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Abs t rac t .  Automatic recognition of objects from their visual represent- 
ation is a hard and computationally expensive task, mainly because it 
is difficult to extract the necessary discriminant information from the 
raw data. The current approaches to image classification commonly ex- 
ploit some geometrical models of the objects of interest. The classification 
process is based on the comparison between the image at hand and the 
models for the classes: the object's class will be the one of the closest 
model. In this paper we present XFF, a new method for representing 
2-D images, based on the extraction of a set of fractal features which 
exploits the approximation of an image with an Iterated Function Sys- 
tem, a technique that is already at the basis of many successful image 
compression tools. One of the advantages of these features is that they 
can be used directly to train an adaptive classifier, without the need of 
any a priori knowledge. 

1 I n t r o d u c t i o n  

Automatic recognition of images from their visual representation is a problem of 
great importance due to the many potential applications of automatic recognition 
systems (see [17] for a survey). The main problem with image classification is 
its high computat ional  complexity, due to the large amount  of raw data to be 
handled. Hence the need for applying feature extraction techniques, which allow 
to work at a more abstract level of detail [11]. The ideal features are easy to ex- 
tract, robust, invariant w.r.t, the image size, and must have a high discriminatory 
power, i.e., be different for different classes of objects. Well-known approaches to 
image classification suggest to use model-based methods [5, 6]; in our work we 
have, instead, investigated an approach that does not need any a priori know- 
ledge, being based on the extraction of a set of characterizing features, based on 
Iterated Function Systems (IFSs) [4], that we call fractal features. Image encoding 
by means of IFSs has been widely investigated to develop image compression sys- 
tem% however, to our knowledge, IFSs were never proposed before for extracting 
features to be used in characterization and/or  classification tasks. 

The purpose of this paper  is to show that, given an isolated image classi- 
fication problem, the fractal encodings of the images of objects that belong to 
the same class are more similar than those of objects of different kinds. This 
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will be done both reporting the theoretical backgrounds of the fractal features 
(Section 2) and describing a system, XFF (eXtraction of Fractal Features), that 
extracts 2-D isolated image fractal encodings to be used for training adaptive 
classifiers (Section 3). XFF derives from the experience of [1], where a prototype 
system was developed for the specific application of hand-written digit classifica- 
tion. Differently than the prototype, XFF can deal with any kind of shape, being 
particularly suitable to handle images with an intrinsic complex structure. For 
showing an example, we report the results obtained on a complex and irregu- 
lar image classification task, that consists in recognizing different kinds of trees 
(Section 4). 

2 I F S - b a s e d  F r a c t a l  F e a t u r e s  

The basic idea underlying fractals is that, at any scale, they are self-similar. 
In the plane, fractal images can be generated simply by iterating a geometrical 
transformation that maps the given image in smaller copies of itself. The fractal 
is the limit obtained when the number of iterations goes to infinity. Even though, 
in principle, this mapping can be any transformation, in practice, affine trans- 
formations, which preserve the object's shape, are preferred. The only necessary 
condition imposed on the transformations is that they must be contractive, i.e. 
they must move points closer together. 

An affine transformation in a bidimensional space has the general form: 

[: [;]÷ 
Notice that the parameters e and f encode the translation component of the 
transformation. 

In general, an Iterated .Function System (IFS for short) is any collection 
{M1, . . . ,Mr}  of contractions; here we focus on collections of affine contract- 
ive transformations. Pot every IFS in R n there exists a set F such that F = 
U rn M~(F). F is called invariant set; it is unique and non-empty a.,nd can be a i = 1  
fractal. Moreover, as a consequence of the Collage Theorem [2, 8], given any corn- 
pact subset E of R n and an arbitrary precision of approximation, there always 
exists an IFS, whose invariant set approximates E as finely as desired, although 
there is currently no method that allows to find such approximations in a fully 
automatic way. A particular case is that of images, which can be considered as 
compact subsets of the plane; the Collage Theorem helps in reconstructing an 
image. The method that is used consists in reconstructing an image by covering 
it with a set of contracted affine copies of itself. Other characteristics of the IFS 
are that it is robust and stable, i.e., small changes in the transformations produce 
small changes in its invariant set; hence, varying the coefficients in a continuous 
way, the shape of the invariant set also changes in a continuous manner. Details 
can be found in [8, 4]. 

