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USING UNCERTAINTY TO LINK 3D EDGE
DETECTION AND LOCAL SURFACE MODELLING

O Monga, N Ayache, P Sander

INRIA Domaine de Voluceau-Rocquencourt - B.P. 105
78153 Le Chesnay Cedex, France

Abstract

We establish a theoretical link between the 3D edge detection and the local surface approximation using uncer-
tainty. As a practical application of the theory, we present a method for computing typical curvature features from
3D medical images. We use the uncertainties inherent in edge (and surface) detection in 2- and 3-dimensional images
determined by quantitatively analyzing the uncertainty in edge position, orientation and magnitude produced by the
multidimensional (2-D and 3-D) versions of the Monga-Deriche-Canny recursive separable edge-detector. These uncer-
tainties allow to compute local geometric models (quadric surface patches) of the surface, which are suitable for reliably
estimating local surface characteristics, for example, Gaussian and Mean curvature. We demonstrate the effectiveness
of our methods compared to previous techniques. These curvatures are then used to obtain more structured features
such as curvature extrema and lines of curvature extrema. The final goal is to extract robust geometric features on
which registration and/or tracking procedures can-rely.
key words
Typical surface features, local curvature extrema, mean and Gaussian curvature, local surface modelling, uncertainty,
3D edge detection.

1 Introduction

Modern medical imaging techniques, such as Magnetic Resonance Imaging (MRI) or X-ray computed
tomography provide three dimensional (3D) images of internal structures of the body, usually by
means of a stack of tomographic images. In many applications, the physician asks for a segmentation
of these 3D images into regions of interest he wants to manipulate, display, and characterize by
objective measurements [AB*90]. The first stage in the automatic analysis of such data is 3D
edge detection [ZH81, MD89, MDR91| which provide points corresponding to the boundaries of the
surfaces forming the 3D structure. The next stage is to characterize the local geometry of these
surfaces in order to extract points or lines on which registration and/or tracking procedures can
rely [Koe90].

Sander and Zucker have proposed to compute surface singularities by the calculation of curvatures
using local approximation and by iterative refinement of the curvature field [SZ87, SZ90]. In this
paper we present a pipeline of processes which define a hierarchical description of the second order
differential characteristics of the surfaces. We focus on the theoretical coherence of these levels of
representation. Our levels of representation of the local geometry of the surfaces are :

o 3D edge points,
e Mean and Gaussian curvature, principal curvature directions,

¢ Local images of the curvatures,

o Characteristic points : curvature extrema, parabolic points, umbilic points ...
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e Characteristic lines : Lines of curvature extrema, parabolic lines, Umbilic points ...

Three-dimensional edge detection is performed using recursive separable filters approximating the
gradient or Laplacian as described in [MD89, MDR91, MDMC]. From these edge points we build an
adjacency graph with position and gradient vector attached to each edge point.

To compute curvatures from this graph we fit 4 local model at the neighbourhood of each point.
The local model is a quadratic surface and the fitting method is a Kalman filter. Our approximation
scheme uses the locations of the edge points and also the gradient direction which approximates the
normal to the surface. Using uncertainty we establish a theoretical link between the edge detection
and the local surface approximation.

Our statistical results are then used as a solid theoretical foundation on which to base subsequent
computations, such as, for example, the determination of local surface curvature using local geometric
models or for surface segmentation {BJ88].

We tie the results of the analysis of the uncertainties involved in edge detection to the estimation
of local geometric surfaces by a Kalman filtering technique. While the instantiation of these local
models is similar to the method of Sander and Zucker [SZ90], the utilization of uncertainties yields
improved results. In addition, Kalman filtering permits incremental and selective incorporation of
new data, thus ensuring that the local models are fit to, and only to, relevant data points. We expect
that this will permit us to effectively deal with the problem of discontinuities where the local surface
smoothness assumptions break down.

From the local fitting, we calculate for each edge point a mean curvature, a gaussian curvature,
and principal curvature directions, and covariance matrices defining the uncertainty. We define local
curvature images by projecting at each point the curvatures of the neighbours onto the tangent plane.
This yields the local aspect of the curvatures at a point.

