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Abs t r ac t  

Software performance engineering aims at predicting and improving the 
performance of applications during development and in production. This paper 
presents a framework for performance engineering of information systems with 
emphasis on parameter estimation support. 

The need for performance engineering of information systems is discussed. 
Views of information system and performance modelling are presented. It is 
shown how application specifcations can be extended with performance an- 
notations. The resulting framework is applied to predict and improve the 
performance of projected applications during development. Sensitivity analy- 
sis is supported to point out performance bottlenecks in the application and 
suggest which parameters to estimate with most care. Target platform mod- 
elling is provided to relieve the information system developer from assessing 
the performance of the target platform and operating system software. The 
framework is realised in terms of the PrM language for software specification. 
Finally, some conclusions are offered. 

Introduct ion  

Software performance engineering [Smi90, AWS91] aims at predicting and improv- 
ing the performance of software during development and in production. Efficient 
utilisation of information technology has become a decisive competi t ion factor in 
industry and business. Although the price of computers is steadily decreasing, the 
total  hardware expenses are increasing along with the demand for computing power. 
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As a result, hardware expenses have become visible at the organisation level, 'and 
therefore a limited resource. At the same time, the price of unacceptable perfor- 
mance has grown due to tightened market competition. New methods must be 
applied to utilise the organisation's computer resources more efficiently. 

This paper will present a framework for performance engineering of information 
systems. The framework focuses on predicting the performance of projected appli- 
cations during development. It has been developed with the goals of 1) integrating 
the state of the art of information system development and performance engineer- 
ing [OS92]; 2) supporting performance parameter estimation [Opd91b]; 3) inter- 
acting with the capacity management process [Vet91], and 4) supporting database 
design [OS81]. In addition, simplicity and generality has been emphasised. This 
paper will focus on parameter estimation support in particular. 

Although the framework is presented in a theoretical form, it has been developed as 
a result of practical considerations and experience. A realisation of the framework 
has been made in connection with the experimental integrated CASE tool environ- 
ment PPP [GLW91]. A graphical interface for annotating PPP specifications with 
performance parameters has been implemented, together with the basic associated 
analysis techniques [Opd92b]. The tool has been developed as part of the IMSE 1 
project, which provides state-of-the-art performance modelling tools at the computer 
system level [tIP89]. A case study has been undertaken, using the framework and 
tool to monitor the development of a commercial information system [BOVS91]. 

Views of information system and performance modelling are presented in sec. 1, 
and application specifcations are annotated with performance parameters. The re- 
sulting framework is applied to predict and improve the performance of projected 
applications during development in sec. 2. Sensitivity analysis is supported to point 
out performance bottlenecks in the application and suggest which parameters to 
estimate with most care in sec. 3. Target platform modelling is provided to relieve 
the information system developer from assessing the performance of the target plat- 
form and operating system software in sec. 4 The framework is realised in terms of 
the PrM language for software specification in sec. 5. Finally, some conclusions are 
offered. 

In the remainder of this paper, important terms are bold-faced when introduced. 

1 The  basic framework 

The basic framework for performance engineering during information system devel- 
opment is based on general views of information system and performance modelling, 
as well as on annotating application specifications with performance parameters. 

1The IMSE project was a collaborative research project supported by the CEC as ESPRIT 
project no 2143. It was carried out by the following organisations :- BNR Europe STL, Thom- 
son CSF, Simulog A.S., University of Edinburgh, INRIA, IPK (Berlin), University of Dortmund, 
University of Pavia, SINTEF (University of Trondheim), University of Turin and University of 
Milan. 
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Figure 1: An application specification contains a DAG of models (a). A model 
contains a set of processes (b). h non-primitive process has a submodel (c). 

The three are treated in separate. 

1 .1  I n f o r m a t i o n  s y s t e m  m o d e l l i n g  

Fundamental to the basic framework is the view of information system modelling 
presented in [OS92]. According to this view, an application specification S repre- 
sents the projected application during development. No assumption is made about 
the manner in which this specification is established, only that  it exists in a con- 
sistent state every time a performance prediction is to be made. An application 
specification provides operations o resembling how the projected application will 
provide funct ions to the organisation using it. Since the projected application is 
likely to be complex, the specification is hierarchical, comprising a DAG (directed 
acyclic graph) of models (fig. la). ~ 

A model  m is a composite, dynamic, partial view of an application. A model 
provides a set of operations, just like an application specification. It is composite 
because it contains a set of processes (fig. lb). 3 Models may have submodels,  and 
models which are not submodels of any other models are top-level models. The set 

2The framework has been developed in the context of dataflow diagram modelling, in which 
cycles in submodel graphs are uncommon. Allowing cycles is a possible future extension of this 
work. 