Following from the Collage Theorem [3], each image can be approximated to 
any desired precision by computing the invariant set of some IFS. The advant- 
age of these approximations is that they allow images with an intrinsic complex 
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structure to be encoded in a very concise way, the size of the representation be- 
ing independent than the image size. In this paper we use the parameters of the 
transformations Mi as a set of descriptive features, called fractal features. Since 
IFSs are robust and stable, it is reasonable to suppose that the IFSs that approx- 
imate the images of a set of objects of a same class will be more similar than 
those approximating a set of objects belonging to different, classes. Furthermore, 
since we tackle classification problems, we show that it is not necessary that the 
approximations be fine; rough approximations are enough to our purposes. 

Then, given an image we look for an IFS whose invariant set approximates 
it and use the parameters of such an IFS to represent the original image. The 
obtained encodings are used to feed a learning system to produce a classifier (a 
Neural Network). This approach is quite different than the common approach 
to feature extraction (see [17, 11]), which consists in making the pixel matrix 
undergo a sequence of processing steps, aimed at representing the image by 
means of more and more abstract descriptors. Differently than these methods, the 
fractaI features are simple to extract and they allow the use of adaptive classifiers 
for building the classification knowledge in an automatic way. Moreover, fractM 
features allow to represent in a very concise way extremely irregular objects, 
such as landscapes, clouds, trees [18] (see Section 4). 

3 XFF: automatic extraction of fractal features 

This section presents XFF, the system we developed to extract 2-D image dis- 
criminant fractal encodings of isolated objects. XFF is an operationalization of 
the Collage Theorem as stated in [3]. Our idea is to look for an IFS, whose in- 
variant set approximates the image at hand. In the following we call it IFSappr. 
The parameters of the transformations in IFSappr will be used as the descriptive 
features of the processed image. 

Top level: 
1. load image of size width x height; 
2. scale the loaded image; 
3. build the proto-transformations; 
4. build a covering for the initial image; 
5. save the produced covering; 

IFSapp, is obtained by covering the image with a set of contractions of it, a 
process divided in two phases. First, a set of transformations that are parametric 
w.r.t, e and f is built. We call them proto-transformations and they are obtained 
either by rotating a scaled copy of the original image or by flipping a previously 
built proto-transformation around one of the axes. The second phase corresponds 
to step 4 of the Top level and is as follows: 

Cover image: 
while the stop criterion is not verified, do the following: 

1. for x e [1, width] and y C [1, height]: 
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- instantiate each proto-transformation by setting parameter e to x and 
f to y, thus obtaining a set of candidate transformations; 

- evaluate each candidate transformation and select the best one; 
- if it scores better than the current best candidate transformation, 

memorize it instead of the previously best scoring one: 
currBest := selected transformation; 

- increment x and y of a predefined step; 
2. IFSapv := IFSapprU {currBest}; 

where IFSapp~ and currBest are initially empty. This procedure produces IFSappr 
by selecting a set of best scoring candidate transformations, each of which is a 
copy of one of the proto-transformations built at step 3 of the top level. The 
selection is done according to a scoring procedure, that exploits a variant of 
the Hamming distance. This procedure compares two matrices: t ransform,  the 
pixel matrix corresponding to the transformation at issue, and a part of the 
matrix image, corresponding to the original image pixel matrix. The portion 
considered has the same size as t rans form and its top-left vertex is the point 
defined by the parameters e and f of the transformation at hand. Calling wl the 
width of such a matrix and hl  its height, the scoring is the sum, pixel by pixel, 
of s~j = ((image[i'][j'] - transform[i][j]) ~ + 1) * punishij, where i E [1, wl], 
j E [1, hl], i' = x + i and j '  = y + j. The "+1" in the formula had to be added 
to take into account the information given by punishij in the ease of a perfect 
covering, i.e. when Vi, j(image[i'][j'] = transform[i][j]), punishij forces the 
covering operation to prefer pixels that belong to the foreground of the original 
image and, as a second requirement, that have not been covered yet. The value 
of punishij varies pixel by pixel and changes over time to take into account 
the part of image already covered by the transformations added to IFSappr. 
8ij i8 computed only for those pixels which belong to the foreground of tile 
transformation. When a transformation is to be selected out of a set, the score of 
each element is computed. The transformation that is preferred is the one which 
minimizes the score, i.e. the difference with a part of the original image. 

