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An Editor for Helping Novices to LearnStandard MLJon Whittle1 and Alan Bundy1 and Helen Lowe2?1 Dept. of Arti�cial Intelligence, University of Edinburgh80 South Bridge, Edinburgh EH1 1HN, UK.2 Dept. of Computer Studies, Napier UniversityCraiglockhart, 219 Colinton Road, EdinburghEH14 1DJ, UK.Email: jonathw@dai.ed.ac.ukAbstract. This paper describes a novel editor intended as an aid inthe learning of the functional programming language Standard ML. Acommon technique used by novices is programming by analogy wherebystudents refer to similar programs that they have written before or haveseen in the course literature and use these programs as a basis to writea new program. We present a novel editor for ML which supports pro-gramming by analogy by providing a collection of editing commands thattransform old programs into new ones. Each command makes changesto an isolated part of the program. These changes are propagated to therest of the program using analogical techniques. We observed a groupof novice ML students to determine the most common programming er-rors in learning ML and restrict our editor such that it is impossible tocommit these errors. In this way, students encounter fewer bugs and sotheir rate of learning increases. Our editor, C YNTHIA, has been imple-mented and is due to be tested on students of ML from September, 1997.Keywords: Programming Language Learning, Learning Environments,Analogy1 IntroductionFunctional programming languages such as LISP, ML and Haskell are increas-ingly being used in academe and industry. Many universities now teach functionallanguages as a key part of their software engineering programme. However, theteaching of such languages presents problems. Functional languages involve ab-stract concepts such as recursion which are di�cult to learn ([1]). Many experi-ments have been carried out that suggest that students overcome these di�cultiesby using analogy in the early stages of programming [16, 18]. Given a programto write, novices refer to similar programs they have written before or seen inthe course literature. They then use the old program as a basis to construct thenew one. We have conducted our own informal experiment with a group of 30? The �rst author was supported by an EPSRC studentship. The second and thirdauthors are supported by EPSRC grant GL/L/11724



novice ML students which involved observations of the students over the courseof a semester and in-depth interviews with two of the students. This providedadditional evidence of programming by analogy [19].ML is a typed, functional language incorporating extensive use of patternmatching and recursion. We have implemented a program editor, C YNTHIA,for Standard ML that supports programming by analogy. Programs are con-structed in C YNTHIA by transforming an existing program from an availablelibrary. The user is provided with a collection of editing commands. Each com-mand makes an isolated change to the current program, such as adding an extraargument to a function de�nition. The e�ects of this change are then propag-ated automatically throughout the rest of the program. By applying a sequenceof editing commands, previously constructed programs can be easily transformedinto new ones. In addition, programs produced using C YNTHIA are guaranteedfree of certain kinds of bugs.To illustrate the idea, consider the task of writing a function, count, to countthe number of nodes in a binary tree, where the de�nition of the datatype treeis given in ML as:3datatype tree = leaf of int | node of tree * tree;Suppose the user recognises that a function, length, to count the number of itemsin an integer list, is similar to the desired function. He4 can then use length asa starting point. Below we give the de�nition of length preceded by its type5.'a list -> intfun length nil = 0| length (x::xs) = 1 + (length xs);Note that 0a list is the polymorphic list type. We show how length could beedited into count. This example is taken from [20].1. The user may indicate any occurrence of length and invoke the renamecommand to change length to count. C YNTHIA then changes all otheroccurrences of length to count:'a list -> intfun count nil = 0| count (x::xs) = 1 + (count xs);2. We want to count nodes in a tree so we need to change the type of theparameter. Suppose the user indicates nil and invokes change type tochange the type to tree.3 int is the built-in datatype integers.4 Throughout this document, I refer to the user by the pronoun `he' although the usermay be male or female.5 :: is the ML list operator cons



