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Abstract. This paper describes a novel editor intended as an aid in
the learning of the functional programming language Standard ML. A
common technique used by novices is programming by analogy whereby
students refer to similar programs that they have written before or have
seen in the course literature and use these programs as a basis to write
a new program. We present a novel editor for ML. which supports pro-
gramming by analogy by providing a collection of editing commands that
transform old programs into new ones. Each command makes changes
to an isolated part of the program. These changes are propagated to the
rest of the program using analogical techniques. We observed a group
of novice ML, students to determine the most common programming er-
rors in learning ML and restrict our editor such that it is impossible to
commit these errors. In this way, students encounter fewer bugs and so
their rate of learning increases. Our editor, CYNT HIA, has been imple-
mented and is due to be tested on students of ML from September, 1997.

Keywords: Programming Language Learning, Learning Environments,
Analogy

1 Introduction

Functional programming languages such as LISP, ML and Haskell are increas-
ingly being used in academe and industry. Many universities now teach functional
languages as a key part of their software engineering programme. However, the
teaching of such languages presents problems. Functional languages involve ab-
stract concepts such as recursion which are difficult to learn ([1]). Many experi-
ments have been carried out that suggest that students overcome these difficulties
by using analogy in the early stages of programming [16, 18]. Given a program
to write, novices refer to similar programs they have written before or seen in
the course literature. They then use the old program as a basis to construct the
new one. We have conducted our own informal experiment with a group of 30

* The first author was supported by an EPSRC studentship. The second and third
authors are supported by EPSRC grant GL/L/11724



novice ML students which involved observations of the students over the course
of a semester and in-depth interviews with two of the students. This provided
additional evidence of programming by analogy [19].

ML is a typed, functional language incorporating extensive use of pattern
matching and recursion. We have implemented a program editor, CYNTHIA,
for Standard ML that supports programming by analogy. Programs are con-
structed in CYNTHIA by transforming an existing program from an available
library. The user is provided with a collection of editing commands. Each com-
mand makes an isolated change to the current program, such as adding an extra
argument to a function definition. The effects of this change are then propag-
ated automatically throughout the rest of the program. By applying a sequence
of editing commands, previously constructed programs can be easily transformed
into new ones. In addition, programs produced using CYNT HIA are guaranteed
free of certain kinds of bugs.

To illustrate the idea, consider the task of writing a function, count, to count
the number of nodes in a binary tree, where the definition of the datatype tree
is given in ML as:3

datatype tree = leaf of int | node of tree * tree;

Suppose the user recognises that a function, length, to count the number of items
in an integer list, is similar to the desired function. He* can then use length as
a starting point. Below we give the definition of length preceded by its type®.

’a list -> int

fun length nil = 0
|  length (x::xs) = 1 + (length xs);

Note that 'a list is the polymorphic list type. We show how length could be
edited into count. This example is taken from [20].

1. The user may indicate any occurrence of length and invoke the RENAME
command to change length to count. CYNTHIA then changes all other
occurrences of length to count:

’a list -> int

fun count nil =

0
| count (x::xs) =

1 + (count xs);

2. We want to count nodes in a tree so we need to change the type of the
parameter. Suppose the user indicates nil and invokes CHANGE TYPE to
change the type to tree.

? ¢nt is the built-in datatype integers.
* Throughout this document, I refer to the user by the pronoun ‘he’ although the user
may be male or female.

® .. is the ML list operator cons



CYNTHIA propagates this change by changing nil to (leaf n) and changing
:: to node:

tree -> int

fun count (leaf n) = 0
| count (node(xs,ys)) = 1 + (count xs);

Note that the program no longer contains z. Instead, a new variable ys of
type tree has been introduced. In addition, (count ys) is made available for
use as a recursive call in the program.

3. It remains to alter the results for each pattern. 0 is easily changed to 1
using CHANGE TERM. If the user then clicks on 1 in the second line, a list
of terms appear which include (count ys). Selecting this term produces the
final program:

tree -> int

fun count (leaf n) = 1
[ count (node(xs,ys)) = (count ys) + (count xs);

The editing commands available can be divided into two types: low- and
high-level commands. Low-level commands make only very small changes to the
existing program, such as changing 0 to 1 in (3) above. High-level commands
affect the overall structure of the program, e.g. changing the top-level type in (2).
CYNTHIA encourages the use of high-level commands first to set up a ‘shell’
for the definition. Low-level commands can then be used to fill in the details.

