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A b s t r a c t  

In this paper, a statistical clustering model and algorithm have been discussed. Finding 
the optimal solution to clustering problem is transformed into simulating the equilibrium state 
of a physical system., and then the equilibrium state of physical system is simulated by 
solving a series of problems to minimize the free energy which varies with temperature 
and attains the ground state of the system. Moreover, a great number of simulating examples 
make it clear that the clustering algorithm can be widely used, especially for the problem to 
which the traditional clustering algorithms are helpless. 
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1. Introduction 

Clustering is an important problem which can be found in many applications 
where a priori knowledge about the distribution of  the observed data is not available. 
It is being applied in a variety of engineering and scientific disciplines such as pattern 
recognition, source coding, image and signal processing, computer vision, a machine 
learning and remote sensing. 

The traditional clustering model and algorithms have some defects. For example, 
the clustering results are highly sensitive to the initialization; they perform poorly if 
the data contains overlapping clusters; no interactions among clusters are taken into 
consideration; the most urgent problem is the lack of  cluster validity criteria; all the 
algorithms tend to create clusters even when no nacre  clusters exist in the data; the 
obtained results are not global optimal. Therefore, it is necessary to fred a new 
clustering model and algorithm. 

The problem of traditional partitional clustering can be formally stated as 

follows m. Given N patterns X = {x~,x  2 . . . .  x v} in a n-dimensional metric space, 

determine a partition of the patterns into L groups, or clusters C 1 , C 2 , . . . , C L  (in 
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M 

general C/( '~ Cj  = Q~ (i~j),  and Z C~ = X ), such that the patterns in a cluster 
t=| 

are more similar to each other than to patterns in different clusters. The value of L may 
or may not be specified. A criterion must be adopted. The traditional clustering model 
solves the following optimization problem: 

m i n D =  ~ ~ (d(x~,yj)) z (1.1) 
; x, eG 

where yj is the center of cluster (representative) of  Cj (]=I,2,...,L). x 6Cj if and 

only if d(x , y j )<d(x , y , )  (Vi)( i f  d(x ,y j )=d(x ,y~)  and i<j, x eCi). 
(d(x,yj)  is a distortion measure ofx  andyj ) . 

The objective function of problem (t.1) is a non-convex optimization problem, 
there is no efficient algorithms for it at present. Many researchers have studied the 
method for non-convex optimization problem. 

"Physical Computation" is proposed by G.C.Fox t:~ . tt encompasses a variety of 
ideas that can be loosely classified as the use of physical analogies or methods from 
the physical science to problems outside their normal domain of applicability. We can 
view physical computation as the use of  physical methods to describe general complex 
system. Physical computation centers on computation and computer science, seeking 
the natural law and succeeding in an attempt at physical model of problem. Now it has 
been widely used in artificial intelligence and many other fields. Neural network, 
genetic algorithms, deterministic annealing and simulated annealing are the branches 
of physical computation. Some traditional methods for discrete optimization have time 
complexities that scale exponentially in problem size while physical computation is 
often essentially linear. 

Using the annealing process in statistical physics, we shall discuss a statistical 
clustering model and algorithm. 

2. Deterministic Annealing Method 

Deterministic annealing is proposed by K. Rose:~L Using the processes of 
statistical physics, deterministic annealing considers an optimization problem as a 
physical system . Finding the optimal solution to optimization problem is 
transformed into solving a series of problems to minimize the free energy and 
obtain the global minimum which varies with temperature. The properties of solution 
to deterministic annealing have been discussed in detail in paper [4]. 

