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Abstract. Determining the shape of a point pattern is a problem of considerable practical 
interest and has applications in many branches of science related to Pattern Recognition. Set 
estimators of a nonparametric nature which may be used as shape descriptors should have 
several desirable properties. The estimators should be (a) consistent, i.e. Lebesgue measure of 
the symmetric difference of the actual region and the estimated should go to zero in 
probability; (b) computationally efficient; and (c) automatic, in the sense that the method 
should be able to detect the number of independent disjoint components in the region even 
when this number is unknown. None of the currently known estimators combine all these 
properties. A new shape descriptor called s-shape in the context of perceived border extraction 
of dot patterns in 2-D has been recently proposed. Here, a class of set estimators based on the 
s-shape is developed in k-dimensions, which combine all the above properties. These 
estimators are consistent not just under the uniform distribution, but also when samples are 
drawn under any continuous distribution. The order of error in estimation is independent of the 
dimensionality k. To illustrate the effectiveness of the proposed approach, a linear order 
algorithm readily derived from the definition is applied in digital domain. The role of t5 that 
controls the structure of the estimator, is analyzed. 

1. Introduction 
From an early stage of  human endeavor one problem of interest has been to find the 
shape of a point pattern. From astronomical studies to various application domains 
such as exploration of natural resources, urban planning, biomedical imaging, etc. the 
structural analysis of  point set and shape recovery play an important role [3],[4]. In 2- 
D one can perceive the shape of  the point set if they are clearly visible as well as fairly 
densely and more or less evenly distributed. Such a point set is referred to as a 
regular dot pattern. Intuitively speaking, the shape of a dot pattern is the bounded 
region that generates the pattern. Ray Chaudhuri et al. have introduced a shape 
descriptor called s-shape in the context of  perceived border extraction of dot patterns 
in 2-D [6]. The idea behind the s-shape is as follows. Let the pattern plane be 
partitioned by a lattice of  square ~ i d s  of  'appropriate '  length. Consider the union of  
grids containing points of  the dot pattern. If  the grid-length s is properly selected, this 
union (or a ' smooth '  version of it) approximates the underlying region of the pattern. 

Shape description may be viewed as an associated problem of  the more basic 
question of  set estimation from a finite number of  sample points drawn from the set. 
One major problem of interest in set estimation is consistency. An estimator is 
consistent if it converges to the original set A as the number of  points drawn from A 
tends to infinity (see Section 1.1). Here we extend the notion of s-shape and derive a 
class of  set estimators in higher dimensions. The theoretical properties of  these 
estimators are studied. The procedure is nonparametric in nature. 
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1.1 Consistent Estimation and Existing Results 

Let XI, X2 ... . .  X, be k-dimensional independent and identically distributed (i.i.d.) 
observations from a distribution go supported on a set a c 9l k. Let cls(ct), int(oO and 
~(o0 denote respectively the closure, interior and boundary of c~; while g, A and E 
are respectively the k-dimensional Lebesgue measure, symmetric difference operator 
and the expectation of a random variable. 

Definition I : Let ~*~ c 9l k be a set estimator of c~ based on XI, X2 ..... X,. Then cc*n 
is said to be a consistent estimator of c~ (denoted o(, --9 ~ ) if 

= 0 ( 1 )  

Theorem I : Let ¢x ¢ ~R 2 be a bounded Borel set whose boundary has Lebesgue 
measure 0. Let <~ > be a sequence of positive numbers such that n --~ ~, cn --~ 0 
implies n a2n --~ ~:. Let a: = U~,{xII[x , -x[[_<e~}. Then ~*~ is a consistent estimator of 

a under the assumption that go is uniform. 

The theorem is due to Grenander [1]. Note that there are infinitely many different 
sequences of such E~'s with the required property. Since the choice of E~ does not 
depend on X1, )(2 ..... X~, Grenander's class of estimators are not scale equivariant. 

Another consistent set estimator based on the Minimum Spanning Tree (MST) is 
due to Murthy [5]. In this case, the radii ¢,'s are made functions of Xb X2 ..... X~ in 
the context of compact regions. A set ~ is said to be compact region if c~ is path- 
connected, compact, cls(int(a)) = a, and 3(o0 consists of finitely many rectifiable 
curves. Let cPn denote the MST of (X1, 3/2 ..... X~ ). 