We aim our system primarily at novices. However, CYNTHIA is general
enough to allow complex, practical programs to be produced. It is unlike many
tutoring systems (e.g. [2]) that are restricted to a small number of toy examples.
This means the novice has the freedom to experiment and enables continued
support once the novice has become more expert.

2 The Design of CYNTHIA

We wish CYNTHIA programs to be guaranteed correct in some respects. It is
natural, therefore, to base the design around established techniques from logic
and proof theory which give us a flexible and powerful way of reasoning about
the correctness of programs. [9] identifies the necessary machinery to set up
a one-to-one correspondence between functional programs and mathematical
proofs in a constructive logic. Note that under this correspondence, recursion
in a functional program is dual to mathematical induction in a proof. Hence,
changing the recursion scheme corresponds to changing the induction scheme.
This idea has been used as the basis for program verification and synthesis. For
instance, within the paradigm of program verification, given a program, we can
prove it correct by proving the corresponding theorem in the constructive logic.



As an example, given a program to append two integer lists together, we could
formulate a theorem®

Va @ list(int) Yy : list(int) 3z : list(int) Ve :inte €z —ecaVe€y) (1)

This theorem or specification states the existence of a list z that contains all
elements of # and y and no others. Hence, a possible z is * @ y where @ is the
append operator’. Suppose we have a proof of this specification in a constructive
logic. We can extract a functional program from this proof such that the program
is guaranteed to be correct with respect to the specification — 1.e. it will compute
z @ y. This 1s called the proofs-as-programs paradigm. It enables us to construct
programs that are correct in some way.

We use a restricted form of this idea where the specification does not describe
the full behaviour of the corresponding program but instead states the number
and the type of input arguments and the type of the output argument. For
example, append would have a spec list(int) — list(int) — list(int). Every
program is associated with a corresponding specification and synthesis proof. Our
proofs are written in the proof editor Qyster [8] which is based on a constructive
logic known as Martin-Lof’s Type Theory® [12]. The synthesis proof essentially
guarantees the correctness of the program extracted from it (with respect to the
specification) . The more detailed the specification, the more we can guarantee
about the program. Our simple specifications prove that CYNTHIA programs
are syntactically correct, well-typed, well-defined and terminating — see §3.2 for
more details.

The design of CYNTHIA is depicted in Figure 1. Note that editing com-
mands directly affect the synthesis proof and only affect the program indirectly.
CYNTHIA is equipped with an interface that hides the proof details from the
user. As far as the user is aware, he is editing the program directly. In this way,
the user requires no knowledge of logic and proof. The user begins with an initial
program and a corresponding synthesis proof. These may be incomplete. Editing
commands make changes to a particular part of the synthesis proof. This yields
a new partial proof which may contain gaps or inconsistencies. To fill in these
gaps and resolve inconsistencies, we use an analogical mechanism. This mech-
anism replays the proof steps in the original (source) proof to produce a new
(target) proof. During this replay, the changes induced by the editing command
are propagated throughout the proof. Once gaps in the target proof have been
bridged, a new program is extracted. This program incorporates the user’s edits
and is guaranteed correct with respect to the weak specification.

Let us explain how the analogy works in a little more detail. A tactic is a
combination of a number of inference rules. Tactics can be written that allow

6 X : T means X is of type T

7 In fact, appendis just one program that would satisfy the specification. We can write
the specification to any level of detail.

& The type systems of ML and Martin-L5f, although very similar, are not the same, so
some minor translating is done between the two. We chose Oysterin which to build
our constructive proofs because there is a body of work in synthesising programs in
Oyster.
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Fig. 1. Editing Programs in CYNTHIA

us to apply a frequently used sequence of inference rules in one step. We have
implemented a number of tactics that allow us to synthesise ML programs. There
are five types of tactics in CYNTHIA:

e A tactic for pattern matching.

e Tactics for constructing an ML program fragment. Each ML construct
(e.g. if..then..else, case) has a corresponding tactic. Applying the
tactic in Oyster adds extra branches to the proof tree.

e Result tactics for giving the result of a case in the definition (e.g. giving
0 as the result in the nil case of the definition of length).

e Tactics for type-checking.

e Tactics for checking termination.