For a minimum problem: 
minE(x) (2.1) 

where x may be continuous, discrite or mixture. E(x) is considered as an energy 
function of  a physical system. Since the non-convexity of  E(x), there is no effective 
algorithm to find the global optimal solution. We take problem (2.1) as the one to 



861 

find the state at which the energy function of physical system is minimum. From 
statistical physics, we know that the state of system varies along the direction at which 
free energy decreases and it will reach minimum when the system is at equilibrium 
state. Let F(x,T) be the free energy of system under temperature T. The method of 
deterministic annealing is a process which simulates the equilibrium state of  system 
under temperature T by solving the problem minF(x,T) which uses 
x .... (T + AT) (the minimum solution to minF(x,T+AT)) as the initial point of 
algorithm. We have already proved in paper [4] that the global optimal 
solution xm, . ( T )  to rain F(x,7) is a continuous map about T under certain 
conditions. With the decrease of T, the global optimal solution to minF(x,T) 
varies contineously, and Xm, . (T) is located in the local minimum interval of min 
F(x,T) in which xm, . (T + AT) is located. So we can guarantee that lim x~,, (T) is 

T--~0 

the global optimal solution to problem (2.1) when the decreasing speed of T is 
reasonable. 

We suppose further that the global optimal solution to minF(x,oo) can be 
found easily and F(x,O)=E(x). 

Deterministic annealing is an annealing process, a global optimal 
solution may be obtained, but it is different from the simulated annealing. 

3. A Statistical Clustering Model 

For a clustering problem, we do not know the number of clusters. So we 
introduce the concept of "computation number" of clusters (denoted by M), which is 

greater than the real number of clusters. For given representatives y~ ,Yz ,.--,Y~t 

and Jr ~ {1,2,..., M } ,  Ix, ~ Cj, ] represents the probability event of x~ ~ Cj, , 

the probability of event N[x~ ~ Cj, ] is: 
l 

p ( y j , , y j 2 , . . . , y j N ) = p ( x l  ~Cj~,x  2 ~Cj2,. . . ,x, ,  ~Cj , )  (3.1) 

Clustering problem can be described as the one to fred Y~,Y2,...,YM and 
P(YJ,'YJ2 ' " " Y  J, ) ( J~ = 1,2,.. . ,  M ,  i = 1,2,. . . ,  N )  , such that 

~-]p(y,,  ,yj~ , . . . ,y  j,, )D( y j, ,yj2,...,yj~. ) (3.2) 
Jl ,J2 ,...ix 

is minimum. Where D(yj~ ,y  j2 .... 'YJ,v ) is a distortion measure of 

x, ~ Cj, (i=1,2 ..... N), and it depends on the background of clustering problem. We 

select the form of D(yj~, Y J2'"" YJ.v ) as follows for the sake of  convenience: 

D(yj, ,yj~, . . . ,yj ,~ ) =d(yj, ,yj~,. . . ,yj~, ) r Ad(yj , ,y j~ , . . . , y jN ) 
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where A = [a~t ( y  j .  yj~ ,...  YJN )] N × N i s  a N x N matrix map of y j , ,  y;=,. . . ,  YJ.v ' 

d(yj ,  ,ya~ , . . . , y j ,  ) is aN-dimensional vector map of YJ, 'Yk  ' " " Y J u  

d(y , ,  ,y ,:  , . . . ,y:, .  ) = (d(x~ ,y i , ) ,d (x2 ,yJ= ) .... ,d (xN "Yz~ ))r  
The selection of A contains some interactions among pattems and clusters. 
If all the [x, ~ Cj]  are independent, let the probability of event [x, ~ Cj]  be 

N N 
p(x, ~ C j).  P(Y, , ,Y ,2 , . . . ,Y , .v  ) = I-[ p(x, E Cj) '  = I-[ Pij, ' we select 

t=l i=1 

all 0 ,.. 0 

A = 0 a22 ... 0 

0 0 ... aNN 
In general, a ,  > 0. The difference of a,j(i = 1 ,2 , . . . ,N)  indicates the 

difference of  significance to each pattern in X. In this case, we have 
N 

D ( Y , , , Y j ~ , . . ' , Y z ~ ) =  ~., a , ( d ( x , , Y j , ) )  2 
i=1 

and 
N 

~"~P(Yj~,Y,2 , . . . ,Yzv)D( Y j , ,Y j~ , . . . ,Y j , , )=  ~_,Y'~aiiPo~ ( d ( x i , y j  )) 2 
JI,J2,"',JN l=l Ji 

