
A Fully Integrated Programming Environment for an
Object-Oriented Database

Patrick Borras t
02 Technology

7 rue du Pare de Clagny
78000 Versailles (France)

Anne Doucet t
L R I - Bat 490

Universit~ Paris Sud
91405 Orsay Cedex (France)

e-mail: anne@lri.lri.fr

Patrick Pfeffer t:~
Alcatel Alsthom Recherche

Route de Nozay
91460 Marcoussis (France)

patrick@aar.alcatel-alsthom.fr

Abstract

This paper describes the design and the implementation of OOPE, the graph-
ical programming environment of the prototype version of 02, an object-oriented
database system. One of the distinguishing features of this environment is that
it mixes the functionalities of programming environments, of both databases and
programming languages. Thus. it facilitates and fastens not only the schema
design, but also the development of application programs. Another interesting
characteristic is that it is being developed using as much as possible the func-
tionalities provided by the 02 system, namely the programming language, the
database and the graphics functionalities.

Keywords: Object-Oriented Database Management Systems, Programming
Environment

1 I n t r o d u c t i o n

O~ is an object-oriented database system developed at Altair, and presently dis-
tr ibuted by O~Technology. Such a system provides the functionalities of a DBMS,
of a programming language and of a programming environment. In this paper, we
describe the design and the implementation of OOPE, the programming environment
of the 02 prototype. As a large amount of t ime while developing a database appli-
cation is spent in programming activity, a big effort has been made in designing the
programming environment.

tThis research was developed while the authors were working for GIP Altair. tThis
research was developed while the authors were working for GIP Altair.
:[:The views and conclusions contained in this article are those of the author and should not
be interpreted as representing the officials policies, either expressed or implied of Alcatel
Alsthom Recherche

34

Database programming presents two main aspects: the first one consists in build-
ing and manipulating the schema, while the second, consisting in writing application
programs, is very close to conventional programming. Traditional database system,
with the fourth generation languages, favoured the former. They provide facilities
for schema manipulations, reports and forms edition, and user interface generation.
Application programs are generally written in a host language. The programmer uses
then the programming tools provided by the programming environment of the host
language. In 02, there is a unique language for schema design and manipulation
and for programming. Therefore, we integrated features specific to schema design
(database manipulations) and traditional programming tools in the same environ-
ment.

In order to provide ease of use and user-friendliness, OOPE makes an important
use of graphics. All information is graphically displayed on the screen, and user
interaction is always done via direct manipulation.

The implementation of OOPE fully uses the functionalities provided by the O~
system. Modelization and implementation are respectively done in O2 and COs, one
of the languages developed by Altair, the database is used to store and manage the
information used by OOPE, and the graphical interface has been built by LOOKS,
the interface generator provided by Altair.

The paper is organized as follows. After a quick description of the main features of
the O2 system in Section 2, we present in Section 3 the design of OOPE, its function-
alities and tools. Section 4 concerns the implementation choices of OOPE. The next
section (Section 5) compares OOPE to other database programming environments.
Implementation aspects are discussed. Lastly, we conclude in Section 6.

2 Overview of the 02 Programming System

While designing the 02 system, a major concern was to increase the power of the
language without having to write a completely new language. Therefore, 02 is an
object-oriented layer which is added on top of existing languages (C and Basic). This
layer, the 02 data model, fully described in [LRV88], is used to design the application
schema. For the time being, the O.~ system provides two languages, CO2 and BasicO~
with which the programmer can implement the behavioral part of the application. In
this section, we briefly present the 02 features proposed to build a database schema,
and we give the example of a method. More details on the O2 system can be found
in [LR89],[VDB89]and [Da90].

02 is object-oriented, which means that information is organized as objects, which
encapsulate data and behavior. Objects are instances of classes, which describe the
common structure and the common behavior of a set of objects. The structure of
a class is defined by a type. 02 provides atomic types (integer, real, float, char,
string, boolean, ...) and three constructors, which are the tuple constructor, the list
constructor and the set constructor.

Examples of types are:

tuple(name: str ing, age: integer);
set(str ing);
l ist(integer);
list(tuple(name: string, city: string)).

