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Abstract. Recently, in the framework of Pattern Recognition, methods for 
combining several experts (Multi-Expert Systems, MES) in order to improve 
the recognition performance, have been widely investigated. A main problem of 
MES is that the combining rule should be able to take the right classification 
decision even when the experts disagree. Anyway, in critical cases, a reject 
decision is convenient to reduce the risk of an error. Up to now, the problem of 
defining a reject rule for a MES has not been systematically explored. 
We propose a method for determining the best trade-off between error rate and 
reject rate depending on the considered application domain, i.e. by taking into 
account the costs attributed, for the specific application, to misctassifications, 
rejects and correct classifications. Even though the method has general validity, 
in this paper its application to a MES using the Bayesian combining rule is 
presented. 

1 Introduction 
The idea of combining various experts for improving the classification rate of a 

recognition system, has been recently widely investigated. The rationale lies in the 
assumption that, by suitably combining the results of a set of experts according to a 
rule (combining rule), the weakness of each single expert can be compensated without 
losing the strength of each of them, and the obtained performance can result better 
than that of any single expert [1]. The successful implementation of a multiple-expert 
system (MES) implies the use of as much as possible complementary experts, and the 
definition of a combining rule for determining the most likely class a sample should be 
attributed to, on the basis of the class to which it is attributed by each single expert. 

Preliminary experimental results encouraged this approach, and various research 
groups concentrated the attention on its different aspects [2,3,4]. 

The main problem of the approach is to find a combining rule able to solve the 
conflicts, i.e. to take the right classification decision even when the experts disagree; 
in this case, the final decision of the combiner cannot be always considered reliable. 
Very crucial situations for the combiner are the ones in which either a sample is 
attributed to two or more classes with a comparable likelihood, or no class can be 
considered sufficiently reliable. In these conditions it would be desirable to take a 
decision about the advantage of rejecting a sample (i.e., not assigning it to a class), 
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instead of running the risk of misclassifying it. In practice, this advantage can only be 
evaluated by taking into account the requirements of the specific application domain. 
In fact, there are applications for which the cost of a misclassification is very high, so 
that a high reject rate is acceptable provided that the misclassification rate is kept as 
low as possible; a typical example could be the classification of medical images in the 
framework of a pre-screening for early cancer detection. In other applications it may 
be desirable to assign every sample to a class even at the risk of a higher 
misclassification rate. Let us consider, for instance, the case of applications in which 
the output of the system has to be submitted to an extensive manual post-processing. 
Between these extremes, a number of applications can be characterized by 
intermediate requirements. Thus a wise choice of the reject rule allows to tune the 
recognition system to the given application. 

Up to now, the problem of defining a reject option for a MES has not been 
systematically explored. Simple heuristic reject rules are in fact used together with 
some of the combination rule presented in the literature. For example, one of the 
simplest combining rule, the "Majority Voting" [2], assigns the input sample the class 
for which a relative or absolute majority of experts agree, and rejects the sample in 
case two or more classes receive the same number of votes. 

More sophisticated combining rules introduce a measure of the reliability 
associated to the response of each expert. In the "Weighted Voting" rule [2,3], the 
votes of all the experts are collected and the input sample is assigned to the class for 
which the sum of the votes, each weighted by the estimated reliability of the 
corresponding expert, is highest. Generally, weighted voting methods either do not 
introduce reject criteria, or, as suggested in [4], obtain the reject by fixing a threshold 
on the minimum value of the weighted vote and/or on the minimum tolerable 
difference between the highest vote and the second highest value. In this case, 
however, the threshold is not assigned by considering the requirements of the domain, 
and the behavior of the whole system could be not adequate for the considered 
application. 

With reference to a combiner using the BKS rule [5], Suen and Huang propose a 
method for determining the reject threshold, once the desired error and reject rates 
have been assigned. Since this is made by using the BKS, this approach cannot be 
easily extended to other MES architectures. 

In this paper we introduce a method for determining the best trade-off between 
error rate and reject rate in the considered application domain, for a MES using the 
Bayesian Combining rule [4], by taking into account the costs attributed, for the 
specific application, to misclassifications, rejects and correct classifications. Note that 
the last cost is actually a gain, but the term cost is used for the sake of notation 
uniformity. 

The method is based on the estimate of the reliability of each classification act of 
the MES, and determines the optimal reject threshold, once the domain-dependent 
costs have been assigned. If the reliability is greater than the threshold, the decision of 
the MES is considered acceptable, otherwise the input sample is rejected. 