Let a ,  = l ('V'i), then clustering model (3.2) is the case of  Rose [3j. If  

{10 x 
p~j, = p(x~ E C:, ) = otherwise 

P(YJ, 'Y,~ ""  "'Yzv ) D ( y j , y j , . . . , y j , , )  : 2 
J~ ,J2 °-'J,v j 

then 

(d (x , ,Y , ) )  2 
x,~cj 

clustering model (3.2) is model (1.1), that is to say the clustering model (3.2) is 
simplified as the traditional model (1.1). Model (3.2) includes the interactions of 
clusters and patterns. Some traditional models are the special case of model (3.2). 

4. Clustering Algorithm Using Deterministic Annealing 

4.1 Definition of Free Energy 

If all the [ x  ~ Cj] are independent, We consider the clustering problem as a 

physical system, T is the temperature, and the probability of  event [x~ ~ Cj]  be 

p(x,  cj). 
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Define the energy function and entropy function of system as follows: 
N M 

E = Z Z  a.p(x~ ~Cj)(d(x,,yj,)) 2 
t=| j = l  

N M 

H = - Z  Z p(x, ~Cj)Inp(x, eCj) 
z=t J=l  

For fixed temperature T, using the principle of maximum entropy, we 
know that the probability which maximizes the entropy H is the equilibrium 
state of physical system, and Y is the most probable configuration of  
clustering system. 

For the problem: 

m a x  H 

N M 

s.t. ~_,y" a,p,(d(x,,yj)) 2 = E (4.1) 
t=l ,1=1 

Using the principle of  variation, we get 
e - f l a  (d(x, ,y~ ))1 

p(x, ~Cj)= U (4.2) 

Z e-fl" (a(~,,y~))' 
k=l 

1 
where 13 is determined by (4.1) and f l e e -  

T "  
Define the free energy function 

I ~¢ M 

"= J=l 
1 2v M 

FOq'Y2""Y~'f l)= --fl,~=l l n ~  e -~'(d(~''y'~? 0 < f l < + o o  (4 .3)  
j=l  

N M 

~_. ~, a,(d(x,,yj)) 2 fl= +m 
~=i j=t 

, ! 

Let d(x,yj) = [ t x - y , ] l  = (~-'(x(k)-y,(k))2) 2 , (d(x,yj)) z be 
k=l 

differential convex function. The free energy function satisfies the requests of 
deterministic annealing. 

By the definition of F(Yl,Y2,. . . ,Y~t,fl) ,  F(yl ,yz, . . . ,yM,O)is a 

continuous differential convex function about (Yl,Y2,.. . ,YM), we can find 
the global optimal solution easily with the help of  traditional optimization 
algorithm. From paper [4] the global optimal solution to 

F(yz,Y2 .... ,Y~,t,fl) is a continuous map about (Y~,Yz,'",YM) when 
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f l  ~ [0,+oo). At the minimum point 

cT(Yl ,Y2 ,'",YM ,]3) = 0 ( V j ) ,  and we get: 

where 

N 

Z aj, p(x, c,) 
y: = ,=1 

N 

Z 
i=1 

p(x, ~ Cj ) is determined by (4.2). 

e-,&,,,d(x,Y,) 
When 13=0, p(x ,  C , )  = M 

Z e_fla,,d(x~,yk) 
k=l 

N 

Z anx~ 
t=[ 

N 

Z a ,  
/=l 

, it is the global optimal solution to 

of F(Yl ,Y2 ,'",Y~,t ,fl) , 

1 
= q-7., and Yl = Y2 . . . . .  YM = 

M 

F(yl,Yz,'",YM,fl)" 

4.2 A Stochastic classif ication method 

For some 13, we obtain Yl,Yz, '",YM and pj = p (x  E Cj)( /=l ,2  ..... M), and 

then how to determine which cluster each x E X belongs to. We will depend on 
the probability p j  = p(x  eCj) to classifyX. 