Theorem II : a: =U{XIttY-X~_<h., y~q~}is a consistent estimator of a where, h~ = f ~ .  

The above result is also true for any continuous distribution. However, the result 
can not be extended to the case of union of multiple compact regions unless the 
number of disjoint components is known. The above two theorems, established only 
in 9l 2, basically take the union of certain circular neighborhoods centering every 
sample point (in Theorem I) or points over the MST of sample points (in Theorem II) 
as an estimate of the original set ~. 

In Section 2, the s-shape in k-D and its derivative, a smooth version are formally 
defined. In Section 2.1, we establish the consistency of the s-shape under an uniform 
distribution in k-D. This result is then extended to general continuous distributions. In 
Section 2.2, the error rate in estimation is analyzed. One important result is that the 
order of error is independent of the dimensionality k. The consistency of the smooth 
s-shape is also established. In Section 3, an algorithm of linear order time complexity 
that is readily derivable from the definition of the proposed set estimators is applied 
to dot patterns illustrating its effectiveness in digital domain. The role of 5, the 
parameter controlling the structure of the estimators and the range of its values which 
appear to be intuitively and experimentally justified are analyzed. Finally, a general 
discussion is presented in Section 4. 
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2. The s-Shape and Its Derivatives as Set Estimators in k-D 
Let S. {Xb 32z ..... X~} be a set of n- sample points in 9t ~. Let W. be the optimal 
(with smallest k-volume) hyper-rectangle with boundary surfaces parallel to the (k-l) 
dimensional coordinate planes of reference covering S., i .e.S, c IV. c 9~ k. For a 

given hyper-cube (grid) of side-length s . ,  let Ns.) denote a lattice of grids on 91 k, 
with sides parallel to the coordinate axes. For any grid g, let 

a(s.)={glgmw. ~*}; O(s.)=U{gtgEa(s.)}. (2) 

,~(,.)={glg~s.,¢}. tr(,.)= U{g Ig ~(, . )}  (3) 

Note that G(s.) is the set-union of grids over IV. while the induced hull H(s.) 
denotes the subset of G(s.) by picking those grids which contain at least one point. 
Let #H(s. ) denote the number of grids in H(s.). Then the Lebesgue measure of 
H(s.) in 9~ k is ~(H(s.)) = #H(s. ) x (s.) k. 

Definition 2 : The induced hull H(s. ) is called an s-shape of S.. 

By starting from the grid nearest to the center of reference of the coordinate axes, 

let the grids of 6(s.) be naturally (raster scan) ordered in a k-dimensional array. Then 

~s . )  induces a k-D array (say,) ~ z, ......... ,, >.. In 2-D, its (q, tz)-th element denotes the 

number of dots in the grid situated at h-th row, t=-th column position. 

The binary projection of the above array is the array Definition 3 : 

defined as 

(4) 

the positions of non-zero entries in the binary projection, is 

b~,.t2.....t~ = 1 if zt~,,2,..,t~ > O~ 
= 0 otherwise, J 

A set formed by 
referred to as an object and the rest is considered as background. A hole is a bounded 
part of the background embedded in the object. There is a one-to-one relation between 

the object and//(s,). The object in the projection is also denoted by/'~sn). 

Consider a 3x3x...x3 (k-tuple) array, (say,) x having all entries equal to 1 as a 
k-D structuring element where the center of reference is located at the middle position 
of the array. Binary closing is a well known morphological filter which is defined as 
dilation followed by erosion [2]. It is an increasing, extensive and idempotent 
operator. Let the object be morphologically operated by a binary closing with x in k- 
D integer space ~k. Let the resulting morphologically closed version of the object 

in the projection (with non-zero entries) be denoted by H (s,). Then, 
(5) 

Let H" (s,0 be the union of all grids whose corresponding (tb t2 ..... tk)-th positions 

in the projection are in H (s.). The closing 'smoothes' the set from outside : all 
background structures that can not contain the structuring element are added to the 

object. Thus, all holes of 'negligible size' are removed from / /(s . ) ,  which is a 

superset of tt(s.). For example in 2-D, a grid g ~//(s.) having 5 non-empty grids 

among its 8-neighbors becomes a part of the closed version H (s.). 
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Definition 4 : H (s.) is called the smoothed induced hull (s-shape) of the H(s.). 