A similar approach has been already followed for determining the reject 
threshold in the case of a single classifier [6]. It is worth pointing out that in our case, 
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unlike other methods [7], no a priori knowledge about the probability distribution of 
the class populations is needed. 

The definition of the parameter for measuring the classification reliability of the 
decision of the MES is made in the case of the Bayesian Combining Rule. 

2 C o m b i n i n g  C r i t e r i a  

Many ways to combine classifier decisions, and thus to organize a MES, have 
been proposed in the recent past. Some of them are based on heuristic approaches, like 
voting or ranking, while others are founded on more formalized theoretical bases, like 
those based on the Dempster-Shafer evidence theory or on statistical methods [2]. 
Among these, the Bayesian Combining (BC) rule is very often used because it is based 
on a well settled mathematical framework and is simply applicable to several MES 
architectures. It can be applied even in case that each expert participating to the 
combination provides only the class assigned to the input sample. This is obviously 
the minimal information supplied by a classification system. From an operative point 
of view, the BC rule estimates the a posteriori probability that the input sample 
belongs to a generic class C and selects the class with the highest post-probability. In 
the hypothesis of independence of the experts and that the a priori probability is the 
same for all the classes, the output Y of the MES with the BC rule is given by: 

M 

I 1  Y=arg max p~ , 1 <_ i _< n (1) 
i k=l 

where p~ is the post-probability assigned to the class C, by the k-th expert, given the 
input sample x, M is the number of the experts and n the number of the classes. 

There are several classifier paradigms which allow to obtain the 

post-probabilities p~ (e.g., some classifiers based on a neural network [8]), so that 

the BC rule can be directly applied by using equation (1). This feature, however, is not 
shared by all the classifier architectures: in the most general case, the only information 
provided by an expert is the one specifying the most probable class an input samples 
belongs to. Therefore, in order to employ also in this case the BC rule, it is necessary 
to calculate the probability P(xe C i fY k = o~ ), i.e. the probability that the sample x 

belongs to the class Ci given that the output Yk of the k-th expert is equal to oh (the 
index specifying the class). In this way, if both the hypotheses of conditional 
independence among classifiers and of equiprobability of the classes hold, the output 
of the MES is given by: 

M 

Y=argmaxI'IP(xeCi]Yk=ok),  l<i<n (2) 
i k=l 

An effective estimate for P(xe C; f Y t =ok) can be obtained on the basis of the 

output of an expert, by taking into account its performance on a training set [4]. In 
particular, let us consider the classification confusion matrix E k for the k-th expert, 

whose generic element e~j (1 < i,] < n) represents the percentage of samples of the 

training set which belong to the i-th class and are assigned by the k-th expert to the j-th 
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class. It is possible to show that: 

) - e  t / ~ ' e  k P(x ~ C i I Yk = ok ,= i,o~//_.~ h,o~ (3) 
I h=l 

By using the approximation in (3), we can rewrite equation (2), thus obtaining: 

Y=argmax f l l e~o~ /2e~o t l  (4) 
i k=lt, ' / h  " 

It is worth noting that in this way only the information specifying the class of 
belonging (winning class) is employed. Obviously, this is sufficient to establish the 
most likely class for an input sample, but a more careful look at the distribution of the 
values of the post-probabilities of the other classes could provide additional 
information about the classification reliability of the MES. This aspect is commonly 
disregarded in the definition of a combining rule, while it could significantly improve 
the performance of the whole classification system, especially in complex application 
domains. In the next sections we will show how to use such information for defining 
some reliability parameters and employing them in an optimal reject rule for a MES 
using the BC rule. 

3 Classification Reliability and Reject Rule 

Classification reliability can be expressed by associating a reliability parameter to 
every decision taken by the MES. Its quantitative evaluation requires the detection of 
situations which can give rise to unreliable classifications. The low reliability of a 
classification is generally due to one of the following situations: a) there is a diffused 
disagreement among the experts about the class to which the sample should be 
assigned and thus there is no class whose value of the post-probability is sufficient to 
judge the classification reliable; b) the experts part into groups each agreeing on a 
different class, but the values of the corresponding post-probabilities are so similar 
that there is not a clear overwhelming class. 