C YNTHIA propagates this change by changing nil to (leaf n) and changing:: to node: tree -> intfun count (leaf n) = 0| count (node(xs,ys)) = 1 + (count xs);Note that the program no longer contains x. Instead, a new variable ys oftype tree has been introduced. In addition, (count ys) is made available foruse as a recursive call in the program.3. It remains to alter the results for each pattern. 0 is easily changed to 1using change term. If the user then clicks on 1 in the second line, a listof terms appear which include (count ys). Selecting this term produces the�nal program:tree -> intfun count (leaf n) = 1| count (node(xs,ys)) = (count ys) + (count xs);The editing commands available can be divided into two types: low- andhigh-level commands. Low-level commands make only very small changes to theexisting program, such as changing 0 to 1 in (3) above. High-level commandsa�ect the overall structure of the program, e.g. changing the top-level type in (2).CYNTHIA encourages the use of high-level commands �rst to set up a `shell'for the de�nition. Low-level commands can then be used to �ll in the details.We aim our system primarily at novices. However, C YNTHIA is generalenough to allow complex, practical programs to be produced. It is unlike manytutoring systems (e.g. [2]) that are restricted to a small number of toy examples.This means the novice has the freedom to experiment and enables continuedsupport once the novice has become more expert.2 The Design of C YNTHIAWe wish C YNTHIA programs to be guaranteed correct in some respects. It isnatural, therefore, to base the design around established techniques from logicand proof theory which give us a 
exible and powerful way of reasoning aboutthe correctness of programs. [9] identi�es the necessary machinery to set upa one-to-one correspondence between functional programs and mathematicalproofs in a constructive logic. Note that under this correspondence, recursionin a functional program is dual to mathematical induction in a proof. Hence,changing the recursion scheme corresponds to changing the induction scheme.This idea has been used as the basis for program veri�cation and synthesis. Forinstance, within the paradigm of program veri�cation, given a program, we canprove it correct by proving the corresponding theorem in the constructive logic.



As an example, given a program to append two integer lists together, we couldformulate a theorem68x : list(int) 8y : list(int) 9z : list(int) (8e : int e 2 z $ e 2 x_ e 2 y) (1)This theorem or speci�cation states the existence of a list z that contains allelements of x and y and no others. Hence, a possible z is x @ y where @ is theappend operator7. Suppose we have a proof of this speci�cation in a constructivelogic. We can extract a functional program from this proof such that the programis guaranteed to be correct with respect to the speci�cation { i.e. it will computex @ y. This is called the proofs-as-programs paradigm. It enables us to constructprograms that are correct in some way.We use a restricted form of this idea where the speci�cation does not describethe full behaviour of the corresponding program but instead states the numberand the type of input arguments and the type of the output argument. Forexample, append would have a spec list(int) ! list(int) ! list(int). Everyprogram is associated with a corresponding speci�cation and synthesis proof. Ourproofs are written in the proof editor Oyster [8] which is based on a constructivelogic known as Martin-L�of's Type Theory8 [12]. The synthesis proof essentiallyguarantees the correctness of the program extracted from it (with respect to thespeci�cation) . The more detailed the speci�cation, the more we can guaranteeabout the program. Our simple speci�cations prove that C YNTHIA programsare syntactically correct, well-typed, well-de�ned and terminating { see x3.2 formore details.The design of C YNTHIA is depicted in Figure 1. Note that editing com-mands directly a�ect the synthesis proof and only a�ect the program indirectly.C YNTHIA is equipped with an interface that hides the proof details from theuser. As far as the user is aware, he is editing the program directly. In this way,the user requires no knowledge of logic and proof. The user begins with an initialprogram and a corresponding synthesis proof. These may be incomplete. Editingcommands make changes to a particular part of the synthesis proof. This yieldsa new partial proof which may contain gaps or inconsistencies. To �ll in thesegaps and resolve inconsistencies, we use an analogical mechanism. This mech-anism replays the proof steps in the original (source) proof to produce a new(target) proof. During this replay, the changes induced by the editing commandare propagated throughout the proof. Once gaps in the target proof have beenbridged, a new program is extracted. This program incorporates the user's editsand is guaranteed correct with respect to the weak speci�cation.Let us explain how the analogy works in a little more detail. A tactic is acombination of a number of inference rules. Tactics can be written that allow6 X : T means X is of type T7 In fact, append is just one program that would satisfy the speci�cation. We can writethe speci�cation to any level of detail.8 The type systems of ML and Martin-L�of, although very similar, are not the same, sosome minor translating is done between the two. We chose Oyster in which to buildour constructive proofs because there is a body of work in synthesising programs inOyster.
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EXTRACTFig. 1. Editing Programs in C YNTHIAus to apply a frequently used sequence of inference rules in one step. We haveimplemented a number of tactics that allow us to synthesise ML programs. Thereare �ve types of tactics in C YNTHIA:� A tactic for pattern matching.� Tactics for constructing an ML program fragment. Each ML construct(e.g. if..then..else, case) has a corresponding tactic. Applying thetactic in Oyster adds extra branches to the proof tree.� Result tactics for giving the result of a case in the de�nition (e.g. giving0 as the result in the nil case of the de�nition of length).� Tactics for type-checking.� Tactics for checking termination.By applying tactics, a synthesis proof is constructed. This synthesis proof isrepresented as a tree where each node in the tree has slots for the hypotheses,the current goal and a tactic to be applied. In our case, the current goal will beof the form ` T where T is the output type of the function being de�ned. Thisgoal should be interpreted as meaning that an object of type T is required tosatisfy the goal.The analogical mechanism works as follows. When an editing command isinvoked,CYNTHIA abstracts away unnecessary information from the proof tree to pro-duce an abstract rule tree (ART) which is essentially a tree of tactic applica-tions. If the editing command is applied at a position, P , in the ML program,CYNTHIA calculates the position corresponding to P in the ART and thenmakes changes in the ART. This may involve adding, removing or modifyingtactics. This process yields a new ART which is then replayed by systematicallyapplying the tactics that make it up, hence producing a new synthesis proof.Note that the changes made by the editing commands are propagated duringthe replay of the ART. There may be tactics that can no longer apply { in thiscase, a gap is left in the proof tree which is signalled to the user at the cor-responding point in the ML program. These gaps must be `�lled in' before the