The consistency of H(s.) is first analyzed under an uniform distribution. Regarding 
the choice of s., a data driven procedure is proposed and the range where H(s.) 
remains consistent is established. The result is then generalized to the case of 
arbitrary continuous distributions. 

2.1 Consistency of the s-Shape 
Consider any set ~, a finite union of connected subregions in 9~ k, each of which is 
bounded by a closed hyper-surface of finite area. Assume that the interior of c~ has a 
positive k-D volume (Lebesgue measure) but the boundary has Lebesgue measure 
zero. Let W be the optimal (in terms of k-D volume) hyper-rectangle with boundary 
surfaces parallel to the (k-1) dimensional coordinate planes of reference so that c~ lies 
in the interior of W. Without loss of generality let the volume of ~ be p (_< 1), and 
that of W be 1. LetSn {X1, X~ ..... X,} be the set of n points chosen randomly under 
a uniform distribution over ~. Let the k-D volume of W~ covering S~ be A, < 1. Let 

the side-length of hyper-cube grids in the lattice/~s,) on 9~ k be 

s. = n -~ (~.q-~) 0 < 8 < 1. (6) 

There are approximately n ka grids in the sublattice G(s~) which consists of grids 

of ~s . )  intersecting W.. For clarity of presentation, the following notations are 

used. Let T~, I . ,  B. and H. denote, respectively, the union of grids in ~s~) 
intersecting a (some of them may not contain points of S~), completely in interior of 
a, intersecting the boundary of ct and the grids containing points of S.. The latter set 
is the k-D s-shape. Let #7"., #I~, #B~ and #H~ denote the number of grids in the 
respective unions. Moreover, let n~ and ns represent the number of points of S. 
in I. and B., respectively (n~ + nB = n). If s. is chosen as above, we shall show that 
the Lebesgue measure of the symmetric difference o f /4 .  and a goes to 0 with 
probability 1 as n tends to ~ for appropriate choices of & Now, by the strong law of 
large numbers (SLLN) any subregion of a with positive Lebesgue measure eventually 
has a point chosen from it in S~ with probability 1. Thus, as n ~ o~ W~ ---> W in the 
sense of (I), and A.---> 1 with probability 1. Also, 

L(a n T. ~ ) --~ 0. (7) 

where T. ~ denotes the complement of T.. 

We look at the proportion of empty grids among the #T~ grids intersecting the 

region c~. If this proportion goes to 0 in probability, then by (7), X(ct ~ H. ~ ) --4 0 in 

probability. Since B. approximates a (k-l) dimensional surface with Lebesgue measure 
zero (the boundary in question), and since the interior of ct has positive Lebesgue 
measure (= p, the measure of ct ) we have 

ti~ ~(B.) = 0. (8) 

In fact, ~.(l ) and ~ (9) 
lirn ~ = l 0. 

Similarly, lim n, = t with probability one. (I 0) 
n ~  n 
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Let ni = n an w h e r e / ~ a .  = 1. By the above results, it follows that 

#t. (11) 
/ i~ 7 = p 

Suppose that n balls are thrown at random in P. = n°/a boxes, 0 < 0 < k, where a 

is a finite positive constant. Then the probability that any box remains empty is 
(12) 

which goes to zero in the limit for O < 1. Now, the expected proportion of empty 
cells among the #I. cells in the interior of the region c~ is 

l_._m)"°'= ( n =~ 1 "~":" (13) 

Since in the l imit  the fraction ( nk~i #In ) tends to l ip, the l imit  of the expression 
I 

in the right hand side of (13) becomes e / i f  I = l l k ;  equals to 0 i f  I < l l k ;  and 
equals to 1 if l lk< 15 < 1. Thus, for any choice of 15 < 1/k, the expected proportion of 
empty cells among the squares completely in the interior of the region o~ goes to 0 for 
a sufficiently large n. As the proportion of empty grids is a nonnegative random 
variable, the proportion of empty ceils also goes to 0 in probability by Markov's 
inequality. Also, by (9) as fraction of #B. with #Tn is zero in the limit, the proportion 
of empty cells among #T. is also zero in the limit. 