35

add class City
t ype tuple (name : string,

map : b i tmap,
hotels : set (Hotel))

m e t h o d Compute_stars(maxprice: integer, minstar: in teger)

Figure 1: Definition of the class City

(1) b o d y Compute_stars(maxprice: integer, minstar: in teger) in class City
(2) co2
(3) {
(4) 02 set(name: string, star: integer , price: intege'r) result;
(5) 02 Hotel h;
(6) result.--list();
(7) for (h in self---,hotels)
(8) {
(9) int p;
(10) if ((h --*stars > minstar) II ((p=[h price]) > maxprice))
(11) {
(12) result += set(tuple(name:h----name,
(13) star:h-*stars,
(14) price:p));
(15) }
(16))
(17) display(result);
(is) }

Figure 2: Body of the Compute_stars method.

The behavior of a class is represented by a set of methods. Their definition is
done in O.~ while their body can be written using any of the existing programming
languages accepted by O.~. Figure 1 gives an example of a class definition, and Figure 2
shows the body of a method written in CO2. The O2 keywords are displayed in bold
font. O_~ variables definitibns are preceded by the 02 keyword (lines 4 and 5), while
other variables are declared using the C syntax (line 9). The message passing syntax
is delimited by "[]" brackets, as shown line 10. The purpose of this method is to build
and display an O.~ set, named result, in which are collected the name, the number of
stars, and the night price of all the hotels of the city for which the number of stars is
superior to minstar and the night price superior to mazprice.

02 supports multiple inheritance, and classes are organized into a hierarchy. The
inheritance mechanism is based on subtyping. A class, always defined as a subclass
of another class, inherits from its superclass(es) the structure and the behavior.

A database application in O2 consists of programs which represent the different
tasks supported by the application. As for methods, the body of a program can be
written in any of the O2 languages. However, the body of a program differs from the

36

body of a method in that it manages transactions. Furthermore, programs contain
calls to methods, but not to other programs, and a program cannot be shared between
several applications.

3 Design

Programming environments are essential both for programming languages and for
database systems. Their functionalities are however slightly different. Programming
environments for database systems, generally called fourth generation languages, arose
later. They mostly provide tools for building the schema in a non-procedural way, for
creating menus and query forms automatically. Programming environments for tra-
ditional programming languages often offer syntax directed editors with many editing
and browsing facilities, program verifiers, debugging tools and source code control
systems. The main difference between these two approaches comes from the sepa-
ration of data manipulation and programming languages which exists in database
systems. The O, system provides a single language for programming and for data
manipulation. Its programming environment, OOPE, merges the functionalities of
the two approaches in a uniform framework.

The design of OOPE was inspired by the programming environment of Smalltalk-
80 [Goi83]. It makes an intensive use of graphics, and has an "all-object" design
philosophy. All information is represented by an object, and every action is performed
by sending a message to an object.

Tile care of simplicity led us to represent the information used by the programming
environment the same way they are represented in tile system, where all information
is stored as objects, for bootstraping reasons [VDB89]: the data in the database, the
classes, the methods, the applications and the programs. In OOPE, the programmer
manipulates all this information as database objects.

This design presents many advantages. First of all, it uses the database function-
alities of the 02 system to store tile information managed by OOPE, providing a fast
access to it. Secondly, it provides uniformity: the programmer only deals with objects,
and every action is performed ttle same way. The use of a generic display and edition
mechanism allows a uniform representation of the objects and of tile message passing
mechanism. Another advantage concerns tile learning time. If everything is repre-
sented and manipulated the same way, the only thing the user needs to learn to use
OOPE is how to manipulate objects and how to send messages to these objects, which
considerably reduces the learning time. Itaving an object-oriented design, OOPE is
easily extensible. A new functionality can be added by defining a new method, or a
new object with a method. Finally, this design provides a good integration between
the various tools-and functionalities: information can be copied, cut and pasted from
any object to any other object.

Following the same idea, all the tools (the Journal. the Browser, the 02-shell, the
Workspace, the Debugger, the Queries. and the Applications) provided in OOPE are
designed with the same philosophy. They all consist of objects stored in the database.

In the sequel, in Sections 3.1 and 3.2, we explain how to build an application (i.e
we present the functionalities provided by database programming environments) by
showing how to create a class, how to define a method and its body for that class, and
how to create an application and its programs. Then we present some tools (which are
commonly provided by programming environments for languages) intended to help
the programmer and to ease his/her work. A more detailed description of OOPE and

37

of its usage is given in [BDPT90] and in lOOP90].