The outcome of XFF is an IFS {M1, ..., M;}. Each Mi is coded by three num- 
bers: one encoding the applied proto-transformation and two respectively equal to 
x and y (the coordinates of the point on which the proto-transformation is instan- 
tiated, i.e., parameters e and f) .  The image is, then, encoded by r x 3 numbers. 
Each proto-transformation can be encoded by just one number because, since 
the allowed scalings and rotations are given, the possible alternatives are limited 
in advance. This fact is due to a problem that all systems that encode images by 
means of IFSs must face: in principle, the search space they explore is infinite as 
well as the number of possible solutions, see [9]. In order to make the problem 
tractable, all such systems constrain the search of the IFS by narrowing the range 
of all the coetficients a, b, c, d of 1. XFF applies the following constraints. The 
same scaling factor (which is fixed, decided a priori and is the same for all the 
proto-transformations) is used to reduce both image sides. Furthermore, XFF is 
parametric w.r.t, the angles that define the rotations, i.e. tile user specifies which 
rotations XFF must use. 
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Another interesting point to discuss is how to decide when to stop applying 
proto-transformations, i.e. how many transformations are necessary for captur- 
ing the structure of an object. This is, actually, an open problem. Generally 
speaking, even images of different objects belonging to the same class may re- 
quire different numbers of transformations for getting a sufficiently informative 
approximation. However, if we are to use automatic learners for extracting the 
classification knowledge, it is necessary to find a homogeneous representation for 
all the instances. In fact, when different length encodings are used, a learning 
system that can deal with first-order logics should be adopted, however, the de- 
velopment of first-order numerical learners is at the beginning and there are just 
a few examples of such systems. We have recently started a series of experiments 
of this kind but they are still in a preliminary phase. Our stop criterion is very 
simple and consists in deciding a priori the number of transformations to use. 

4 A n  e x a m p l e  a p p l i c a t i o n  

The test-bed we chose %r presenting XFF is a "complex image" classification 
problem: tree recognition (see also [12]). The classification problem consists in 
learning to distinguish three kinds of trees, namely lime-tree, oak and elm (Fig- 
ure 1). All images size is 320 x 240 pixets. 150 instances were available, 50 per 

? 

Fig. 1. Instances of Elm, Oak and Lime-tree. 

class. Each experiment was repeated from three to five times and 6-fold cross- 
validation was applied. Depending on the experiment, each instance was encoded 
simply by using 3, 4 or 5 transformations, i.e. using alternatively 9, t2, or 15 
numbers. These encodings are very compact w.r.t, those obtained by means of 
other common techniques. For example, in the tree classification problem the use 
of chain codes is not a good choice because of the extreme irregularity of the 
shapes. Note that shape extreme irregularity is, however, typical of many image 
classification tasks, especially in biology, such as lichen classification [13, 16] and 
bacteria colonies recognition. 

About 450 experiments were carried on. The proto-transformations were ob- 
rained using only rotations that are multiple of 7r/2. The best results were ob- 
tained using 4 transformations with a side scaling factor equal to 0.35. The 
classifier was implemented as a feed-forward neural network, trained by means 
of the Scaled Conjugate Gradient (SCG) rule [15]. The networks had about 100 
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hidden neurons and were trained in a number of epochs in the range [500, 1000], 
then training took always place in a few minutes. 

Table 1. Recognition rates obtained encoding the trees with XFF. 

clas~ (a) (b) (c) (d) (~) (f) 
elm 100 Y0 88.61% 86.00 % 90.18 % 100 % 56.00 % 
oak 100 % 91.38 % 95.34 % 83.64 % 100 % 76.00 % 
lime-tree 100 % 75.38 % 67.34 % 61.45 % 100 % 60.00 % 
average 100 % 85.12 % 82.89 ~o 78.42 % 100 % 64.00 % 

The outcomes of the experiments are reported in Table 1. Columns (a) and (b) 
report the results obtained using the best setup described above. The results of 
column (a) were obtained on some specific runs and are not averages. They were 
reported just to show that in some cases a perfect recognition was obtained also 
for class "lime-tree", which is always more difficult to capture than the others. 
Column (b), instead, reports the average results obtained by cross-validation. 
All these results were obtained using 100 hidden neurons; different numbers of 
neurons were also tried always obtaining average recognition rates higher than 
80%. Recognition rates in between 75% and 80% were achieved using smMler 
learning sets. Columns (c) and (d) report the average results obtained when 
encoding the trees respectively by means of 3 and 5 transformations. Different 
numbers of hidden neurons were tried also in this case; in particular, when 5 
transformations are applied, the best results were obtained using 200 hidden 
neurons. A 100% recognition rate was always achieved on the learning set, see 
column (e), independently from the setup. Column (f) reports the results obtained 
encoding the instances by means of enc [9], a grey-scale image compression tool. 