From the curvature field we extract typical points such as curvature extrema, parabolic points,
umbilic points ... This is done by using the local image of the curvatures defined at each (edge) point.
For instance to select the extrema of the maximun curvature in the maximum curvature direction,
we employ an algorithm very similar to the extraction of the extrema of the gradient magnitude in
the gradient direction used in many 2D edge detection algorithms [Der87, Can86].

From these typical points, we extract characteristic lines such as line of mean curvature extrema,
parabolic lines .... To obtain lines of mean curvature extrema, we perform a 3D hysteresis thresholding
on the extrema curvature points using the mean curvature. Here again the algorithm is very similar
to the one used to threshold the local gradient extrema described in [MDR91].

This work is described with more details in [MAS91].

2 Parametric local surface model

2.1 Problem formulation

In this section, we set up the local parametric surface models, describe briefly how to compute
surface curvatures from the models, and present the problem of determining the parameters of the
models from the data derived from the 3-D gradient operator. We thus assume that we are given
the locations of estimated surface points P and their estimated surface normals N corresponding to
the vector gradient, (see [MD89, MDR91] on how to compute them). Using N we can establish a
tangent plane coordinate system at P, which we denote (P, Q, N). Note that the basis (P, Q) of the
tangent plane at P is arbitrary — the only constraint is that the coordinate system be right-handed
and orthonormal. ‘

In the following, P is the point at which the surface patch is being fit, and @; are neighbouring
estimated surface points with associated normals n;, with both given in P’s tangent plane coordinates
(the development is simpler in these coordinates; we map everything into the actual image coordinates
in §3.4.1).




2.2 Local geometric model

We assume that the data returned by the gradient operator represent noisy estimates of points and
normals from a (smooth) surface §. We treat a surface as a differentiable manifold and build local
charts (parametrizations) at all the estimated surface points. Thus, at P € S we assume that the

local chart (,U)
P :UCS— IR?

{¢ a diffeomorphism, P € open set U) is such that P(P) = (0,0) and its imbedding
p=1i0¢ ! :p(U)c R > R
in IR? (based on P’s tangent plane coordinates) is the graph of some function A : ¥(U) — IR with

R(0,0) = 0,
h,(0,0) = ? = 0

Pli.o)
he(0,0) = g-h~ =0

2l0.0)

(this is always true in some local chart). The Taylor expansion of k about the origin is

1
h(p.g) = 5 (hopp? + 2hpqpg + ko) + R.

Since our ultimate goal is computation of curvatures and related information, we take the simplest
local chart which is appropriate, i.e., where
Lo, L
h=gep’ + fra+ 59, 1)

where we write
e = hp(0,0), f= hpe(0,0), g = hqq(0,0)

(known as a parabolic quadric).

2.3 Swurface curvature

The curvature of the surface S at P can be computed from its local parametrization ¢ : $(U) — R®
in P’s tangent plane coordinates. The surface normal at P is expressed as

fl#s x all

(In the following, we take it as understood that derivatives are evaluated at (0,0), i.e., the |0, is
implicit.} The matrices

N(0,0) =

(0.0) '

[ (%n90) (¢, 49)
= <<¢q,¢p> <¢q,¢q>>'

— _<¢P’NP> ~<¢P’NQ>
Bo= (“‘(‘bq’Np) _<¢91NQ>>,

are determined from the first and second fundamental forms respectively of the surface ({e, ¢} denotes
inner product). The principal curvatures ky,x; of ¢ at P in (P, Q, N) coordinates are the two
eigenvalues of the matrix F,F{?, and the Gaussian and mean curvatures are

Ky = KiKa,
K1 + K2
Km = 5

respectively. We show how to compute uncertainties in the curvatures in §3.4.2.
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3 Recursive estimation of surface parameters

3.1 Instantiating the model

Now, we wish to determine the local quadric surface passing through point P which “best” (in a sense
made precise below) fits neighbouring points @Q; = (p;, ¢, n:)" and their normals n; = (o, 8!, 7))
In P’s tangent plane coordinate system, the equation of the quadric gives us a first measurement
equation

Ei(e, f,9) = ple + 2pigif + ¢lg — 2n; = 0 @
between the position of (); and the parameters e, f, g which are to be determined from the data.