program is accepted. For an example of this, see x4.Refer to the example in x1. We brie
y explain how the analogy works in (2).The user has selected nil and indicated a change of type. This induces a changeof the type of length from 'a list -> int to tree -> int. Hence, the prooftree is abstracted to an ART with a new speci�cation tree ! int. The ART isnow replayed. During this replay, the tactic that implements pattern matching ismodi�ed so that the de�nition is based on a new pattern with constructors leafand node. This also changes the induction scheme in the proof hence makingthe recursive call (count ys) available for future use. The two result tactics arereplayed without modi�cations. The new program can be then be extracted fromthe new proof tree.In general, constructing proofs by analogy is a di�cult task [15]. Because weare restricted to speci�cations involving a limited amount of detail, the proofsare simpler and so the analogy becomes a viable option in a practical, real-timesystem such as ours.3 Increasing the Learning RateOver a period of three months we conducted observations of a group of 30 noviceML students fromNapier University to ascertain what problems presented them-selves when learning ML. The students were observed writing programs duringweekly tutorial sessions. In addition to informal observations, their interactionswith ML were scripted and analysed. The students completed questionnairesrelating their experiences and at the end of the course, two students were in-terviewed in depth. We describe how ML programs can be built up quickly andeasily using C YNTHIA. We also point out the problems that the students hadwith ML and how C YNTHIA can help to overcome them. The students usedversion 0.93 of New Jersey ML and so our comments refer to this version.3.1 Program TransformationTo provide the maximum support for programming by analogy, the editing com-mands inC YNTHIA are structured into low-level commands for making very small changesand high-level commands for changing the overall program structure. Not onlydoes this approach constitute a powerful way of transforming programs but italso encourages the novice to follow a top-down approach to programming {deciding on the high-level structure �rst and then �lling in the details.Low-Level Commands These are commands that only a�ect an isolated partof the program. They do not a�ect the datatype of the function being de�ned.Nor do they a�ect the recursion the function is de�ned by. This means that theanalogy needed to produce a new program is fairly straightforward.