3.1 P r o g r a m m i n g a Database Application

Creating an application involves the following three steps:

�9 First, the programmer generates the schema, which consists of classes. A class in
OOPE is represented by a tuple structured object, as shown in Fig. 3. This tu-
ple specifies the name of the class, its type (the internal structure of the objects
of this class), its position in the hierarchy (its superclasses and subclasses), and
the set of its private and public methods. It also indicates whether the struc-
ture of the class is private or public. The Infos field contains some additional
information, such as the documentation.

Name C~t~
Typ"

Super_classes

Sub_classes

Ulth_extcnslon []

PublZc_methods

Prluate.methods

Public

Figure 3: Tile City class

To be definitively defined, a class must be compiled. This compilation checks if
the structural part of the class and the signatures of its methods are correct.

�9 The next step is the implementation of the methods. A method in OOPE is also
represented by a tuple structured object (Fig. 4). It contains the signature of the
method, namely its name, its parameters, its result, and the class of its receiver.
As the body of a method can be written in any of the 02 languages, a field
indicates which language has been used. Other information (documentation,
compiling errors, a compiled or not compiled flag) are gathered in the lnfos
field.

* Finally, once the schema is defined and implemented, the programmer defines
and implements the application and its programs. Again, applications and
programs are represented as objects of type tuple.

38

Co.pure_stars

Ha~e ,iCotnpu~e_star=

P u b Z i r

Znfos

Reces

I . "

t P 3 r ~ e t e r $
maxpr~ce : I n t e g e r . m ~ n p r l c ~ : ~ngeger

Resu l t o b j e c t

Language Ico2
eoay @&

f lod~
!Lo2 set (n ~ e : s ~ r l n / , sgar: lngeger .

prs : l n t e t e r) resu l tg
02 Hotel h:
r e s u l t = 1 1 s o () :
For (h ~n s e l f -> h o t e l s)

l n ~ p :
~F ((h -) s t a r s) ~ l n s ~ a r $) I I

((p = [h p r 2 c e])) m a x p r l c e))
(
r e = u l t *= se t (tup le (~Ame : h -) n a m e .

st&r : h -) s t a r s .
p r i c e : p)) :

)

d t s p l a ~ (r e s u l t) :

Figure 4: Template for the method Compute_stars

These four classes are sufficient to build an entire application. Methods attached
to these objects allow to perform the basic functionalities provided by programming
environments (compilation, creation of new objects of these classes and deletion of
existing instances). It is also possible to run an app.lication, a program or a method.

3 . 2 S o f t w a r e D e v e l o p m e n t T o o l s

In this section, we present the different programming tools of OOPE. We do not
present a sketch of the programming activity with the use of the OOPE, some exam-
ples of this use can be found in [BDPT90] and lOOP90]. They are gathered in an
object of type set, which is displayed from the beginning to the end of a session. The
programmer has thus access to any of these tools, at any time during the program-
ming session. This object, named Tools, is shown in Fig. 5.

3 .2.1 T i l e B r o w s e r

The Browser is generally tile first tool used by a programmer, when he/she starts
a session. Indeed, it allows to navigate through the database, and to access the
objects it contains. The name of these objects are displayed on user demand. The
programmer only selects a name and tile display command to access an object.

The browser also gives the possibility to display the whole hierarchy of the classes,
with the class object as a root, as shown ill Fig. 6.

39

. Tao ls

Jl l I: ,l 1% 11

Figure 5: The set of Tools

3.2.2 The O2-Shell

The 02-shell is a full screen text editor with a direct interface to the 02 command
interpreter. It is mainly used for two purposes. By giving access to the Unix file
system, it allows to read and write Unix files, and thus to import or export new data.
The programmer can thus store the definitions of the schema he/she is developing, or
bodies used to test parts of the application, in an Unix file, and load them in order to
execute them. The O~-shell also allows to directly execute 02 instructions in order
to test them.

3.2.3 The Jou rna l

The journal allows the programmer to come back to a previous version of an object
he/she has modified during the session. This point is important: the journal does not
replace a complete versioning system. It is only a simple and fast way to retrieve ver-
sions of objects that have just been modified. The journal records critical operations
made on OOPE objects, namely classes, methods, programs, applications and named
objects. Each time an object is successfully compiled, its version is automatically
saved in the journal, with the date. At any time, the programmer can consult the
journal, get back a version of an object and restore it. Restoration is manual, and
only under user control. The journal only keeps versions of objects during a session.
It is initialized to an empty set at the beginning of each session.