3 Of course, most models will contain constructs other than "processes," e.g. "stores" and 
"flows" in the dataflow based class of languages. However, these constructs are not relevant 
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application operations 

~ top-level 

Figure 2:OverM1 picture of the information system view. 

of operations provided by an application specification corresponds to the operations 
provided by its top-level models. 

A process  p is an atomic, dynamic, partial view of an application. A process provides 
a set of operations, just like an application specification or a model. A process is 
atomic because it is not a composition of something else in the way models are. 4 
Note that  the only difference between the definitions of model and process is that  the 
former is composite while the latter is atomic. This means that  a process at one level 
in the decomposition graph may correspond to a model at the next (fig. lc). Such a 
model is the submode l  of the process. Processes with no submodels associated with 
them (yet) are primit ive.  Other processes are non-primlt ive.  

The operations provided by a model are the ex te rna l  opera t ions  of that  model. 
The  operations provided by the processes contained in a model are its in terna l  
operat ions .  

Fig. 2 shows an overall picture of the information system view of this section. 

1 . 2  P e r f o r m a n c e  m o d e l l i n g  

Complementary to the information system view of sec. 1.1 is the view of performance 
modelling also presented in [OS92]. According to this view, a pe r fo rmance  model  
M abstracts a computer system. A performance model provides service centers  s to 

within the framework, which considers only the dynamics of the application specification. 
~However, processes may have submodels containing other processes associated with them. 
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Figure 3: Performance modelling views of performance model (a), workload model 
(5), organisation workload (c), and workload module (c-d). 

resemble how the computer system provides resources to the applications running 
on it (fig. 3a). Examples of such resources are CPU's, disks, communication chan- 
nels, and other hardware devices. The aim of performance modelling is to obtain a 
performance predict ion through analysis of a performance model under a workload 
model, just like the computer system exhibits a certain performance under some 
workload. 

A workload model  W abstracts the projected and existing applications that  (will) 
run on a computer system and the organisation which uses (will use) them (fig. 35). 
A workload model consists of an organisation workload and a set of workload modules 
(fig. 3c). 
An organisation workload O abstracts how often an organisation uses the functions 
provided by the available applications. An organisation workload is a set of oper- 
at ion intensities, which abstract how often an organisation uses a specific function 
provided by an application. An operation intensity is either transaction, interactive, 
or batch [LZGS84]. The set of operation intensities contained in the organisation 
workload corresponds to the set of functions provided by the applications and used 
by the organisation. 

A workload module  w abstracts how the functions provided by a projected or ex- 
isting application use the resources provided by the computer system (fig. 3d). A 
workload module provides operations to the organisation workload and uses the ser- 
vice centers of the performance model. The set of operations provided by a workload 
module corresponds to the set of functions provided by the application it abstracts, 
just as for application specifications. The workload module of an application specifi- 
cation S is represented as a module  demand  matr ix  D t~ of average service center 
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uses. Each row of this matr ix  represents an operation provided by the workload 
module, and each row element represents a number of uses of a service centre of the 
performance model. 

1 . 3  A n n o t a t i n g  a p p l i c a t i o n  s p e c i f i c a t i o n s  

To interface information system with performance modelling, the information sys- 
tem view of sec. 1.1 must be extended so that  a workload module D '~ can be derived 
from an application specification S. For this purpose, three kinds of performance an- 
notations are needed [0S92]. These are the initiation descriptions and the execution 
descriptions for models, and the demand descriptions for primitive processes. Each 
such description corresponds to annotations that  must be added to the application 
specification prior to performance analysis. 

Initiation and execution descriptions together specify how many uses of each internal 
operation of some model that  correspond to one use of each of its external operations. 
First, the initiation description specifies on average which internal operations are 
used initially when each external operation is used. Then, the execution description 
specifies on average which internM operations are used next when each internal 
operation itself is used. 

An ini t ia t ion descr ip t ion  abstracts how each external operation on some model 
initiates uses of its internal operations (fig. 4a). This defines the initial state of the 
model for each of the operations it provides. The initiation description of a model m 
is represented as an ini t ia t ion ma t r ix  I ra of average initial internal operation uses. 
Each row of this matr ix  represents an external operation of the model, and each row 
element represents an initial number of uses of an internal operation. The framework 
requires initiation descriptions for all models in the application specification. 

An execut ion  descr ip t ion  abstracts how each internal operation of some model next 
lead to uses of other of its internal operations (fig. 4b). This defines the state tran- 
sitions of the model. The execution description of a model m is represented as an 
execu t ion  ma t r ix  5 A m of average next internal operation uses. Each row of this ma- 
tr ix represents an internal operation of the model, and each row element represents 
a number of subsequent uses of an internal operation of the model. The framework 
requires execution descriptions for all models in the application specification. This 
means that  creating both initiation and execution descriptions must be simple for a 
realisation of the framework to be successful. 