The following are the available low-level commands, with a brief descriptionof each:{ add construct: add a construct at the current point in the program. TheML constructs currently supported are if..then..else, case, fn, let valand let fun.{ change term: change a sub-expression in a term at the current point inthe de�nition only.High-Level Commands We now present the high-level commands available.First, we give a list of the commands where the analogy is relatively simple.Then we go into more complicated high-level commands.� rename: change the name of a variable name or function name throughoutthe de�nition.� add argument: add an additional argument to a function de�nition.� add component: if an argument is a pair, add an extra componentto the pair. If the argument is not already a pair, make it into one.For example, consider applying add component to nil in the followingprogram. 'a list -> intfun length nil = 0| length (x::xs) = 1 + (length xs);would go to'a list * 'b -> intfun length (nil,y) = 0| length (x::xs,y) = 1 + (length (xs,y));� move arguments: swap the positions of two arguments in a de�nition.Figure 2 gives an idea of some commands used to transform, rev a func-tion for reversing lists, into delete for deleting an element from a list. Thecommands are in upper case. The �rst step renames the function and addsan extra argument. add argument is invoked by indicating an occurrence ofrev and then analogy gives all other occurrences of rev an additional argumenttoo. add if..then..else places a case-split at the designated position, duplic-ating whatever is below the current position in the original program. changeterm is used to edit the result for one of the patterns { e.g. to remove @ in(delete xs e) @ [x] giving (delete xs e).More complicated high-level commands are for changing the recursion andchanging the type of an argument.De�nition by Patterns By de�nition by patterns we mean the common prac-tice as used in ML whereby functions are de�ned by pattern matching (see revfor example in Figure 2). We observed that novices often have di�culty in decid-ing upon the correct de�nition by patterns for a function. They are capable in



fun delete nil e = nil

|   delete (x::xs) e = (delete xs e) @ [x];

fun delete nil e = nil
ADD IF..THEN..ELSE

fun rev nil = nil

|   rev (x::xs) = (rev xs) @ [x];

|   delete (x::xs) e = if e=x then (delete xs e) @ [x]

else (delete xs e) @ [x];

fun delete nil e = nil

|   delete (x::xs) e = if e=x then (delete xs e)

else x::(delete xs e);

RENAME

ADD ARGUMENT CHANGE TERMFig. 2. Low-Level Commandssimple cases where the function has only one argument that is pattern matchedagainst, but become lost when more than one argument is pattern matched orwhen the pattern used is non-standard. A simple function that pattern matchesmultiple arguments would be an nth function to return the nth element in a list.We have a command make pattern which allows the user to build upnon-standard patterns by combining a number of standard ones. We have im-plemented a version of a technique used in ALF [5]. The user can highlight anobject of a certain datatype. The application of the make pattern commandsplits the object into a number of patterns - one for each constructor functionused to de�ne the datatype. Hence, make pattern on x:list belowfun f(x,l)=..produces two patterns:fun f(nil,l)=..| f(h::t,l)=..Non standard patterns can be de�ned by applying the command a number oftimes. Highlighting t and applying make pattern gives:fun f(nil,l)=.. (1)| f(h::nil,l)=.. (2)| f(h::h2::t1,l)=.. (3)This can be done for any datatype by using the de�nition of the type as encodedin ML. Suppose l is of type tree then we can split l in pattern number (2) togive: fun f(nil,l)=..| f(h::nil,(leaf x))=..| f(h::nil,(node(l1,l2)))=..| f(h::h2::t1,l)=..We do not use the same underlying theory as ALF but use the constructive logicalready available in our proof system. The result is the same, however.