For each x ~ X ,  divide intervals [0,I] into M small interval according to 
pj = p (x  e Cj) (/'=t,2 ..... M): 

M - 2  M-1  M - I  M 

[O, Pl),[P~,P~ +Pz),[P~ +Pz,P~ +P2 + P 3 ) , ' " ,  [~Pi,~,P,),[~-'~Pi,~_.Ps] 
i=l i=l t=l t=l  

Select a random variable ~ which is an uniform distribution on [0,1]. Define a 
k-1 k 

random variable r/" [r/= k] if and only if ~ e [~-~ pj, ~ p , ) .  If 7/= k ,  we classify 
i=l ¢=1 

x into C~ , this process is going on until all the elements in X are classified into each 

cluster. This method is supported by the conclusion p ( r /=  k) = Pk, since 
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k 

,=l k k - I  

p(~ = = = I ldx = 2 p , -  Z P ,  -- P~" 
k-i i=1 i=1 

lk Z p' 

This classification method is superior, especially concerning clustering problem 
which involves interactions. 

4.3 A Clustering Algorithm 

n I 

Let d(x ,y : )=l t x -y j [ l=(Z(x (k ) -y j ( k ) )2 )  ~;, the algorithm is: 
k=l  

N 

Z aiix i 
(1) let flo=O,y~k)=y~ *)= . . . .  y ~ )  _ ,=l ,k=0.  N 

Z aii 
i=t 

(2)u is a monotonous increase function 'flk*l U(fl~)" (~o) =(0) =(o) = ,.2'2 ,'",YM ) - 

(ylk), y~k),. . . ,y~)), using the formula 
N 

xia.p(x, ~Cf ~) 
~ s+l) = ,=l ( s= l ,2 ,  3 .... ) 

N 

Z a.p(x eC~ s)) 
i=t 

e -~a'(d(x''y~')))2 (k+l) (k+l) 
where p[x i E C f  )] = M . Let (Yx ,Y2 , . . . , y ~ + t ) )  be 

Z e_~.(a(x,,yy)))2 
k=l  

the convergence point of  the interation. 

(3) If  the stopping criterion is satisfied, (y~k+l),y2(,~+O,...,yM(k+O), is the 

optimal clustering center. Go to (5), otherwise go to (4). 
(4) k=k+l, go to (2). 
(5) Classify all the elements of  X according to the method stated in 

Section 4.2, and then stop. 

Notes: 
(1) The selection o f M .  If we know the cluster number, and the diameters of  each 

cluster are almost the same,  we select that M be the cluster number, otherwise we 
selecte M which is large enough (at least larger than the real cluster number). 
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Clustering problems which traditional clustering algorithms are helpless can 
be solved easily by selecting large M ( e.g. the problem having bridges, being 
linear indivisible, having unknown cluster numbers, having large difference of 
geometric size among clusters, etc.). 

(2) In algorithm, the selection of stopping criterion depends on the real 
clustering problem. In general, if the clustering center is stable, the algorithm 
stops; 

(3) In general, Mis only the computing cluster number, and we can determine the 
real cluster number by using the message of algorithm in the computing process. 

(4) When the real cluster number is determined, we can use some 

methods to classify all Yl ,Y2 , " ' ,Y~ '  to all clusters. Different yj may represent 

the same cluster. 

5. Conclusion 

In this paper, we put forward a statistical clustering model and algorithm. 
Temperature parameter is introduced, the clustering problem as a physical system is 
considered, and the equilibrium state of the system is obtained under different 
temperatures by using the principle of maximum entropy. A free energy of clustering 
system is constructed and the clustering algorithm is introduced by using deterministic 
annealing. Finding the optimal solution to clustering problem is transformed into 
simulating the equilibrium state of a physical system., and then the equilibrium state 
of physical system is simulated by solving a series of problems to minimize the flee 
energy which varies with temperatnre and attains the ground state of the 
system. Moreover, a great number of simulating examples make it clear that the 
clustering algorithm can be widely used, especially for the problem to which the 
traditional clustering algorithms are helpless. 
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