In addition to estimated surface point locations, the 3-D gradient operator provides an estimate
of gradient direction and we can use the measured normal n; at point @; to further constrain the
quadric surface parameters. We know that, in the tangent plane coordinates, the quadric’s normal
at point Q) is

—pie —&f
n; = | —pif —aqg
1
Denoting the scaled normal measured at point Q; by (o, 5, 1)t = (&l /~!, Biv,vL/71)t, we obtain two
more measurement equations

Ey(e, f,9) = piet+aqf+ai=0, (3)
Es(e, f,9) pif +qg+B:i=0. 4)

Equations (E1-FE3) are the three measurement equations which constrain the determination of
the parameters e, f,g of the quadric at point P. These equations should be compared to the four
equations E{-E} of [SZ90}: Eq. E, is the same, but Egs. (Ej} ~ E,) there were based on unit normals
and involved a non-linear combination of e, f,g. The only restriction on our equations here is the
assumption that the normal n; of Q; measured in the tangent plane coordinates of P has a nonzero
third component, which is reasonable if we assume that Q; lies in the neighborhood of point P. (In
fact, if the surface is regular, such a neighborhood exists [dC76, p.164], at least before discretization!).
When this component vanishes, the local parametrization of the quadric in these coordinates is no
longer valid, and point @; should not be taken into account.

i

Denoting
P! 2pig ¢ 2 e
A;=| pp @ 0], bi=| —a |, x=| f [,
0 m @ -5 g
the measurement Egs. (E}"Eg) at P can be put in matrix form
A.,'X = b,’.

3.2 Non-recursive minimum variance least-squares solution

We wish to weight the measurement equations by the uncertainty of our measured parameters, i.e.,
the coordinates of points Q; and attached normals n;. Once this is done (cf. next sections), we end
up with a matrix W; which is the covariance of A;x — b;

W,‘ =F [(A,'X -~ b;)(A;x - bi)t] .

Then a weighted least-squares solution x to our problem at P using all Q;,7 = 1,...,7n in some
neighbourhood will therefore minimize

C= E(A,‘X - b,’)tw;l(A,‘X - b,’),

1 . .
A common enough assumption throughout computer vision.




and is given by
x = (A'W7A) T A'W b,
where
A, by W,
A= : , b = I and W = -
A, b, w,

3.3 Recursive solution

In fact, we implement a recursive solution to this problem, better known as a Kalman filfer [Lue69,
Aya9l]. By this method, each time a new measurement (); is given, it is only necessary to compute
A, and b; for that point and to update the current solution (x;,S;) using the recursive equations

X; = X1+ K;(b,* - Aixi—l)a
K, = S,1A{W;+ A;S;.1AY) Y
Si f=a (I -— K{A{)S{—L

S; 1s the parameter covariance matrix
Si = B [(x: — x)(x: — x)]
relating the current estimate x; and the ideal value x of the parameter vector. This is a measure of
the quality of our estimate — a small covariance means that the computed estimate x; is expected to

lie close to the “actual” parameters x. It is necessary to initialize the filter with (xg, S¢), which can
be taken as xg = 0,Sp = oo I whén no a prioriinformation is available about any of the parameters.

3.4 Practical details

For simplicity, the preceding development was presented with all data assumed to be in P’s tangent
plane coordinate system. We now show how to transform from the actual data points Q; and normal
vectors n;, each with their respective associated covariance matrices Wy and W,,, measired in a
global coordinate system, i.e., the coordinate system of the image, to variables v = (p;, @i, ni, o, §;)!
and associated covariance matrix W, in P’s tangent plane coordinates. Thus we can apply the above
theory directly to the image data.