3.2.4 The Workspaces

When a programmer builds an application, he/she needs very often to access objects
of the database. This is generally done by the browser, as explained above. But, in
order to save time, the programmer can store in a workspace all the objects he/she
needs, from a session to another. As the workspaces are persistent, the programmer
can retrieve at once all the objects he/she was working on during the previous session,
avoiding a sometimes tedious navigation through the database. The workspaces, dis-
played in the Tools window, are immediately accessible and can be seen as entry points
to the browsing and programming activities. Being a set of objects, the workspace
can contain any kind of objects. A programmer can have as many workspaces as
he/she wants.

3 . 2 . 5 The D e b u g g e r

Every programmer knows that programming without bug is utopian. A programming
environment providing no debugger is not complete. The O2 debugger follows the

40

Hs

~otel_reseruationl
Reseruat~on~-~Tran$~prt~Peseruats

~TouP.reseru&ts t

Im,,+~ P+e,'j

~esortl

)a te t

. i I , , . . , I I

Figure 6: The class hierarchy

object-oriented principles of tile OOPE. The debugger paradigm is the following: a
program under the control of the debugger is aware of this control and will modify
its internal behavior in consequence. The program itself constructs a database of 02
objects that reflects its internal state at each step of the computation. Composed
of four O~. objects, the O,. debugger is fully integrated in OOPE. It behaves as any
other tool and does not necessitate the learning of a new command language. The
four objects of the debugger are (i) an editor to display the source of the programs
or methods, (ii) symbol tables, containing information about a method (types and
values of the variables, for example), (iii) an execution stack, composed of the symbol
tables of the metlmds called during the execution of a program, and (iv) an execution
manager providing a set of commands tile user can perform. The execution manager
is the tool used to control the execution of a program.

If the programmer detects an abnormal behavior of a program he may execute it
under the control of the 02 debugger, which provides the programmer an interactive
control on the program execution and on the message passing, the possibility to edit
the values of variables and to execute methods and functions external to the program.
To be used in a efficient way, the O., debugger supports late binding. The interested
reader can find further information in [DP89] and [DP90].

41

3.2.6 Miscel laneous

In addition to these tools, OOPE gives an access to the 0,_ Query language. The
Queries object, which belongs to the Tools object, is of type set(query). It contains
a set of existing queries which can be displayed and executed. It also allows the user
to create and edit new queries.

The Tools also contain an icon called Applications, which contains all the appli-
cations known by the system. The user can launch an application by opening the
corresponding icon and sending a run message to it.

4 Implementation Aspects
Programming environments handle a lot of data. The idea of using a database to
store and manage these data is common now [Ber87], because of all the services to
manage a large amount of data (such as data sharing and integrity, fast access to
the data, protection against failure) it provides, comparing to traditional file systems.
Our choice of an object-oriented design for OOPE was obviously influenced by the
perspective of using the O3 database system.

In this section, we describe how we implemented OOPE, using the various func-
tionalities (not only the database functionalities, but also those of the language and
the interface) provided by the 02 system.

�9 Tile database functionalities

The main feature of a database is the capacity to store a large amount of data,
and to provide a fast and convenient access to it. OOPE manipulates a lot
of data, which amount is potentially increasing. All the objects needed to
build an application, namely the classes, the methods, the applications and the
programs, are stored in the database, as well as the objects they are composed
of (the information object, the documentation, the errors), and all the objects
composing the different tools. This architecture allows a noticeable performance
gain. For instance, retrieving the source of a method is done in a constant time,
whatever the number of methods stored in the database (which is not always
the case in relational systems where the retrieving time is generally proportional
to the size of the relations).

Using a database to store the programming objects also allows a convenient
retrieval: it can be done either by navigation through the objects in the database
or by using the query language, which [)rovides high level retrieval operations.

Another important facility offered by database systems is data sharing, which is
not provided by traditional file systems. In programming environments, where
objects are often shared among others, this functionality avoids important re-
dundancy and management of this redundancy. For example, a software com-
ponent can be shared by requirements, documentation, product, milestone.

Furthermore, database systems offer data integrity, which guarantees a consis-
tent database, and protection against system failures. A good recovery mecha-
nism is of primary importance, because it prevents the programmer from loosing
his/her data due to system failures.

Data independence is also an interesting feature of databases. It allows the
tools to remain independeut from each other, and to view only the part of the
database they need.