It may be convenient to distinguish between classifications which are unreliable 
because a sample is of type a) or b). To this end, let us define two parameters, say gt, 
and Nb, whose values vary in the range [0,1] and quantify the reliability of a 
classification from the two different points of view. Values near to 1 will characterize 
very reliable classifications, while low parameter values will be associated with 
classifications unreliable because the considered sample is of type a) or b). For the 
operative definitions of N, and Nb (which will be referred to as reliability parameters), 
let us denote with zrl the value of the post-probability associated to the winning class 
and with ~ the vatue of the second maximal post-probability. A suitable definition for 
the reliability parameters is: 

~a = zrl and ~gb = 1 - (~ztrc~) (5) 
In this way, if the value of ~ga is lOW, the corresponding classification is 

characterized by a weak post-probability and thus should be regarded as unreliable. 
Similar considerations holds for low Vb value: in this case, however, there are more 
classes resulting equally probable and thus a reliable decision cannot be taken. 

A parameter N providing a comprehensive measure of the reliability of a 
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classification can result from the combination of the values of v/a and v/b: 

V~ =V/(Vo,V/~ ) (6) 
In this way, it is possible to judge about the reliability of the decision of the MES 

on the basis of a single value. There are several ways to combine the reliability 
parameters. A review of combination operators can be found in [9]. In the following 
some of the operators proposed in [9] will be used. 

In classification problems regarding real applications, finding a reject rule which 
achieves the best trade-off between error rate and reject rate is undoubtedly of 
practical interest. The reject rule we propose for a BC-based MES compares the 
classification reliability V with a suitably determined threshold cr : the classification is 
considered acceptable if the reliability value is greater than the threshold, otherwise 
the input sample is rejected. The reject rule is optimal with reference to the 
environment in which the MES works: in fact, the threshold o" is computed by 
maximizing a function 5 ° which measures the MES classification effectiveness in the 
considered application domain. This requires to quantitatively estimate the 
consequences of the classification result in the particular domain: the cost of a 
misclassification is generally attributed by considering the burden of locating and 
possibly correcting the error or, if this is impossible, by evaluating the consequent 
damage. The cost of a reject is that of a new classification using a different technique. 

To operatively define the function 50, let us call Rc the percentage of correctly 
classified samples (also referred to as recognition rate), Re the misclassification rate 

(also called error rate), and Rr the reject rate; moreover, let Rc ° and Re ° indicate 

respectively the recognition rate and the error rate when the classifier is used at 
0-reject. If we assume for 50 a linear dependence on Re, Re and Rr, its expression is 

given by: 

50(Rc,Re,R,.) = Cc(R c -R°)-Ce(Re -R°e)-CrR,. (7) 

In other words, 50 measures the actual effectiveness improvement when the reject 
option is introduced, independently of the absolute performance of the MES at 
0-reject. The three quantities Ce, Cr and Cc respectively denote the cost of each error, 
the cost of each rejection and the gain of each correct classification, for a given 
application. The linear dependence assumption has been made mainly to simplify the 
illustration of the method and does not affect its generality; in [6] it is shown how the 
method can be extended to the case of a function 50 of generic form. 

Since Re, Re and Rr depend on the value of the reject threshold o-, 50 is also a 
function of o'. To highlight such dependence, let Dc(gt) and De(N) be, respectively, the 
occurrence density curves of correctly classified and misclassified samples as a 
function of the value of ~ By definition, the integrals of De(v/) and De(V~), extended to 
the interval IV/l, V/2] respectively provide the percentage of correctly classified and 
misclassified samples having values of v/ranging from V/I to V/~. Their trend should be 
such that the majority of correctly classified samples is found for high values of V/, 
while misclassified samples are more frequent for low values of gt (see Fig. 1). 

The percentages of correctly classified and misclassified samples which are 
rejected after the introduction of a reject threshold cr are given by the gray areas. Rc 
(Re) represents the percentage of samples which are correctly classified (misclassified) 
after the introduction of the reject option. 
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~ F Re (or) 

0 ~ 1 
Fig. 1: Qualitative trends of the curves Dc(N) and De(g0. 

It is thus possible to directly evaluate the classification rate, the error rate and the 
reject rate for a given threshold cr : 

Rc(Cr)= fOc (v )d  V , Re(ff)=SDe(V)d V , Rr(Cr)=~[Oc(V)+De(V)]d V (8) 
cr ¢y o 

In this way :Pcan be expressed as a function of cr: 
tY Cr 

Y'(Cr)=(Ce - C r ) S D , ( v ) d v - ( C  c +Cr)~ Dc(v)d V (9) 
o 0 

The optimal value or* of the reject threshold cr is the one for which the function 
Y~ gets its maximum value. 

In practice, the functions Dc(V) and De(V) are not available in their analytical 
form and therefore, for evaluating o" , they should be experimentally determined in 
tabular form on a set of labeled samples, adequately representative of the target 
domain. The optimal threshold or* can be eventually determined by means of an 
exhaustive search among the tabulated values of P(cr). It can be simply shown that the 
location of the maximum for P(o ')  depends on the ratio C n = (C e - C r)/(C c + C r), 
which will be referred to as normalized cost. 