A main observation is that 12 numbers resulted to be a sufficient encod- 
ing for a tree image of size 320 x 240, allowing an average 85.12% recognition 
rate to be achieved. We think that this result is a sufficient proof of the power 
of discrimination that can be summarized by an IFS. The optimM performance 
obtained in some cases, then, strengthens this result. We believe that higher aver- 
age recognition rates could be achieved by widening the range of transformations; 
nevertheless, relaxing the constraints that were imposed would also increase the 
computational complexity of the search. This is the same problem that was faced 
by fractal compression system developers. 

5 C o n c l u s i o n s  

Even though IFSs have been extensively studied and used for image compression, 
they were never taken into account as a means for characterizing visual repres- 
entations of objects for recognition purposes. In the literature, in fact, there are 
very few examples of works where fractals have been used in image classifica- 
tion tasks. The only ones that we could find are [10], where a neural network is 
trained to distinguish fractal images from non-fractal images, [7], where fractals 
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are used to build the belief functions of a Bayesian classifier, and [12], where a 
metric for planar self-similar forms is proposed. 

In this last work, which is probably the closest to the topics we explored, a 
metric is defined and used for measuring the distance between IFSs: the smaller 
the distance the more similar the represented shapes. Note that image classific- 
ation is a natural application of similar metrics, however, in order to use this 
metric in recognition tasks some models are to be given for comparison. Fur- 
thermore, it is necessary to find a technique for producing IFS encoding for the 
learn/test instances. Only then, it would be possible to apply a metric to compute 
the similarity between instances and/or between instances and prototypes. 

The greatest novelty of our work is that we focused on finding the IFS rep- 
resentations of a set of given images and, then, we used these representations to 
learn a classification knowledge. Then, by attacking the problems of image fea- 
ture extraction and classification knowledge acquisition, our method is to some 
extent complementary to [12]. 

With our work we have shown that IFS encodings can be used to discriminate 
between images of different kinds of objects and can, then, be used also in clas- 
sification tasks. The only problem is to find good techniques for making fractal 
feature extraction automatic. In fact, as shown in [1], when a perfect encoding is 
produced the recognition rates achieved are optimal. In order to show that such 
algorithms can be developed, we implemented XFF, a simple fractal feature ex- 
traction system, that can be applied to any isolated shape. Experiments showed 
that recognition rates obtained using XFF are twenty percentage points better 
than those obtained using fractal compression systems (see table 1, column (f)). 
Furthermore, the encodings are generally much more compact. 

We think that these results are a sufficient motivation for a deeper invest- 
igation of IFS-based fraetal feature extraction methods, with particular care to 
the constraints that decide which transformations are to be taken into account. 
In fact, as we have shown, when no restriction was imposed on the transform- 
ations to use, the recognition rates were optimal [1]. The new open problem 
is, then, to find an optimal criterion for guiding transformation selection. We 
think that this problem is worthwhile a deeper investigation because of the very 
appealing characteristics that are shown by IFS-based fractal features. One of 
the main characteristics is that their use reduces both the number of the input 
space dimensions and the set of possible values for each input feature. So, for 
instance, in the experiments which gave the best results each tree image (whose 
size is 320 x 240) was represented by just 12 numbers. Moreover, the number 
of fractal features used to represent a shape is independent from the size, being 
related to the intrinsic shape complexity only. These two characteristics make 
IFS representations extremely interesting in the case of image classification. In 
fact, according to the results of StatLog [14], many learning algorithms cannot 
deal with applications having hundreds of dimensions while those that can, take 
a too tong time before converging. The use of IFSs, then, widens the range of 
learning systems that can be applied to image classification tasks, decreasing the 
time required by the training phase. 
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