Recursion Recursion is well-known to be a di�cult concept to learn. Novicescan have considerable di�culty with even primitive recursion schemes. However,an introductory course will also introduce non-standard schemes involving ac-cumulators, multiple recursion, course-of-values recursion and nested recursion.To help novices to learn non-standard recursions, the commands add recurs-ive call and remove recursive call encourage them to think about whichrecursive calls are needed for the task at hand. C YNTHIA maintains a list ofrecursive calls that are currently available to the user. When the user is requiredto enter a term, these recursive calls are among the options presented to theuser. He can pick one using the mouse without any need for further typing. Theuser can change the list of recursive calls by the commands mentioned above.The idea is that the user �rst decides upon what kind of recursion he should use.He can then use these commands to set up the basic structure within which touse them. Other commands can be used to �ll in the details.As an example of how the commands can be used, consider trying to producethe function zip9:fun zip f nil nil = nil| zip f nil (i::u) = nil| zip f (x::xs) nil = nil| zip f (x::xs) (i::u) = f(x,i)::zip f xs u;Figure 3 shows the edits needed to produce zip from rev. The ideal way toproceed is to decide upon the program structure to begin with by applying addargument twice and then make pattern twice. The user then introduces therecursive call (zip f xs u) as necessary10. To avoid restricting the user, he isnot forced to produce programs in this top-down fashion. The result is generallyindependent of the order of execution of commands.ChangingType Amajor drawback of current learning processes is that novicescan ignore datatypes. ML is equipped with a type inference engine which auto-matically derives (if possible) the type of the top-level function. Although ad-vantageous in that users need not explicitly state the type of each term, novicescan ignore types and be unaware of type inconsistencies which may arise. Thisresults in unhelpful error messages from the compiler and confusion. For instance,in the function:fun length nil = nil| length (x::xs) = 1 + (length xs);9 A common de�nition of zip would omit the second and third cases. This is disallowedin C YNTHIA because we restrict to well-de�ned programs. The current version ofC YNTHIA does not support exceptions.10 Note that when this recursive call is introduced into the program, the program ischecked for termination. In this way, the user is restricted to recursive calls thatpreserve termination { see x3.2.



MAKE PATTERN

fun zip f nil nil= nil

|   zip f nil (i::u) = nil

|   zip f (x::xs) nil = (zip f xs nil) @ [x]

|   zip f (x::xs) (i::u) = (zip f xs (i::u)) @ [x];

CHANGE TERMCHANGE TERM

fun zip f nil nil= nil

|   zip f nil (i::u) = nil

|   zip f (x::xs) nil = nil

|   zip f (x::xs) (i::u) = (zip f xs (i::u)) @ [x];
RENAME

ADD ARGUMENT

MAKE PATTERN

fun zip f nil y= nil

|   zip f (x::xs) y = (zip f xs y) @ [x];

|   zip f nil (i::u) = nil

|   rev (x::xs) = (rev xs) @ [x];

fun rev nil = nil

|   zip f (x::xs) y = (zip f xs y) @ [x];

ADD RECURSIVE CALL

CHANGE TERM

fun zip f nil nil= nil

|   zip f nil (i::u) = nil

|   zip f (x::xs) nil = nil

|   zip f (x::xs) (i::u) = f(x,i)::zip f xs u;

fun zip f nil nil= nil

Fig. 3. Writing zipwe have an example of a simple but commonly-made error whereby the outputtype in the �rst line is list but is an integer in the second. It can often be di�cultto pinpoint exactly where the error has occurred.For this reason, we insist that the user declares the type of a function beforeanything else. This forces the novice to think about the types hence reducingtype errors when writing the rest of the program. Once the top-level type hasbeen given, the types of terms in most other parts of the program are determinedand hence need not be given by the user.During the course of a program the user may realise he has stated the top-level type incorrectly. Or he may want to change the top-level type of an oldprogram to produce a new one. C YNTHIA provides quite advanced facilitiesfor doing this. Changing the output type of a function or changing the type ofa non-recursive argument does not present too many problems. It can result ininconsistencies in the proof (ill-typed terms) but this can be dealt with { see x4.The real challenge comes when changing the type of an argument that is patternmatched against since the pattern needs to be changed.If we wanted to change the type of the �rst argument in length from list totree, we can invoke change type to edit length intofun length (leaf n) = nil| length (node(xs,ys)) = 1 + length xs;In this case, C YNTHIA will also add the recursive call length ys to the listavailable. This could then be used by the user. More complicated examples arisewhen make pattern has been applied more than once. If our original programhad been:



fun app2 nil l2 = l2| app2 (x::nil) l2 = (x::l2)| app2 (x1::x2::xs) l2 = x1::(app2 xs l2);it is not clear what the new pattern should be after a change of type of the�rst argument to tree. C YNTHIA looks for a mapping between the old andnew datatype de�nitions and uses heuristics to select a mapping if necessary11.This mapping is then applied to the old pattern de�nition to produce a newone. A full description of these heuristics is beyond the scope of this paper. Thegeneral idea is to map base (step) constructors for the source type to targetbase (step) constructors. For a datatype, t, we say that a constructor is a baseconstructor if none of its arguments are of type t. A step constructor has at leastone such argument. When mapping individual constructors, we have to map thearguments of the constructors. In this case, we map (non-)recursive argumentsto (non-)recursive arguments. An argument is recursive if it is of type t and isnon-recursive otherwise. To illustrate, consider the datatype de�nitions for list12and tree:datatype 'a list = nil | :: of 'a * 'a list;datatype tree = leaf of int | node of tree * tree;For these de�nitions, nil is a base constructor, leaf is a base-constructor witha single non-recursive argument, :: is a step constructor with one non-recursiveand one recursive argument, and node is a step constructor with two recursivearguments. The mapping that C YNTHIA selects in this case is nil 7! (leaf n)and x :: xs 7! node(xs; ys), where n; ys are fresh variables. ys is introducedin preference to mapping x :: xs to node(x; xs) because x is not of type tree.Applying this mapping to the program app2 above produces:fun app2 (leaf n) l2 = l2| app2 (node((leaf n),ys)) l2 = (x::l2)| app2 (node(node(xs,ys),zs)) l2 = x1::(app2 xs l2);Note that x; x1 appear on the RHS of the equalities but not on the LHS. Ratherthan try to replace these terms with a suitable alternative, we prefer to highlightthis fact to the user and let him deal with it. In this way, the user is aware ofexactly what e�ect his change of type has had. If x and x1 had been replacedit would be di�cult to know what to replace them with. In addition, the usermight not notice the change.3.2 Reducing the Number of Programming ErrorsOne of the main purposes of our experiment was to identify the kinds of pro-gramming errors that novice ML users encounter. Our results suggest that the11 Although the user may override the heuristics and choose an alternative mapping ifnecessary.12 This is a built-in de�nition in ML.



learning rate is severly a�ected by these errors. The most common errors weresyntax errors and type errors. C YNTHIA disallows such errors in its programs.The students found it particularly di�cult to pinpoint the source of a type error.Although ML does type checking at compile time and spots type inconsisten-cies, the system messages provide little or no help in rectifying the problem.C YNTHIA also incorporates a type checker. The ML type checker is not in-voked until compile time. In C YNTHIA, however, the type checker is calledas each new term is entered. Hence, the user receives immediate feedback onwhether a term is well-typed. In addition, given the type of the top-level func-tion that the user has already supplied, C YNTHIA can tell the user what thetype of a term should be before he enters it. In this way, the number of typeerrors is reduced considerably. All programs in C YNTHIA are guaranteed tobe well-typed.A major source of errors in recursive programs is non-termination [4]. Anexample of a non-terminating function isfun gcd (x:int) y = if x=y then xelse gcd (x-y) y;This will not terminate for the call gcd(2; 3). Termination errors are less frequentthan type errors but are usually more serious. C YNTHIA restricts the user toproducing terminating programs13. Checking the termination of function de�ni-tions is undecidable. Hence, C YNTHIA restricts the user to a decidable subclassknown as Walther Recursive functions [14]. It is easy to check if a function de�ni-tion falls into this class and yet the class is wide enough to be of real use to novice(and indeed more experienced programmers). The class includes most commonlyoccurring examples of course-of-values, nested and multiple recursions. The ideabehind Walther Recursion is that when a de�nition is made, we attempt to placea bound on the size of the output of the function. The size measure used is basedon the size of constructor terms where w(c(u1; : : : ; un)) = 1 +Pi2Rc w(ui) if cis a constructor, and Rc is the set of its recursive arguments. Bounding lemmasderived for previous de�nitions are then used to show that each recursive callis measure-decreasing, and hence that the de�nition terminates on all inputs.Walther Recursion is su�ciently wide-ranging to allow the following de�nitionof msort modi�ed from the example in [14].fun msort nil = nil| msort (x::nil) = x::nil| msort (x::h::t) = merge (msort (evenl (x::h::t)))(msort (x::(evenl (h::t))));evenl returns the elements in a list at even positions. merge joins two lists byrepeatedly taking the smaller of the two heads. Note that this is not the mostnatural de�nition of msort but is the de�nition that is easiest to produce usingthe editing commands in C YNTHIA. Given the previous bounding lemma,13 Occasionally, non-terminating programs can be useful. One could envisage, however,a facility for overriding termination restrictions in this small number of cases.