In order to correctly evaluate the improvement attainable with the reject option, it 
is worth introducing a parameter P, measuring the MES classification effectiveness 
normalized with respect to the maximum theoretical improvement (the ideal value of 

~)  Pid = (Ce -Cr)Re °, which would be reached if all the errors were turned into 

rejects, without rejecting correctly classified samples. A suitable definition of P, is: 

Pn = 100. P(cr*)/Pia . In this way, the trend of P,  as a function of 6", can give useful 

information about the improvement obtained for the MES as the application 
requirements vary. 

4 Experimental Results and Discussion 

The proposed method has been tested on the recognition of handprinted 
characters. Such application represents a critical recognition problem, since it is 
characterized by a high variability among the samples belonging to a same class and 
by partial overlaps among different classes. 

In order to build up the MES to be employed, a set of experts has been 
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considered. Each expert consists of a different pair (descriptor, classifier) so as to 
increase the probability that the experts are not correlated among each other. It is 
worth noting that the emphasis here is not much placed on the absolute performance of 
the description and classification techniques used, but on the improvement of the 
classification effectiveness achievable by introducing a reject option according to our 
method. 

As regards the character description, we have considered four different methods. 
According to the first two, the character is described by means of a feature vector 
whose values are measures directly performed on the bit map. In particular, in the first 
case (BM description), the character is described through an 8 by 8 matrix of real 
numbers falling in the range [0,1]. It is obtained by superimposing an 8 x 8 grid on the 
character bitmap and by computing the average value of the pixels falling in each area. 
The matrix is finally coded as a 64 element vector. In the second case (HA 
description) we consider the Haar transform [10] of the character bitmap and build up 
a feature vector containing its first 64 coefficients. The other two methods are based 
on a structural representation of the character. This is obtained by means of a process 
which, starting from the bitmap, leads to a representation of the character in terms of 
circular arcs [11]. On this basis, we have defined a pure structural description (ARG 
description) and a hybrid description (MA description): according to the former, the 
character is described by means of an Attributed Relational Graph (ARG) whose 
nodes represent the component arcs (span, relative size and orientation) and whose 
branches represent the topologic relations between arcs. For the MA description, 
instead, geometric moments up to the 7th order are computed on the circular arcs 
constituting the structural representation of the character [12]. 

As regards the classifiers, we have employed a statistical classifier of the Nearest 
Neighbor type [13] and two neural networks. The first neural classifier was a 
Multi-Layer Perceptron (MLP) [14] with a single hidden layer of 30 neurons, while 
the second neural architecture was a Learning Vector Quantization (LVQ) [15] with a 
number of Kohonen neurons fixed to 7 for every classes. 

We have considered five different experts: three of them employ the MLP 
classifier with the BM, HA and MA descriptions (let us denote these experts with 
MLP-BM, MLP-HA and MLP-MA); the fourth is constituted by the LVQ classifier 
with the BM description (LVQ-BM), and the last expert is a Nearest Neighbor 
classifier with the ARG description (NN-ARG). In this last case, we have used a 
metric defined in the ARG space [171. 

All the tests were performed on the NIST database 19 [18]. For the tests, only 
digits were considered. As suggested by NIST, we used the set hst~_3 for training and 
the hsf_4 for testing. In particular, the set hsf_3 was split in two sets: a training set 
(TRS), composed of 34,644 samples, used for training the MLP-BM, MLP-HA, 
MLP-MA and LVQ-BM experts, and a so called training-test set (TTS) made of 
29,252 samples. A subset of TRS (8000 samples) was assumed as reference set for the 
NN-ARG expert. TTS was used both to compute the confusion matrices and to 
establish the number of cycles for stopping the learning phase of the experts based on 
neural classifiers, in order to avoid the overtraining phenomenon [16]. The set hs f4 ,  
adopted as test set (TS), is made of 58,646 samples; on this set the recognition rate of 
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the MES made up of all the five experts was 93.82 at 0-reject. The performances of 
the single experts are reported in table I. 

Expert 
MLP-HA 
MLP-BM 
MLP-MA 
LVQ-BM 
NN-ARG 

Table 1: 

TRS 

99.47 
97.96 
95.56 
98.80 

TTS TS 

97.77 90.47 
96.52 88.53 
94.59 85.63 
96.66 85.90 
90.98 84.11 

Recognition rates obtained by each single expert on TRS, "ITS and TS. 