By applying tactics, a synthesis proof is constructed. This synthesis proof is
represented as a tree where each node in the tree has slots for the hypotheses,
the current goal and a tactic to be applied. In our case, the current goal will be
of the form F T where T is the output type of the function being defined. This
goal should be interpreted as meaning that an object of type T is required to
satisfy the goal.

The analogical mechanism works as follows. When an editing command is
invoked,
CYNTHIA abstracts away unnecessary information from the proof tree to pro-
duce an abstract rule tree (ART) which is essentially a tree of tactic applica-
tions. If the editing command is applied at a position, P, in the ML program,
CYNTHIA calculates the position corresponding to P in the ART and then
makes changes in the ART. This may involve adding, removing or modifying
tactics. This process yields a new ART which is then replayed by systematically
applying the tactics that make it up, hence producing a new synthesis proof.
Note that the changes made by the editing commands are propagated during
the replay of the ART. There may be tactics that can no longer apply — in this
case, a gap is left in the proof tree which is signalled to the user at the cor-
responding point in the ML program. These gaps must be ‘filled in’ before the



program 1s accepted. For an example of this, see §4.

Refer to the example in §1. We briefly explain how the analogy works in (2).
The user has selected nil and indicated a change of type. This induces a change
of the type of length from ’a 1list -> int to tree —> int. Hence, the proof
tree 1s abstracted to an ART with a new specification tree — int. The ART is
now replayed. During this replay, the tactic that implements pattern matching is
modified so that the definition is based on a new pattern with constructors leaf
and node. This also changes the induction scheme in the proof hence making
the recursive call (count ys) available for future use. The two result tactics are
replayed without modifications. The new program can be then be extracted from
the new proof tree.

In general, constructing proofs by analogy is a difficult task [15]. Because we
are restricted to specifications involving a limited amount of detail, the proofs
are simpler and so the analogy becomes a viable option in a practical, real-time
system such as ours.

3 Increasing the Learning Rate

Over a period of three months we conducted observations of a group of 30 novice
ML students from Napier University to ascertain what problems presented them-
selves when learning ML. The students were observed writing programs during
weekly tutorial sessions. In addition to informal observations, their interactions
with ML were scripted and analysed. The students completed questionnaires
relating their experiences and at the end of the course, two students were in-
terviewed in depth. We describe how ML programs can be built up quickly and
easily using CYNTHIA. We also point out the problems that the students had
with ML and how CYNTHIA can help to overcome them. The students used
version 0.93 of New Jersey ML and so our comments refer to this version.

3.1 Program Transformation

To provide the maximum support for programming by analogy, the editing com-
mands in

CYNTHIA are structured into low-level commands for making very small changes
and high-level commands for changing the overall program structure. Not only
does this approach constitute a powerful way of transforming programs but it
also encourages the novice to follow a top-down approach to programming —
deciding on the high-level structure first and then filling in the details.

Low-Level Commands These are commands that only affect an isolated part
of the program. They do not affect the datatype of the function being defined.
Nor do they affect the recursion the function is defined by. This means that the
analogy needed to produce a new program is fairly straightforward.



The following are the available low-level commands, with a brief description
of each:

— ADD CONSTRUCT: add a construct at the current point in the program. The
ML constructs currently supported are if..then..else, case, fn, let val
and let fun.

— CHANGE TERM: change a sub-expression in a term at the current point in
the definition only.