3.4.1 Computing parameters v

We now assume that Q; = (z;, 1, z)f and n; = (ng,,ny,, 7, )t are given in a global coordinate system
(X,Y,Z). To express them in P’s tangent plane coordinates (P, Q,N) at point P = (z,y,2)", we

compute
!

P Xy — a; n,'.
i =R Yi—y ’ : =R Ny P
g zZ; —z ’7’,’ Ny
and ) P
@ i
Qg = WE] /Bf =N
Y Yi
{for
P. P, P
R = Q= Qy Qz
N. N, N,

The coordinates of the tangent plane basis vectors at P expressed in the global image coordinates
(X,Y,Z) are
P:z Qm N’
P=| P |, Q=1 Q, |, N=| N,
Pz Qz N‘
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3.4.2 Computing covariances W;

We assume that the covariance of point @; and its normal n; are given in the global coordinate systemn
(X,Y,Z) by Wi, and W, respectively. Since, for any affine transformation of a random variable
v; — w; = M(v; — v) we have

E [(wi = w)(wi = w)*] = ME [(vi = v)(v: = v)i| MY,

the corresponding covariance matrices expressed in P’s tangent plane coordinate system (P, Q,N)
are
Wy, = RW, R, Wy, = RW, R,
which are 3 x 3 matrices.
In fact, if we express n; = (o, B1,7!)
covariance of a; = ai/y and B; = B!/v{. As a first order approximation, we compute the 2 x 2 matrix

W,

 in the tangent plane coordinates, we must compute the

Wa, =1, W,. Tt

where J; is the Jacobian matrix

L0
J. = Y Yi
S

of the change of variables. Therefore the 5 x § matrix

WQ 03x2
W = —
o ( 02x3 wn;

is the covariance of our measurement vector (p;, ¢:, mi, ai, 5;).
The 3 x 3 covariance matrix W; is computed as a first order approximation by

W, = I, WonJs,

where J; is the Jacobian matrix

2pie +2¢:f 2pif +2qg -2 0 O
Jy = e f 0 1 0
0 f g 01

The 2 x 2 covaridnce matrix of curvatures is determined similarly,

W, = I;Wg 38,

5= )

4 Estimating error in edge detection

with the Jacobian
—2b
0

Rl oY
o R

In the reference [MDMC, MAS91], we determine the uncertainty inherent in edge detection in dig-
ital images by considering the 3-D (modified Canny) edge detector of Monga and Deriche [MD89,
MDR91]. We first deal with uncertainty in edge position, and then with the error in edge direc-
tion and magnitude. We determine precisely the covariance matrices needed for the local quadric
surface fitting described above, and derive the very interesting result that the uncertainty in edge
position and magnitude is highly dependent on the orientation of the edge with respect to the image
coordinate axes.
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5 From curvatures to typical features

5.1 Introduction

For each edge point, the previous section determines the Gaussian and mean curvatures, principal
curvature directions, and the corresponding covariance matrices. Note that the scale is defined by
the size of the neighbourhood used to fit the local geometric model. In this section we deal with the
extraction of more global curvature features from the local curvature information.

5.2 Local curvature maps

A practical way of characterizing the behaviour of the curvature in the neighbourhood of a point is
to define local curvature maps (technically the pullback of the field onto the tangent plane as used
in [SZ] for the computation of the direction field index). Given a point P and its tangent plane
defined by (P, Q, N). Let V be the intersection of a sphere whose center is P and radius r with the
set of the edge points (this defines a neighbourhood of P}, and let W be the orthogonal projection
of the points of V onto the tangent plane. At each point of W we attach the curvatures of its
corresponding points in V. The size of V' could be determined using the distance of the points to the
tangent plane and the angle between the gradient at a point and the gradient at point P. We thus

define a map characterizing the behaviour of the curvatures around P.

5.3 Extracting lines of curvature extrema

From the local curvature images we can extract, for instance, the maxima of the maximum curvature
in the maximum curvature direction . This may be done similarly to the classical extraction of the
extrema of the gradient magnitude in the gradient direction in 2D edge detection methods [Der87,
Can86].