Hence, lim #H. =, and Hn eventually covers ~ in probability. That is, 
.-,- #T. 

in probability as n goes to infinity, ~.(H. ~ :~ c~) ~ 0 (14) 

Conversely, ~(H. ne:)<_X((B. ,..)I.):~c()<_~.(B. ) (15) 

Taking limit on both sides, l i~.(n, nc:)  _< I~.(B.)= 0. (16) 

Combining (14) and (16) it is established that ~.(H.AcQ~ 0 in probability. As this 

symmetric difference is a bounded random variable, the next result follows. 

Theorem III • Let S. {X1, X2 . . . . .  X.} be i.i.d, observations from a uniform 

distribution supported on a region c~, a finite union of connected subregions in 9~ k, 

where each subregion is bounded by a closed hyper-surface of finite area. Let W. be 

an optimal hyper-rectangle (in terms of hyper-volume) covering Sn with hyper- 

volume An. If s. = n-~(k~t'A-~-.), 0 < 15 < 1/k, then the s-shape H(s.) is a consistent 

estimator of cc in k-dimensions. 

In [7], the above result is generalized to the case of continuous distributions in 2-D. 
Combining it with Theorem III, the following theorem can be established. 

Theorem IV : Let XI, X2 ..... X. be i.i.d, observations from a continuous distribution go 
having support c~ on which its density functionf is positive. Then the s-shape, H (s.) 
is a consistent estimator of o~ in k-dimensions under the conditions of theorem III. 
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2.2 Er ro r  Rate and Consistency of the Smooth s-Shape 

The experimenter should have an idea of the order of error (the Lebesgue measure of 
the symmetric difference between ~ and ~*~) when the procedure is terminated at a 
particular value of n and the estimate cc ~ has been determined. We provide an upper 
bound to this error when the points are drawn under a uniform distribution. We 
consider the hyper-cubes in the interior and the boundary of a separately. 

The error in the interior Ex, related to the proportion of empty grids, is equal to 

E I = ~.(I.)× l - q ' ~  where cl and c2 > 0. (17) 

By taking the logarithm of the R. H, S of (17), expanding, and exponentiating 
back, the leading term is found to be c:e -o~'-~ where c3 is a positive constant. The 

error in the boundary EB, satisfies 

where c4 is a positive constant. 

As the error in the boundary is dominant, the error in estimation is at most of 
order O(n 8) and thus it is independent of the dimensionality of the data. 

The smooth induced hull H (s~), in general, is a better representation of the shape 

of a dot pattern than s-shape [6]. As ~,  (which is an abbreviation of H (s,)) is a 

superset of H(s.) by (14), %(~ ~cc )~0  in probability. The boundary error may 

increase in case of H(sn). But as k(H~ c~xc)<3~k[H.c~cx~), k(H. c~c~)~0 in 

probability by (16). These results lead to the following theorem. 

Theorem V : The smooth induced hull ff  (s.) is also a consistent estimator of 
under the conditions of Theorem IV. 

Fig. ] A fish shaped region. 

3. Implementat ion in Digital Domain 
To illustrate the effectiveness of our estimators, we have implemented the s-shape in 
two dimensional digital domain. The fore~ound in a binary digital image may be 
considered as oc. Random samples of n object pixels are taken. The area of ~, ~,(~) 
is measured by the number of object pixels in ~. An algorithm of linear order time 
complexity for computing the s-shape and its smooth version is readily derived from 
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the definition of binary projection [6]. It can be extended easily to k-D without 
altering the order of the algorithm. 

a • b c 

Fig.2. Dot patterns with sample size n = 100, 1500, 3000. 