High-Level Commands We now present the high-level commands available.
First, we give a list of the commands where the analogy is relatively simple.
Then we go into more complicated high-level commands.
e RENAME: change the name of a variable name or function name throughout
the definition.
e ADD ARGUMENT: add an additional argument to a function definition.
e ADD COMPONENT: if an argument is a pair, add an extra component
to the pair. If the argument is not already a pair, make it into one.
For example, consider applying ADD COMPONENT to nil in the following
program.
’a list -> int

fun length nil = 0
|  length (x::xs)
would go to
’a list * ’b -> int

= 1 + (length xs);

fun length (nil,y) = 0
| length (x::xs,y) = 1 + (length (xs,y));
e MOVE ARGUMENTS: swap the positions of two arguments in a definition.
Figure 2 gives an idea of some commands used to transform, rev a func-
tion for reversing lists, into delete for deleting an element from a list. The
commands are in upper case. The first step renames the function and adds
an extra argument. ADD ARGUMENT is invoked by indicating an occurrence of
rev and then analogy gives all other occurrences of rev an additional argument
too. ADD IF..THEN..ELSE places a case-split at the designated position, duplic-
ating whatever is below the current position in the original program. CHANGE
TERM 18 used to edit the result for one of the patterns — e.g. to remove @ in
(delete s €) @ [z] giving (delete s €).
More complicated high-level commands are for changing the recursion and
changing the type of an argument.

Definition by Patterns By definition by patierns we mean the common prac-
tice as used in ML whereby functions are defined by pattern matching (see rev
for example in Figure 2). We observed that novices often have difficulty in decid-
ing upon the correct definition by patterns for a function. They are capable in



ADD IF.THEN..ELSE ’
fun delete nil e =nil

fun delete nil e = nil H
| delete (x::xs) e = if e=x then (delete xs e) @[x]

| delete (x::xs) e = (delete xs e) @[x];
else (delete xs e) @[x]

ADD ARGUMENT CHANGE TERM

RENAME

L fun delete nil e = nil
fun rev nil =nil

| rev (x:xs) = (rev xs) @[x; | delete (x::xs) e =if e=x then (delete xs e)

else x::(delete xs e);

Fig. 2. Low-Level Commands

simple cases where the function has only one argument that is pattern matched
against, but become lost when more than one argument is pattern matched or
when the pattern used is non-standard. A simple function that pattern matches
multiple arguments would be an nth function to return the nth element in a list.

We have a command MAKE PATTERN which allows the user to build up
non-standard patterns by combining a number of standard ones. We have im-
plemented a version of a technique used in ALF [5]. The user can highlight an
object of a certain datatype. The application of the MAKE PATTERN command
splits the object into a number of patterns - one for each constructor function
used to define the datatype. Hence, MAKE PATTERN on z:list below

fun f(x,1)=..
produces two patterns:

fun f(nil,1)=..
| f(h::t,1)=..

Non standard patterns can be defined by applying the command a number of
times. Highlighting ¢ and applying MAKE PATTERN gives:

fun f(nil,1)=.. (1
| f(h::nil,1)=.. (2)
| f(h::h2::t1,1)=.. (3)

This can be done for any datatype by using the definition of the type as encoded
in ML. Suppose [ is of type tree then we can split [ in pattern number (2) to
give:

fun f(nil,1)=..

|  £¢h::nil, (leaf x))=..

|  f(h::nil, (node(11,12)))=..
|  f£¢h::h2::t1,1)=..

We do not use the same underlying theory as ALF but use the constructive logic
already available in our proof system. The result is the same, however.



Recursion Recursion is well-known to be a difficult concept to learn. Novices
can have considerable difficulty with even primitive recursion schemes. However,
an introductory course will also introduce non-standard schemes involving ac-
cumulators, multiple recursion, course-of-values recursion and nested recursion.
To help novices to learn non-standard recursions, the commands ADD RECURS-
IVE CALL and REMOVE RECURSIVE CALL encourage them to think about which
recursive calls are needed for the task at hand. CYNT H 1A maintains a list of
recursive calls that are currently available to the user. When the user is required
to enter a term, these recursive calls are among the options presented to the
user. He can pick one using the mouse without any need for further typing. The
user can change the list of recursive calls by the commands mentioned above.
The idea is that the user first decides upon what kind of recursion he should use.
He can then use these commands to set up the basic structure within which to
use them. Other commands can be used to fill in the details.

