of a city. In this case roads were quite straight, 
there were X-crossings, no T crossings, and end points on the edges of the images. 
This trial obtained encouraging results too, although not as perfect as for simple 
closed lined, because too many end points were allowed in the learning data 
(see fig. 5). Perhaps it would improve to add an additional input to all neural 
networks providing the number of label 0 nodes in the clique to allow end points 
only on the edges of images (where cliques actually contain a single node). 

7 Conc lus ion  

The method we have presented here is an extension of the road detection sys- 
tem of Tupin [8] used on SAIl. images. The main improvement we proposed is 
a learning system for local compatibilities which allows more flexibility on the 
applications. Our system uses multi-layer perceptrons but other adaptive tech- 
niques could be used instead. Several networks had to be used to deal with the 
coding of cliques with different structures. First experiments are especially en- 
couraging. In the future, we hope to improve the discrimination power of the 
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system by adding for each network a self-evaluation of the reliability of the cost 
through the configuration space. We could also increase the number of neural 
networks using other configuration codings. Each clique configuration would then 
be evaluated by several experts, a supervisor making the final decision. 

We plan to use similar approach with 3D networks stemming from medical 
images. For instance this approach could be used to recover the vascular system 
from angiographic data  or to identify cortical folds from MRI data [5, 4]. 
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Learning database for the closed line case, extracted segments 
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Fig.  3. Learning database for the closed line case, full segment set, black: road, gray: 
noise or connection 
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Ideal image Segmented image 

Graph with linking additions Final graph 
Closed line generalization results, example 1. Detection result is identical to the ideal 
model. 
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Ideal image Segmented image 

Full graph Final graph 

Fig. 4. Closed line generalization results, example 2. Detection result differs slightly 
from the ideal model, but is close to it, and a closed curve is obtained, confirming the 
model has learned a general principle. 
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Full graph Detection result after learning 
Grid learning data 
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Segmented image 

Full graph Detection result 

Fig. 5. Grid generalization example, Learning has been performed on a single image 
(up image). (down) generalization result. 