42

The different tools of OOPE make an intensive use of the database, increasing
their performance. The journal and the workspace for instance, which are both
of type set, take advantage of the efficient set management provided by O2.
But, the debugger is probably the tool which takes the most benefits from the
database. The implementation of the debugger and its advantages are fully
described in [DP90]. We only mention here the main features of its design
and their benefits. Instead of having one unique symbol table for a whole
program, the debugger stores its information in several small symbol tables,
represented by objects, one per method. This allows a considerable performance
gain, by decreasing the access time to the symbol information, as well as a
space gain: the process size of the 02 debugger is much smaller than process
sizes of other traditional debuggers, such as GDB [Sta86] or DBX [AM86]. Other
functionalities of the debugger also improved their performance: breakpoints are
gathered in a list structured object, and detecting if a breakpoint has been set
on a given line is equivalent to the access time of an object in main memory. It is
clear that the use of the database has been very positive for the implementation
of the debugger.

,, The use of the O.~ language

The use of the O~. database induces the use of the O2 languages, to define the
schema and to write the methods.

Programming with O~. provides all the advantages of the object-oriented pro-
gramming.

First of all, the modelization power of the language allowed a very simple and
easy specification of our objects. The possibility, for instance, to define sets of
heterogeneous objects was very useful for tile workspaces. Indeed, workspaces
can contain any kind of objects. It is not possible to know in advance which
objects the user wants to keep. The object Workspace must be able to contain
any kind of classes. Using a set of objects to modelize it, tile programming of
this tool became very simple and fast, while it could have been quite complex
in a relational database.

An important feature of the O2 system is extensibility. The addition of a new
tool or of a new functionality to an object does not require modifications of
existing tools, which avoids tedious recompilations. For instance, the last to01
added to OOPE was the Journal. Its development was made independently of
the other components of OOPE. Its integration in OOPE has been done without
any modification of the other tools. Likewise, it is possible to remove one of
the tools without modifying the other tools. Adding a new functionality to a
tool can be done by simply writing a new method for this tool, and does not
affect at all any other tool. Object-oriented programming allows a complete
integration of the tools in the programming environment. Their behavior is
similar, all interactions are done through selection of items in menus, and by
editing objects. There is no special command language because of this uniform
interaction way.

Object-oriented languages are well suited for reusability. In order to avoid
frequent rewriting of pieces of code already written, O~. provides a tool box
containing a predefined set of classes, objects and values that the programmer
can use. For example, the tool box contains all classes and methods used to

48

handle dates and currency. It also provides all functionalities to implement
dialogs in an application. For more details, the reader can read [Ara90], which
fully describes this tool box.

* The use of LOOKS

The user interface of OOPE is entirely written using LOOKS [LOO89]. LOOKS
is a user interface generator supporting the graphic and interactive manipulation
of 02 values and objects. It provides a set of 14 primitives which allow to create,
remove, edit and save, maintain the consistency of the presentations of any 02
value or object.

Using LOOKS to build a user interface simplifies a lot the programming activity.
The complete management of a user interface is done in a very simple way using
the set of primitives it offers. For instance, only two primitives are needed to
display a presentation of an object on the screen, as shown in the following
example:

class Address
type tup le (number : integer,

street : s tr ing,
city : City,
zip_code : str ing,
country : Country)

An object o, belonging to tile class City is displayed, in a generic fashion, with
the primitives present and map of LOOKS as follows:

p = present (o, EDIT, LEVEL_ONE, NESTED_WINDOW);
map (p, SCREEN, COORDINATE, NO_PERSIST, 10, 10);

p resent creates a presentation for the object o and map displays this presen-
tation as shown in Figure 7.

The parameters of present and map control the amount of information dis-
played, its editability and its placement on the screen.

CRcldre$$]
nunber 65321

s t r e e t St J a c q u e s

c i t y . ~ ,

=LO_code 75014

count r . I~Fr~nce!

Figure 7: The class Address

Moreover, LOOKS offers a generic display and editing mechanism which allows
a uniform representation of tile objects and the message passing mechanism.
This standardization of the object behavior reduces the learning time of OOPE
and its tools.

44

The source code of OOPE is composed of 15000 lines of COs code. It consists
for the given time of 75 classes and 320 methods (excluding the inherited methods).
OOPE is a quite complex 02 application. Its success in terms of functionalities and
performance validates our implementation choices. Indeed, the use of the 02 system
to implement the programming environment was very positive, for all the reasons
previously given. In addition to the services provided by the database, it allowed a
gain in performance, a gain in development time, and the use of a generic display
and edition mechanism. Furthermore the use of COs provided much flexibility in the
design of the schema.