As an example of how the commands can be used, consider trying to produce
the function zip®:

fun zip f nil nil = nil

|  zip £ nil (i::u) = nil

|  =zip £ (x::xs) nil = nil

| zip £ (x::xs) (i::u) = £(x,i)::zip £ xs u;

Figure 3 shows the edits needed to produce zip from rev. The ideal way to
proceed 1s to decide upon the program structure to begin with by applying ADD
ARGUMENT twice and then MAKE PATTERN twice. The user then introduces the
recursive call (zip f xs u) as necessary®. To avoid restricting the user, he is
not forced to produce programs in this top-down fashion. The result is generally
independent of the order of execution of commands.

Changing Type A major drawback of current learning processes is that novices
can ignore datatypes. ML is equipped with a type inference engine which auto-
matically derives (if possible) the type of the top-level function. Although ad-
vantageous in that users need not explicitly state the type of each term, novices
can ignore types and be unaware of type inconsistencies which may arise. This
results in unhelpful error messages from the compiler and confusion. For instance,
in the function:

fun length nil = nil
|  length (x::xs) = 1 + (length xs);

% A common definition of zip would omit the second and third cases. This is disallowed
in CYNTHIA because we restrict to well-defined programs. The current version of
CYNTHIA does not support exceptions.

10 Note that when this recursive call is introduced into the program, the program is
checked for termination. In this way, the user is restricted to recursive calls that
preserve termination — see §3.2.



fun zip f nil nil=nil MAKE PATTERN fun zip f nil nil=nil

| zipfonil (i::u) =nil ﬁ I Z‘pf“"u("”) :7""
| Zipf (x:ixs) y = (zipf xsy) @[x; | zip f (x::xs) nil = (zipf xs nil) @[x]
| zipf (xi:xs) (i::u) = (zipf xs (i::u)) @[x];
MAKE PATTERN
CHANGE TERM
fun zip f nil y= nil
| zipf (xi:xs) y = (zipf xsy) @[x];
fun zip f nil nil=nil
| zip f nil (i::u) =nil
| zipt (x::ixs) nil =nil
RENAME
| zip f (x::xs) (i::u) = (zipf xs (i::u)) @[x];
ADD ARGUMENT
ADD RECURSIVE CALL
fun rev nil = nil CHANGE TERM
| rev (x::xs) = (rev xs) @[x];

fun zip f nil nil=nil
| zip f nil (i::u) =nil
| zip f (x::xs) nil =nil

| zipf (xi:xs) (i::zu) =f(x,i)izzipf xs u;

Fig. 3. Writing zip

we have an example of a simple but commonly-made error whereby the output
type in the first line is list but is an integer in the second. It can often be difficult
to pinpoint exactly where the error has occurred.

For this reason, we insist that the user declares the type of a function before
anything else. This forces the novice to think about the types hence reducing
type errors when writing the rest of the program. Once the top-level type has
been given, the types of terms in most other parts of the program are determined
and hence need not be given by the user.

During the course of a program the user may realise he has stated the top-
level type incorrectly. Or he may want to change the top-level type of an old
program to produce a new one. CYNTHIA provides quite advanced facilities
for doing this. Changing the output type of a function or changing the type of
a non-recursive argument does not present too many problems. It can result in
inconsistencies in the proof (ill-typed terms) but this can be dealt with — see §4.
The real challenge comes when changing the type of an argument that is pattern
matched against since the pattern needs to be changed.

If we wanted to change the type of the first argument in length from list to
tree, we can invoke CHANGE TYPE to edit length into

fun length (leaf n) = nil
| length (node(xs,ys)) = 1 + length xs;