The cardinality of ix, the 'fish shaped' foreground in Fig.l is 63903. Random 
samples from ~ with n = 100, 1500 and 3000 respectively, are shown in Fig.2. For 
5 = 0.45, their H (s,) and H (sn) are presented in Fig.3(a)-(c) and Fig.3(d)-(f), 
respectively. Corresponding figures for ~ = 0.49 are shown in Fig.3.(g)-(1). The ratio 
of X(ct*n Ate) to ~.(ct) are plotted for tx*, = H (s,) and ~*, = H (s,) against the sample 
size for 3 = 0.45 and 0.49 in Fig.4. The asymptotic convergence of t t ,  is readily 
understood despite the limitation due to quantization. Fig.5 presents another example 
where our estimator is applied as a shape descriptor as well. The hole and 
disconnected components of the region (Fig.5(a)) are correctly recovered. Fig.5(b) and 
Fig.5(c) represent smooth s-shapes with 5 = 0.49 and n = 1000, 2000 respectively. 

3.1 Choice of 
The choice of 5 has considerable impact on the s-shape. For small values of & the 
boundaries of ix*, are so crude that the s-shapes for ~ e (0, 0.45) appear to be of little 
practical utility. For larger values of 5, the s-shape has larger number of inconsistent 
holes. For 5 = 0.5, the proportion of the area formed by such holes to the area of the 
region under estimation converges to a non-zero constant so that consistency fails. 
Thus 'smoothing' may be more useful for s-shapes with 5 close to 0.5. For a given n, 
larger values of 5 lead to small values of X(tx*, n t x  c) and smaller values of 5 lead to 
small values of ~.((~', )c c~ ct) i.e. values of 5 near opposite ends of the allowable range 
are efficient in reducing complementary components of the symmetric difference. 

On the whole, it appears that when single values of 5 have to be recommended, 
then values around the center of the range [0.45, 0,5) or closer to 0.5 should be 
chosen (as larger values of 5 reduce the dominant boundary error). When coupled with 
smoothing, values of 5 close to 0.5 are recommended, 

4. Discussion 
The effectiveness of the s-shape as a set estimator has been illustrated in the 
examples, where it can be seen that the smooth s-shape can be viewed as a descriptor 
of the shape of the underlying region. Our proposed consistent set estimator is totally 
different from the consistent estimators reported earlier. 
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e f 

g h 

k t 

Fig.3 s-shapes and their smooth versions with 8 = 0.45 (a-f) and 0.49 (g-l) respectively. 

The existing consistent estimators proposed by others are constructed by dilating 
either sample points itself or the edges of MST of the samples by a certain 
structuring disk. In our case, the optimal rectangular zone covering the sample set is 
partitioned by a lattice and the union of non empty grids is taken as ~ ~. One major 
advantage of our estimator is its computational efficiency. It is linear in terms of 
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cardinality of the sample i.e., for n observations the order of computational 
complexity is O(n). On the other hand, in a MST based computable estimator, the 
construction of the MST alone takes O(n log n) provided sophisticated data 
structures are used. Thereafter, the MST has to be dilated by a structuring disk in the 
pattern space which will be quite involved in higher dimensions. Also, our estimator is 
fully unsupervised. The disconnected components are correctly detected as n 
increases. On the other hand, the MST approach needs prior knowledge about the 
number of such components in (x. 

0 . 6  

0.5. 

0.4 

;k(~= & ¢t, ) 0.3 
;t.(a) 

0.2 

0.1 

0 

/5 = 0.45 

= 

# efsamples (Iteration no) 

).(= A ~.)  
X(=t) 

0 .5 :  

0.4 

0.3 

0.2 I 

8 = 0.49 

"~'%~.¢.¢. ~ -~° ' ° 'o -a '  °'°'o,=,o,¢~o. o p ' o , o ~  

# of  samples  (Iteration no) 

Fig.4 Asymptotic convergence of e~*. 



676 

One needs to have an idea of the order of error when the procedure is terminated. 
We have provided an upper bound to this error (which is independent of the 
dimensionality) that may be used by practitioners as a guideline in determining a 
stopping rule. Note that such stopping rules are unavailable for existing estimators. 

b c 

Fig.5 The performance of the s-shape as a shape descriptor 
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