Let C(P) be the local maximum curvature map attached to point P, and let G(P) be the
maximum curvature direction. We compare the value of the maximum curvature along the straight
line defined by P and G(P) and retain P if its maximum curvature is a local extrenum along this
direction. Thus we obtain local curvature extrema candidates. To remove false extrema, we perform
a 3D hysteresis thresholding using the mean curvature already determined. This is done analogously
to the thresholding of the local gradient extrema in the edge detection scheme described in [MDR91].

6 Results

6.1 Curvatures for synthetic data

We built a synthetic volume whose implicit equation is given by

' zgam2+by2+cm+dy+e
with @ = 1/20, b = 0.25, ¢ = —4, d = —12, e = 224. This was done by creating a 3-D digital
image with points of maximum (resp. minimum) intensity within (resp. outside of) the volume. We
extracted 3-D edges with the algorithm described in [MDR91]. These edge points correspond to the

surface of an ideal elliptic paraboloid.
First, note that there exists a single surface point T such that the equation of the entire surface
takes the reduced form
! 1 12 [ 1 12
# = ez +f2y A+ oy
when (x’,y’,2') are expressed in the local tangent plane coordinate system attached to point T". This
point is the vertex of the paraboloid and its coordinates are given by
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Point Ideal | Positions | + Normals | + Uncertainty | Predicted
coordinates o
e=0.11] ~ 0.0037 0.0172 0.102 0.011
(40,24,1) f=0 0.0000 0.000 -~ 0.003 0.008
86 Neighbors | ¢ = 0.5 0.324 0.360 0.494 0.02

Table 1: Estimation of the parameters (e, f, g) of the local quadrics

Point Ideal Positions | + Normals | + Uncertainty | Predicted
coordinates 4
(40,24,1) C, =0.05 | - 0.0012 0.0062 0.0505 0.014
86 Neighbors | C,, = 0.3 0.16 0.16 0.298 0.023
(47,24,2) C, = 0.022 0.089 0.063 0.0157 0.008
46 Neighbors | C,, = 0.23 0.333 0.297 0.2024 0.030
(45,26,3) Cy =0.010 | — 0.001 - 0.0003 0.018 0.009
54 Neighbors | Cp,, = 0.12 0.053 0.107 0.143 0.018
(36,22,2) C, = 0.010 0.013 0.018 0.012 0.006
50 Neighbors | Cp, = 0.122 0.133 0.172 0.127 0.015
(39,23,1) Cy, = 0.031 0.011 0.023 0.017 0.023
28 Neighbors | Cp, = 0.22 0.10 0.25 0.21 0.062
(38,28,5) C, = 0.004 0.009 0.010 0.006 0.003
50 Neighbors | Cp = 0.07 0.105 0.11 0.09 0.01

Table 2:

Estimation of gaussian and mean curvatures Cy and C,

For this particular point, the local quadric approximation is a global one, and the ideal parameters
are e 2a, f = 0,9 = 2b. It is therefore possible to estimate these parameters with all the
detected surface points (about 350 points). In this case the convergence is excellent towards the
exact values. We show in table 1 the results obtained with a smaller but still rather large number of
edge points (86). We show successively the results obtained for a least squares estimation with points
only (measurement equation E1), then adding normals (measurement equations E2-E3). Finally, we
show the results obtained when uncertainty on positions and normals is taken into account, following
the computations of the previous sections. It is easy to check that not only is the estimate obtained
much more accurate, but also that the computed standard deviation ¢ on the error estimation is
perfectly coherent with the observed error.

At other points P on the surface, we applied our local quadric approximation with smaller neigh-
borhoods (containing about 50 points). The size of the neighborhood is both controlled by limiting
the angle between the neighbors’ normal and P’s normal, and also the distance between neighbors
and P. We used the local approximation to compute locally the Gaussian and mean curvatures (C,
and C,,). In table 2, we show the results obtained for this computation, with the previous three
methods. Here again, the results are much more accurate with the last approach, and the output
covariance agrees almost perfectly well with the observed errors.