jevenl (z :: zs)j � jzsj for non-nil inputs, we can derive that both recursive callsdecrease the measure.As mentioned earlier, a common way of de�ning ML programs is by patternmatching. A source of errors in our analysis was that students wrote programsthat were not well-de�ned { i.e. the pattern for an argument did not exhaust-ively cover the domain of the datatype with no redundant matches. ML spotssuch errors at compile time displaying a warning message. Although ML doesnot consider ill-de�nedness as an error, it is commonly believed that it is goodprogramming practice to write well-de�ned programs. Otherwise, there can beserious run-time errors. Students were found to ignore the warnings given byML because they are not explicitly 
agged as errors. We feel, however, that stu-dents would make fewer errors if their programs were all well-de�ned. Hence, inCYNTHIA the editing commands guarantee well-de�nedness.In addition to these guarantees, any program de�ned in C YNTHIA is syn-tactically correct.4 The User InterfaceWe are currently developing a graphical user interface for C YNTHIA writtenin Tcl/Tk. At present, C YNTHIA supports a functional subset of the corelanguage of Standard ML, and does not yet support exceptions. The user startso� with a library of function de�nitions to choose from which have been takenfrom the course notes at Napier University. The user can select one of thesefunctions to transform and can add his own functions to the library.ML programs are presented to the user in a window and the user may high-light any part of the program by positioning the mouse over it. Clicking on theleft mouse button brings up a menu of editing commands that could be appliedat this point. After selecting a command, the user is presented with a dialogbox for him to enter any necessary parameters for the command. He can eitherenter these parameters as text or select them from a menu of suitable options.change term can be applied to a subterm of an expression as well as the wholeexpression. This is possible because when the mouse is moved over a functionsymbol, the subterm which has that function symbol as top-level functor is high-lighted and it is this subterm that is changed. Clicking on the right mouse buttonwhen a term is highlighted will display the type of the highlighted expression.This is an invaluable way of providing type feedback to the user during programdevelopment. Figure 4 is a screenshot of one stage during the transformation oflength.By using a graphical interface, the user is completely unaware of the proofmachinery that lies behind C YNTHIA. As far as he is aware, he is editing theML program.A further development in the interface has been to provide feedback to theuser about the next stage of editing. Although the aim is, in general, to producea valid program at each stage of editing, this is not always possible. Some editingcommands will invalidate parts of the program. There are two main ways this



Fig. 4. Graphical user interface to C YNTHIAcan happen. We have already given an example of the �rst { see app2 in x3.1.If a section, S of a program is deleted and a subsequent part of the program,P depends on S then P can no longer be valid. This is what happened whenchanging type in app2 { x and x1 were present on the RHS of the equality butnot the LHS. The solution we choose to deal with this is to leave such terms inthe program but highlight them (by displaying in a di�erent colour) to the user.The user may then inquire why they are highlighted and will be told that unlessthey change the terms, the program will not be syntactically valid. We preferthis approach to removing the terms because the highlighting process retains asmuch as possible of the program so that frustrating retyping is not necessarywhilst it additionally tells the user exactly which parts of the program must bechanged next.The other situation where this is used is when an editing command causesthe program to become ill-typed. In C YNTHIA every term that is entered istype-checked at entry time. If the term is not of the required type, the userwill be told and will not be allowed to enter the term. More generally, if anapplication of the change type command makes some part of the program ill-typed, C YNTHIA will not only highlight the o�ending term to alert the userbut will also tell the user what the type should be so that when he changes thehighlighted term he is told what type the new term should belong to. A simpleexample of this phenomenon is when changing the output type of a program.