5 R e l a t e d Work

In this paper, two aspects were considered: the design and the implementation of
OOPE. We first compare the design of OOPE with other related work, and then
discuss our implementation choices.

For the time being, not much work has been done on programming environments
for OODBMS (Object-oriented database management systems), mostly because they
are still recent. Among the existing systems (Orion [KBC+88], Ontos [TAD90],
Gemstone [MS87], Iris [FBC+87]), only Gemstone uses a programming environment
(which is the Smalltalk-80 [Go183] programming environment) comparable to OOPE.
Smalltalk-80 has a very powerful and complete programming environment, emphasing
visual accesses to objects. As in O~, commands are mostly performed through menus.
The Smalltalk-80 browser is a sophisticated and efficient tool, but does not allow a
graphical display of the class hierarchy, as it is done in 02.

Being more related to programming environments for languages than for databases,
OOPE is mostly to be compared with programming environments for languages. Lan-
guages such as C++ or Objective-C provide efficient and complete programming en-
vironments inherited from C. But they do not reflect the object-oriented aspects of
the language. Moreover, the tools they provide, particularly browsers and debuggers,
have poor performance, principally because they are based on Unix files scanning.

Previous approaches for implementing software engineering or programming en-
vironments tended to use conventional file system to store their data. To manage
it efficiently, additional management components had to be developed. These tools
usually are built to deal with particular problems and do not always fit well together
or with all the other requirements. In principle, database systems can help to manage
this data, by offering functionalities to efficiently store and manage a large amount
of data. Indeed, several attempts [Pen86] have been done to use a database, mostly
using the relational or the entity-relationship model. But these experiences were not
completely satisfying, partly because of the absence of some functionalities (such as
versioning, long and nested transactions), but also because of the lack of a good data
model. Software development applications involve large and complex objects, which
are often related by various relationships, and which need to be manipulated by spe-
cial op.erators (able for instance to operate on syntax trees, flow graphs,...) which are
usually not provided by DBMS.

The object-oriented model is best suited to represent complex data, but up to now,
experiences in using object-oriented database systems to handle the data manipulated
by software development systems are quite rare, because available products appeared
only recently.

Another approach, taken by Damokles [DGL86] and Cactis [HK88], consists to ex-

45

tend database systems to support the data management needs of software engineering.
They provide features such as complex objects representation, software versions, long
transactions. These two interesting experiences are intended to support large software
engineering environments rather than database application development environments
as done by OOPE, which does not address the "programming in the large" issues.

6 Conclusion

In this paper, we described OOPE, the interactive programming environment of 02.
It provides both the functionalities of database and of languages programming envi-
ronments, and is one of the few existing programming environment for object-oriented
database system. Due to its homogeneity, OOPE is easy to use and to understand. It
has a nice interface, which allows simple manipulations of objects on the screen and
avoids to learn a new command language.

OOPE is a quite complex O.~ application. It has been developed using as much
as possible the various possibilities provided by the 02 system, namely, the database
to store the objects it manipulates, the language to implement the functionalities,
and the interface generator to build the interface. OOPE is used inside the Altair
group and is in Beta-test in several French industries and universities. Its success, in
terms of performance and of functionalities validates our design and implementation
choices.

OOPE was designed for a prototype version of 02. O.~ is a now a product, com-
mercialised by 02 Technology. Its programming environment, named 02 Tools is an
improved and completed version of OOPE. It integrates new functionalities, such as
schema update functions, transactions and multi-base functionalities. The user inter-
face is more convenient and provides customization facilities. The browser is divided
into five specialized sub-browsers and will provide a much faster and convenient access
to the classes, methods, named objects, applications and programs. Other services,
such as a test generation tool, a versioning system for the objects, the classes and
the methods, and a complete documentation tool are planned to be added to the
programming environment.

7 Authorship and Acknowledgements

OOPE was designed by the authors with the collaboration of Jean-Claude Mamou.
Didier Tallot and Jean-Claude Mamou helped in the implementation of OOPE. This
paper benefits from the careful reading of our colleagues from Altair, in particular
Gilles Barbedette and Didier Plateau.

References

[AM86]

[Ara90]

E. Adams and S. S. Muchnick. Dbxtool: A Window-Based Symbolic De-
bugger for Sun Workstations. Software, Practice and Ezperience, 16 (7),
July 1986.