In this case, CYNTHIA will also add the recursive call length ys to the list
available. This could then be used by the user. More complicated examples arise

when MAKE PATTERN has been applied more than once. If our original program
had been:



fun app2 nil 12 = 12
|  app2 (x::nil) 12 = (x::12)
[ app2 (x1::x2::xs) 12 = x1::(app2 xs 12);

it 1s not clear what the new pattern should be after a change of type of the
first argument to tree. CYNTHIA looks for a mapping between the old and
new datatype definitions and uses heuristics to select a mapping if necessary'!.
This mapping is then applied to the old pattern definition to produce a new
one. A full description of these heuristics is beyond the scope of this paper. The
general idea is to map base (step) constructors for the source type to target
base (step) constructors. For a datatype, ¢, we say that a constructor is a base
constructor if none of its arguments are of type ¢. A step constructor has at least
one such argument. When mapping individual constructors, we have to map the
arguments of the constructors. In this case, we map (non-)recursive arguments
to (non-)recursive arguments. An argument is recursive if it is of type ¢ and is
non-recursive otherwise. To illustrate, consider the datatype definitions for {ist!?
and tree:

datatype ’a list = nil | :: of ’a * ’a list;

datatype tree = leaf of int | node of tree * tree;

For these definitions, nil is a base constructor, leaf 1s a base-constructor with
a single non-recursive argument, :: is a step constructor with one non-recursive
and one recursive argument, and node is a step constructor with two recursive
arguments. The mapping that CYNTHIA selects in this case is nil — (leaf n)
and x :: #s — node(xs,ys), where n, ys are fresh variables. ys is introduced
in preference to mapping = :: xs to node(x, xs) because x is not of type tree.
Applying this mapping to the program app2 above produces:

fun app2 (leaf n) 12 = 12
[ app2 (node((leaf n),ys)) 12 = (x::12)
[ app2 (node(node(xs,ys),zs)) 12 = x1::(app2 xs 12);

Note that z, 1 appear on the RHS of the equalities but not on the LHS. Rather
than try to replace these terms with a suitable alternative, we prefer to highlight
this fact to the user and let him deal with it. In this way, the user is aware of
exactly what effect his change of type has had. If # and 21 had been replaced
it would be difficult to know what to replace them with. In addition, the user
might not notice the change.

3.2 Reducing the Number of Programming Errors

One of the main purposes of our experiment was to identify the kinds of pro-
gramming errors that novice ML users encounter. Our results suggest that the

11 Although the user may override the heuristics and choose an alternative mapping if

necessary.
12 This is a built-in definition in ML.



learning rate is severly affected by these errors. The most common errors were
syntax errors and type errors. CYNT HIA disallows such errors in its programs.
The students found it particularly difficult to pinpoint the source of a type error.
Although ML does type checking at compile time and spots type inconsisten-
cies, the system messages provide little or no help in rectifying the problem.
CYNTHIA also incorporates a type checker. The ML type checker is not in-
voked until compile time. In CYNTHIA, however, the type checker is called
as each new term is entered. Hence, the user receives immediate feedback on
whether a term is well-typed. In addition, given the type of the top-level func-
tion that the user has already supplied, CYNTHIA can tell the user what the
type of a term should be before he enters it. In this way, the number of type
errors is reduced considerably. All programs in CYNTHIA are guaranteed to
be well-typed.

A major source of errors in recursive programs is non-termination [4]. An
example of a non-terminating function is

fun gecd (x:int) y = if x=y then x
else gecd (x-y) y;

This will not terminate for the call ged(2, 3). Termination errors are less frequent
than type errors but are usually more serious. CYNT H A restricts the user to
producing terminating programs*3. Checking the termination of function defini-
tions 1s undecidable. Hence, CYNT H I A restricts the user to a decidable subclass
known as Walther Recursive functions [14]. Tt is easy to check if a function defini-
tion falls into this class and yet the class is wide enough to be of real use to novice
(and indeed more experienced programmers). The class includes most commonly
occurring examples of course-of-values, nested and multiple recursions. The idea
behind Walther Recursion is that when a definition is made, we attempt to place
a bound on the size of the output of the function. The size measure used is based
on the size of constructor terms where w(c(uy,...,up)) =1+ ZiERC w(w;) if ¢
is a constructor, and K. is the set of its recursive arguments. Bounding lemmas
derived for previous definitions are then used to show that each recursive call
is measure-decreasing, and hence that the definition terminates on all inputs.
Walther Recursion is sufficiently wide-ranging to allow the following definition
of msort modified from the example in [14].

fun msort nil = nil

| msort (x::nil) = x::nil

|  msort (x::h::t) = merge (msort (evenl (x::h::t)))
(msort (x::(evenl (h::t))));

evenl returns the elements in a list at even positions. merge joins two lists by
repeatedly taking the smaller of the two heads. Note that this is not the most
natural definition of msort but is the definition that is easiest to produce using
the editing commands in CYNTHIA. Given the previous bounding lemma,

12 Occasionally, non-terminating programs can be useful. One could envisage, however,
a facility for overriding termination restrictions in this small number of cases.



levenl (z :: zs)| < |zs| for non-nil inputs, we can derive that both recursive calls
decrease the measure.