In addition to relating internal and external operations of models to one another, 
a relation is needed between the operations of primitive processes and the service 
centers of the performance model. A d e m a n d  descr ip t ion  abstracts how each op- 
eration of a process or model requires uses of the service centers of the performance 
model (fig. 4c). At this stage, we are only interested in the demand descriptions of 
primitive processes. 

5Note that this execution matrix is no~ a Markov matrix (or transition probability rna~ 
trix) [TK84], as its elements abstract transitions between processes rather than between s~a~es. 
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Figure 4: The initiation description relates uses of external operations to the inter- 
nal operations used initially (a), the execution description relates uses of internal 
operations to the internal operations used next (b), and the demand description re- 
lates uses of operations of primitive processes to uses of performance model service 
centers (c). 

The demand description of a primitive process p is represented as a p r i m i t i v e  de-  
m a n d  matr ix  D ~  of average service center uses, where m is the model containing 
p. Each row of this matrix represents an operation provided by the process, and 
each row element represents a number of uses of a service centre of the performance 
model. The framework requires demand descriptions for M1 primitive processes in 
the application specification. This means that  demand descriptions will be cre- 
ated for close to every process of the application specification, since every process 
is primitive at some point of application development. Therefore, creating demand 
descriptions must also be easy for a realisation of the framework to be successful. 

2 P e r f o r m a n c e  p r e d i c t i o n  

The goal of the basic framework is to predict the performance of projected applica- 
tions during development. This section demonstrates how a workload module can be 
derived from an annotated application specification, before considering performance 
analysis and the performance measures it produces. 
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Figure 5: The operation count relates uses of external operations to uses of inter- 
nal operations (a), while the demand descriptions also relates uses of operations of 
models (b) and non-primitive processes (c) to uses of performance model service 
centers. 

2 .1 W o r k l o a d  m o d u l e  d e r i v a t i o n  

The three kinds of performance annotations presented in sec. 1.3 facilitate automat- 
ically deriving a workload module from an annotated application specification S. 
Workload module derivation proceeds through bottom-up collapsing of its decom- 
position graph, starting with the lowest level of models. When all the submodels 
of model m have been collapsed, an operation demand matrix D m is derived by O,n 
stacking all its process demand matrlces on top of one another in the appropriate 
order, 

D'n 
p l '  

D m o.~ = , (1) 
Drn p,~ 

since each internal operation of model m (represented by a row of DR..) corresponds 
to an operation provided by some process Pi (represented by a row of Dp'~). An 
operation count matrix C m for model m specifies how many times each internal 
operation is used when each of its external operations are being used. It is derived 
as (fig. 5a) [Low73, OS81] 

C m = Ira(1 - A'~) -I, (2) 

where 1 is the identity matrix, since the total number of internal operations used 
(represented by C m) equals the sum of operations used initially (represented by I m) 
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and subsequently (represented by CmA m) so that  

C m = I m + C'~A "~. 

For the sensitivity analysis of sec. 3 we also define a process count  matr ix  C~ for 
process p of model m, which specifies how many times each internal operation of 
model m provided by process p is used when each of its external operations are used. 
It is directly derived as the corresponding subset of columns of the operation count 
matrix, since each column of C m corresponds to an internal operation provided by 
one of its processes. 

A model  demand  matr ix  D "~ for the model is then calculated as (fig. 5b) 

D m = C m D r . ,  (3) 

since the total number of service centre uses D m is determined by 1) the number 
of service centre uses of its internal operations (represented by the rows of D~m ) 
and 2) how many times each internal operation is used (represented by the columns 
of Cm). If m is the submodel of process p of model m ~, its non-primit ive process 
demand  matr ix  Dp is derived as (fig. 5c) 

m ! Dp -- D m, 

since the operations provided process p corresponds to the external operations of 
its snbmodel m (both represented by the rows of D~" and Din). This prepares 
for collapsing of model m ~ at the next-higher level of decomposition. When all the 
top-level models of application specification S have been collapsed in this way, its 
module  demand  matr ix  D ws can be derived by stacking all its top-level model  
demand  matrices on top of one another in the appropriate order, 

D m l  , 

D W ~  ---- ~ 

DTV~n �9 

again since each operation provided by the specification (represented by the rows of 
D ws) corresponds to an operation provided by a top-level model of the specification 
(represented by the rows of Drni). 

Unless the computer system will be dedicated to the projected application, additional 
workload modules must be created for each existing application running on the 
computer system. Workload modules representing existing applications are similar 
to those representing projected ones. All these additional workload modules, as well 
as the corresponding organisation specifications, must be established by conventional 
means [LZGS84, Fer78]. 