G. Arango. Self-Explained Toolboxes: a Practical Approach to Reusabil-
ity. In TOOLS 90, Paris, France, June 1990.

46

[BDPT90]

[Ber87]

[Da90]

[DGL86]

[DP89]

[DP90]

[FBC+87]

[Go183]

[HK88]

[KBC+88]

[LOO89]

[LRS9]

[LRV88]

P. Borras, A. Doucet, P. Pfeffer, and D. Tallot. OOPE : The 02 Program-
ming Environment. In Proceedings of the 6th PRC BD3 , Montpellier,
FRANCE, September 26-28 1990.

Philip A. Bernstein. Database System Support for Software Engineering
- An Extended Abstract - . In Proceedings of the 9 th International Con-
ference on Software Engineering, pages 166 -178, Monterey, California,
March 1987.

O. Deux and al. The Story of 02. Special Issue of IEEE Transactions on
Knowledge and Data Engineering, March 1990.

K. R. Dittrieh, W. Gotthard, and P. C. Lockemann. DAMOKLES -
A Database System for Software Engineering Environments. In Proceed-
ings of the IFIP Workshop on Advanced Programming Environments, June
1986.

A. Doucet and P. Pfeffer. A Debugger for 02, an Object-Oriented
Database Language. In Proceedings of the First International Confer-
ence on Technology of Object-Oriented Languages and Systems, pages 559
- 571, CNIT Paris - La DSfense - France, November 1989.

A. Doucet and P. Pfeffer. Using a Database to Implement a Debugger. In
IFIP : Conference on Database Semantics. North-Holland Elsevier, July
1990.

D. It. Fishman, D. Beech, It. P. Cate, E. C. Chow, T. Connors, J. W.
Davis, N. Derrett, C. G. Hoch, W. Kent, P. Lyngbaek, B. Mahbod, M. A.
Neimat, T. A. Ryan, and M. C. Shah. Iris: An Object-Oriented Database
Management System. A CM Transactions on Office Information Systems,
5(1), 1987.

A. Goldberg. Smalltalk-80 : The Interactive Programming Environment.
Addison-Wesley, 1983.

Scott E. Hudson and Roger King. The Cactis Project: Database Support
for Software Environments. IEEE Transactions on Software Engineering
, 14(6):709 - 719, June 1988.

W. Kim, J. Banerjee, It. T. Chou, J. F. Garza, and D. Woelk. Composite
Object Support in an Object-Oriented Database System. In Proceedings
of the ACM SIGMOD Int. Conf., Chicago, USA, May 1988.

Gip Altair, BP 105, 78153 Le Chesnay. LOOKS users manual, 1989.

C. L~cluse and P. Richard. The 02 Database Programming Language. In
Int. Conf. o7l Very Large Databases, The Nederlands, August 1989. ACM.

C. L~cluse, P. Richard, and F. V~lez. 02, an Object-Oriented Data Model.
In ACM SIGMOD, pages 424 - 434, 1988.

47

[MS87]

[oop90]

[Pen86]

[Sta86]

[TADg0]

[VDB89]

D. Maier and J. Stein. Development and Implementation of an Object-
Oriented DBMS . In B. Shriver and P. Wegner, editors, Research Di-
rections in Object-Oriented Programming , pages 355 - 392. MIT Press,
Cambridge, MA, 1987.

OOPE: The Object-Oriented Programming Environment. Gip Altair,
BP105, 78153 LE CHESNAY Cedex, FRANCE, Version 1.0, Released 15
December 1989. Printing revision 1.1 edition, 9 January 1990.

Maria It. Penedo. Prototyping a Project Master Data Base for Soft-
ware Engineering Environment. In Proceedings of the ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium on Practical Software
Development Environments, pages 1 - 11, December 1986.

R. Stallman. The Gnu Debugger . Technical report, Free Software Foun-
dation, Inc., 675 Mass. Avenue, Cambridge, MA, 02139, USA, 1986.

C. Harris T. Andrews and J. Duhl. The Ontos Object Database. Technical
report, Ontologic Inc, Burlington MA, 01803, 1990.

Fernando V~lez, Vineeta Darnis, and Guy Bernard. The O_~ Object Man-
ager, an Overview. In Int. Conf. on Very Large Databases, The Neder-
lands, August 1989. ACM.