As mentioned earlier, a common way of defining ML programs is by pattern
matching. A source of errors in our analysis was that students wrote programs
that were not well-defined — i.e. the pattern for an argument did not exhaust-
ively cover the domain of the datatype with no redundant matches. ML spots
such errors at compile time displaying a warning message. Although ML does
not consider ill-definedness as an error, it is commonly believed that it is good
programming practice to write well-defined programs. Otherwise, there can be
serious run-time errors. Students were found to ignore the warnings given by
ML because they are not explicitly flagged as errors. We feel, however, that stu-
dents would make fewer errors if their programs were all well-defined. Hence, in
CYNTHIA the editing commands guarantee well-definedness.

In addition to these guarantees, any program defined in CYNTHIA is syn-
tactically correct.

4 The User Interface

We are currently developing a graphical user interface for CYNT HIA written
in Tcl/Tk. At present, CYNTHIA supports a functional subset of the core
language of Standard ML, and does not yet support exceptions. The user starts
off with a library of function definitions to choose from which have been taken
from the course notes at Napier University. The user can select one of these
functions to transform and can add his own functions to the library.

ML programs are presented to the user in a window and the user may high-
light any part of the program by positioning the mouse over 1t. Clicking on the
left mouse button brings up a menu of editing commands that could be applied
at this point. After selecting a command, the user is presented with a dialog
box for him to enter any necessary parameters for the command. He can either
enter these parameters as text or select them from a menu of suitable options.
CHANGE TERM can be applied to a subterm of an expression as well as the whole
expression. This is possible because when the mouse is moved over a function
symbol, the subterm which has that function symbol as top-level functor is high-
lighted and it is this subterm that is changed. Clicking on the right mouse button
when a term 1s highlighted will display the type of the highlighted expression.
This is an invaluable way of providing type feedback to the user during program
development. Figure 4 is a screenshot of one stage during the transformation of
length.

By using a graphical interface, the user is completely unaware of the proof
machinery that lies behind CYNTHIA. As far as he 1s aware, he is editing the
ML program.

A further development in the interface has been to provide feedback to the
user about the next stage of editing. Although the aim is, in general, to produce
a valid program at each stage of editing, this is not always possible. Some editing
commands will invalidate parts of the program. There are two main ways this



FILE DEFINE EDIT LAYOLT HELP

intlist—> int
fun length nil = 0
| length (x::xs) 1+ (length xs)
add construct
remove construct

renamne
change term

Fig. 4. Graphical user interface to CYNTHIA

can happen. We have already given an example of the first — see app2 in §3.1.
If a section, S of a program 1s deleted and a subsequent part of the program,
P depends on S then P can no longer be valid. This i1s what happened when
changing type in app2 — z and z1 were present on the RHS of the equality but
not the LHS. The solution we choose to deal with this is to leave such terms in
the program but highlight them (by displaying in a different colour) to the user.
The user may then inquire why they are highlighted and will be told that unless
they change the terms, the program will not be syntactically valid. We prefer
this approach to removing the terms because the highlighting process retains as
much as possible of the program so that frustrating retyping is not necessary
whilst it additionally tells the user exactly which parts of the program must be
changed next.

The other situation where this is used 1s when an editing command causes
the program to become ill-typed. In CYNTHIA every term that is entered is
type-checked at entry time. If the term is not of the required type, the user
will be told and will not be allowed to enter the term. More generally, if an
application of the CHANGE TYPE command makes some part of the program ill-
typed, CYNTHIA will not only highlight the offending term to alert the user
but will also tell the user what the type should be so that when he changes the
highlighted term he is told what type the new term should belong to. A simple
example of this phenomenon is when changing the output type of a program.