Consider the length example again:'a list -> intfun length nil = 0| length (x::xs) = 1 + (length xs);Suppose the user applies change type to change int to int list. Then 0 and1 + (length xs) will no longer be of the same type as the output type. Again,rather than removing these terms or attempting to change them automatically,we highlight them to the user by a displaying them in a di�erent colour. Theuser then has freedom either to change the terms immediately, or to make someother sequence of editing commands that will resolve the problem. As soon asthe terms become well-typed, the colouring disappears.Note that the proofs-as-programs paradigm is a natural way in which to im-plement this mechanism. No extra checks are needed to highlight terms. High-lighted parts of the program just correspond to proof rules that have failed toapply. Similarly, highlighting of ill-typedness means that a proof obligation toprove the well-typedness has failed to be proved and the user is alerted.We are currently looking into further ways of providing instructive feedbackto the user during program development. One obvious possibility is when usingadd recursive call. If the user enters a term that means that a programno longer terminates, rather than just refusing the command application, theuser could be given feedback about why the command cannot be applied, andperhaps what he should do so that it could be.5 Related WorkThe work closest to our own is the recursion editor presented in [4]. In fact, thiswas one of the original inspirations. The recursion editor is an editor for writingterminating programs. Like our system, edits are made by invoking editing com-mands. C YNTHIA's commands are more general than those in the recursioneditor. In the recursion editor, only a very restricted subset of recursive programscould be produced. The recursion editor is very sensitive to the order in whichcommands are performed. If they are performed in the wrong order, it may bedi�cult or impossible to recover. Our proofs-as-programs design overcomes thisby allowing greater 
exibility because it keeps track of the dependencies withinthe same program and between di�erent programs. Our proof design also allowsus to locate errors in the program easily. [4] makes no consideration of datatypes.[6] gives an alternative approach to the problem of understanding type errors.He presents a modi�cation of the uni�cation algorithm used in Hindley-Milnertype inference which allows the decisions that led to a particular type beinginferred to be recorded and fed back to the user. As I have not seen his work inaction, I cannot comment on how useful his explanations are in discovering typeerrors. [13] also looks into ways of providing more information to the user aboutwhy particular types have been inferred.



Some work has been done on programming using schemata [10, 7]. Thisis similar in spirit to our low and high-level commands as the user follows atop-down approach. However, previous attempts are limited to a small rangeof programs. Our editor is much more general providing a range large enoughto be of real practical use. The techniques editor TED [3] features a programtransformation perspective but it has no strong theoretical foundations and istherefore much less powerful than C YNTHIA.We do not address the problem of retrieving a previous example { see [17]which indicates that students tend to solve problems in analogy to the mostrecent problem they have attempted even though this may not be the beststarting point. Although we do not address this issue, our system is at leastgeneral enough such that a poor choice of base problem should not prevent acorrect, albeit sub-optimal, transformation sequence leading to a solution. Asyet, the use of metacognitive tools forcing students to think about their problemsolving process has not been very e�ective [17]. AlthoughC YNTHIA encouragesstudents to think about such issues, they retain control to explore unconventionalpaths.There exist many editors that guarantee syntactic correctness (e.g. [11]). Weare aware of no editor that provides the additional guarantees that we do.6 ConclusionThis paper has presented an editor for producing correct functional programs.It builds upon ideas in [4]. The editor is intended to be a suitable vehicle fornovices to learn the language ML. Its high-level commands provide guidance tothe user and the user is prevented from making certain kinds of programmingerror.Our work can be seen on a number of levels. First, as an educational aid, itprovides support for novices learning a language by reducing the e�ort needed toproduce correct programs but without restricting the user to text book solutions.Second, as a support tool for ML, it is a way to quickly edit existing programswithout introducing unnecessary bugs. Third, it is an interesting application ofideas from the �eld of automated reasoning.CYNTHIA is due to be tested on ML students at Napier University fromSeptember 1997 onwards.Acknowledgements: We are grateful to Andrew Cumming for help and discus-sions on the experiment with his ML students. We also thank Paul Brna andDave Berry for insightful comments on this paper.References1. J. R. Anderson, P. Pirolli, and R. Farrel. Learning to program recursive functions.The Nature of Expertise, pages 153{183, 1988.
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