6.2 Typical curvature features for synthetic and real data

Figures 1 to 5 present some results for the determination of the extrema of the maximum curvature
in the maximum curvature direction for a 3D MRI image of the face. We notice that our local
approximation scheme provides a continuous maximum curvature field, allowing to detect reliably
and accurately the curvature extrema. Regarding our experiences, this continuity is mainly due to
the smoothness of the orientation of the gradient used for the local approximation.




Figure 1: Perspective views of the 3D edges matched with the extrema of the maximum curvature
in the maximum curvature direction colored in dark (the ratio defining the weighting point/normal
in the least mean squares is about 1/40)

Using covariance matrices in our least mean square criterion introduces a ponderation between
the equations taking into account the position of the points and the normal orientations. For the
original data corresponding to figures 1 to 5 the step edges have a very strong amplitude. This
implies that the localization criterion is over-estimated due to the first order approximation (the
localization is inversely proportional to the step amplitude), and therefore the weight put on the
position equations is too high. We also remark that the gradient coordinates are real values but
that the point coordinates are integer values which could induce false discontinuity. Given that each
point produces one measurement equation using its position and two measurement equations using
the orientation of its gradient, we can evaluate the ratio between point information and normal
information. If we apply exactly the theoretical calculus presented before for these data, we obtain
a ratio of 1/12 (1 for point and 12 for normal). This allows to obtain rather good results but where
some false discontinuities still remain. Experimentally a ratio of 1/40 yields a good trade-off between
the smoothness and the preservation of the singularities. The distorsion of the theoretical optimum
and the experimental one is due to the reasons we reported here. We also perform some experiences
with a ratio of 1/4 and we obtain a bad continuity for the maximum curvature field.

The main practical conclusion of our experiences is that the gradient orientation (approximating
the orientation of the normal to the surface) is a strong regularization criteria for the local approxima-
tion. This illustrate the applicability of our theoretical developments although its direct applicability
are spoiled by first order approximations and by discretization.

7 Conclusion

Our main objective was to develop robust and reliable tools useful for modeling and analyzing
surfaces of 3-D objects. In this paper we showed the importance of a careful quantitative analysis of
the various sources of uncertainty for computing second order derivative features (mean and Gaussian
curvatures) on a discrete surface.

We use a quantitative estimation of the uncertainty in edge position, orientation and magnitude
produced by the multidimensional (2-D and 3-D) versions of the Monga-Deriche-Canny recursive

separable edge-detector.
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Figure 2: Projection of the extrema of the maximum curvature in the maximum curvature direction
corresponding to the previous figure (the ratio defining the weighting point/normal in the least mean
squares is about 1/40)
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Figure 3: Projection of the extrema of the maximum curvature in the maximum curvature direction
(the ratio defining the weighting point/normal in the least mean squares is about 1/40) ; the algorithm
providing the extrema is slightly different.
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Figure 4: Projection of the extrema of the maximum curvature in the maximum curvature direction
(the ratio defining the weighting point/normal in the least mean squares is about, 1/320)
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Figure 5: Projection of the extrema of the maximum curvature in the maximum curvature direction
(the ratio defining the weighting point/normal in the least mean squares is about 1/5)

Then, we revisited the algorithm initially proposed by Sander and Zucker for locally estimating
the curvature of a discrete 3-D surface, and we modified the original measurement equations and
proposed an optimal estimation scheme to account for the previously computed uncertainties and
corrections.

We tested the corrected edge detector on 2-D and 3-D medical images and showed the importance
of the corrected edge magnitude for edge detection. We also tested the surface modeling algorithm on
discrete 3-D objects — not only are the results obtained more accurate, but the computed measure
of uncertainty attached to the results agrees extremely well with the true one.

We also show how to use these curvatures to determine typical curvature features on which
registration and/or tracking procedures can robustly rely.
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