Consider the length example again:

’a list -> int

fun length nil = 0
|  length (x::xs) = 1 + (length xs);

Suppose the user applies CHANGE TYPE to change int to int list. Then 0 and
1+ (length xs) will no longer be of the same type as the output type. Again,
rather than removing these terms or attempting to change them automatically,
we highlight them to the user by a displaying them in a different colour. The
user then has freedom either to change the terms immediately, or to make some
other sequence of editing commands that will resolve the problem. As soon as
the terms become well-typed, the colouring disappears.

Note that the proofs-as-programs paradigm is a natural way in which to im-
plement this mechanism. No extra checks are needed to highlight terms. High-
lighted parts of the program just correspond to proof rules that have failed to
apply. Similarly, highlighting of ill-typedness means that a proof obligation to
prove the well-typedness has failed to be proved and the user is alerted.

We are currently looking into further ways of providing instructive feedback
to the user during program development. One obvious possibility is when using
ADD RECURSIVE CALL. If the user enters a term that means that a program
no longer terminates, rather than just refusing the command application, the
user could be given feedback about why the command cannot be applied, and
perhaps what he should do so that it could be.

5 Related Work

The work closest to our own is the recursion edilor presented in [4]. In fact, this
was one of the original inspirations. The recursion editor i1s an editor for writing
terminating programs. Like our system, edits are made by invoking editing com-
mands. CYNTHIA’s commands are more general than those in the recursion
editor. In the recursion editor, only a very restricted subset of recursive programs
could be produced. The recursion editor is very sensitive to the order in which
commands are performed. If they are performed in the wrong order, it may be
difficult or impossible to recover. Qur proofs-as-programs design overcomes this
by allowing greater flexibility because it keeps track of the dependencies within
the same program and between different programs. Our proof design also allows
us to locate errors in the program easily. [4] makes no consideration of datatypes.

[6] gives an alternative approach to the problem of understanding type errors.
He presents a modification of the unification algorithm used in Hindley-Milner
type inference which allows the decisions that led to a particular type being
inferred to be recorded and fed back to the user. As I have not seen his work in
action, I cannot comment on how useful his explanations are in discovering type
errors. [13] also looks into ways of providing more information to the user about
why particular types have been inferred.



Some work has been done on programming using schemata [10, 7]. This
is similar in spirit to our low and high-level commands as the user follows a
top-down approach. However, previous attempts are limited to a small range
of programs. Our editor is much more general providing a range large enough
to be of real practical use. The techniques editor TED [3] features a program
transformation perspective but it has no strong theoretical foundations and is
therefore much less powerful than CYNTHITA.

We do not address the problem of retrieving a previous example — see [17]
which indicates that students tend to solve problems in analogy to the most
recent problem they have attempted even though this may not be the best
starting point. Although we do not address this issue, our system is at least
general enough such that a poor choice of base problem should not prevent a
correct, albeit sub-optimal, transformation sequence leading to a solution. As
vet, the use of metacognitive tools forcing students to think about their problem
solving process has not been very effective [17]. Although CYNT HIA encourages
students to think about such issues, they retain control to explore unconventional
paths.

There exist many editors that guarantee syntactic correctness (e.g. [11]). We
are aware of no editor that provides the additional guarantees that we do.

6 Conclusion

This paper has presented an editor for producing correct functional programs.
It builds upon ideas in [4]. The editor is intended to be a suitable vehicle for
novices to learn the language ML. Its high-level commands provide guidance to
the user and the user is prevented from making certain kinds of programming
error.

Our work can be seen on a number of levels. First, as an educational aid, it
provides support for novices learning a language by reducing the effort needed to
produce correct programs but without restricting the user to text book solutions.
Second, as a support tool for ML, it is a way to quickly edit existing programs
without introducing unnecessary bugs. Third, it is an interesting application of
ideas from the field of automated reasoning.

CYNTHIA is due to be tested on ML students at Napier University from
September 1997 onwards.
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