As regards the cost coefficients, we assumed Cc = 1, while for Cr and Ce the pairs 
(5,9), (4,12), (4,15), (3,15), (3,18) were selected, with a normalized cost C~ ranging 
from 0.67 to 3.75. 

To combine the reliability parameters, four operators were considered with 
different peculiarities (see [9] for more details): ~ / ,  = min{lp¢ a,lp" b }, 

~)tmed ~'fa "~ t[[ b l~ta l~ b 
=------~-~, W,~x = max{v/a,tgb}, g%,, = I_tV _gtb +2gt ~t b 

The following tables present the results obtained after the introduction of the 
reject option for different values of C, and for each of the considered operators. In 
particular, table 2 presents the values of the optimal threshold o'*, while in table 3 Re, 
R~ and Rr are reported. 

0.67 0.000 0.000 0.000 0.000 

1.60 0.000 0.000 0.000 0.000 

2.20 0.000 0.000 0.991 0.999 

3.00 0.000 0.000 0.991 0.999 

3.75 0.999 0.999 0.997 0.999 

Table 2: The values of o'* as a function of Cn, using the different reliability parameters. 

As it is expected, when the value of Cn increases, the recognition rate slightly 
decreases; this effect is balanced by a decrement of the error rate that leads to an 
overall improvement of the effectiveness of the MES. To properly characterize the 
MES effectiveness achievable with the introduction of the reject option, we have 
reported in fig. 2 the trend of Pn with respect to 6",. It is worth noting that the 
effectiveness of the MES has an increasing trend with respect to Cn and reaches its 
maximum increase (over 23%) in correspondence of the use of the ~,,~ operator. 

The advantage attainable by exploiting the reject option can be made still more 
evident by considering the relative variation of classification and misclassification 
rates, with respect to the 0-reject case, as a function of Cn (Table 4). It can be seen 
that, for high values of C,, from 34% to 58% of the samples previously misclassified 
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are now rejected, while the corresponding amount of correctly classified samples 
which are now rejected ranges from 5% to 9%. 

c. 

0.67 

1.60 

2.20 

3.00 

3.75 
III I IIIII I 

I~m/n 

Rc R~ Re 

93.82 0.00 6.18 

93.82 0.00 6.18 

93.82 0.00 6.18 

93.82 0.00 6.18 

85.46 11.92 2.6I 

l~med 

Rc Rr Re 
I I I I  

93.82 0.00 6.18 

1.93.82 0.00 6.18 

93.82 0,00 6.18 

93.82 0.00 6.18 

85.48 1t.89 2.63 

~max 

, Rc Rr R, 

93.82 0.00 6.18 

93.82 0.00 6.18 

88.62 7.82 3.55 

88.62 7.82 3.55 

88.04 8.76 3.20 

,VV,, 

R¢ Rr Re 

93.82 "0.00 6.18 

93.82 0.00 6.18 

89.33 6.63 4.04 

89.33 6.63 4.04 

89.33 6.63 4.04 

Table 3: Recognition, reject and error rates as a function of C, and different reliability parameters. 

25% 

20% . . . . . . . . . . . . . . . . .  j 

. . . . . . . . . .  / j >  
, ~ .g,.ea 

i.o 1.5 2.0 2.5 3.0 3.5 Cn 4.0 

Fig. 2: The normalized effectiveness P, of the MES as a function of Ca. 

15% 

10% 

5% 

0% 
0.5 

In conclusion, it is important to recall that the overall improvement of  the MES 
effectiveness is closely linked to the shape of  the distributions Dc and D, ,  which, in 
turn, depend not only on the data but also on the definition of  V. However, in real 
situations such as the one considered here, Dc and De are far from the ideal case since 
they overlap extensively. This makes them not separable and thus the attainable 
improvement o f  the MES effectiveness, whatever the definition of  ~u, is lower than in 
the ideal case. 

,,,...,,, 

c. 
0.67 

1.60 

2.20 

3.00 

3.75 

l~min ,lu 
ARc dR, 
0.00 0.00 

0.00 0.00 

0.00 0.00 

0.00 0.00 

8.91 57.77 

I//m ed 

ARe dR, 

0.00 0.00 

0.00 0.00 

0.00 0.00 

0.00 0.00 
8.89 57.44 

l/tmax gtsym 
u 

ARc dR, dR, dR, 

0.00 0.00 0.00 0.00 

o.oo o.oo o.oo o.oo 

5.54 42.56 4.79 34.63 

5.54 42.56 4.79 34.63 

6.16 48.22 4.79 34.63 

Table 4: The relative variations of&. and Re as a function of C, and different reliability parameters. 
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