2 . 2  P e r f o r m a n c e  a n a l y s i s  

A performance analysis of the computerised information system can be undertaken 
as soon as all the workload modules necessary have been derived or established. The 
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performance model used in this analysis must be created by conventional means. In 
some cases, the performance model will already have been created for capacity man- 
agement purposes, or as a result of previous performance engineering efforts. In 
a wider "sense, performance models may be queueing networks, Petri-net models, 
or written in special- or general-purpose simulation languages. Within the basic 
framework, however, mean-value analysis (MVA) [LZGS84] of separable queueing 
network models has been assumed for simplicity. Each operation provided by the 
workload modules is represented as a c u s f o m e r  class in this analysis. The corre- 
sponding row of the module demand matrix, together with its operation intensity, 
becomes a customer description of the class. 

2 . 3  P e r f o r m a n c e  m e a s u r e s  

[LZGS84] identifies two groups of performance measures output from this analysis: 
1) responsiveness measures, for the provided and existing applications which are 
either a) response times r ~ for terminal operations, b) throughputs x ~ for batch 
operations, or c) residence times r ~ for transaction operations o of application 
specification S, and 2) service centre measures, for the computer system which 
are either a) utilisations u s'M or b) sojourn times z ~,M for service centre s of 
performance model M. 

In this manner, performance predictions are obtained for the computerised informa- 
tion system before the projected application is in production. The responsiveness 
measures for the projected application indicate whether it will perform clearly ac- 
ceptable or clearly unacceptable, or if further analyses based on refined application 
specifications are needed. These measures may also be used to compare the perfor- 
mance of alternative designs. The responsiveness measures for the existing appli- 
cations predict to what extent their performance will be degraded by the projected 
one. If 'the performance of some projected or existing application is unacceptable, 
precautions can be taken before the projected application in put in production. Ser- 
vice centre utilisations for the performance model indicate where bottlenecks will 
be located. This information is useful if the computer system must be upgraded, or 
in case some application must be optimised. In the latter case, its module demand 
matrix predicts which resources it will use most heavily. 

A service centre sojourn time predicts how much time a single use of the corre- 
sponding computer system resource will take on average. The sojourn time vector 
Z M for performance model M is defined as 

z M = zsM,M). (4) 

These sojourn times will become important in sec. 3. 

Performance analyses should be carried out several times throughout application 
development. The workload module representing the projected application must be 
derived anew every time the application specification has been changed. However, 
the operation intensities, workload modules for existing applications, as well as the 
performance model, can be reused. This considerably reduces the effort involved. 
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3 Sensit ivity analysis 

The basic framework of sec. 1 requires numerous parameters. Secs. 3 and 4 will 
extend the framework to support estimation of performance parameters. 

Sensitivity analysis on the residence times of a model is useful for determining: 
1) which parameters that  are most crucial to performance, thus focusing design and 
code optimising effort, and 2) which parameters that  must be estimated with most 
care and which parameters are less important,  thus focusing parameter capture effort 
accordingly. Sensitivity analysis is either: 1) local, deriving the sensitivity of a model 
residence time on parameters of that model, or 2) global, deriving the sensitivity 
of a model residence time on parameters of its direct or indirect submodels. We 
will treat  the two in separate, after introducing the concept of residence times of 
models. This section applies methods developed in [OS81], and extends them to 
cover hierarchical modelling. 

3 . 1  R e s i d e n c e  t i m e s  

A residence t ime vector  R m for model m specifies how much time is spent when 
each of its external operations are being used. It is derived as 

R "~ = D m Z  M, (5) 

since each row of D "~ represents the number of times each performance model service 
centre is used by model m when each of its external operations are used, and each 
element of Z M represents how much t ime is spent per service centre use. By insertion 
of eqs. 3 and 2 into eq. 5, we arrive at 

Rm = r n (  1 -  Arn~-ID'~/ o . .  Z M ,  and (6) 

r ~ = ( I~  A m~-l~m Z M , (7) 

for the residence time r ~ of operation o on model m, where I ~ is the o' th row 
vector of I m and r ~ is the o'th element of R m . These equations define the residence 
times of a model in terms of its initiation and execution descriptions, and in terms 
of the demand descriptions of its processes. 

3 . 2  L o c a l  s e n s i t i v i t y  a n a l y s i s  

The sensitivities of the residence time of operation o on model m can now be deter- 
mined by differentiation of eq. 7. The sensitivities of residence time r ~ on initiation 
row vector I ~ on execution matrix A "~ and on operation demand matr ix D m ' Om 
become 

~ro,rr~ 
(1 m -1 m - - A  ) D o m Z  M, (8) 0/o,-~ 

~rO,rr~ 
-- [(1 - A m ) - I ] T I ~  -- Am)- l ]  T, and (9) 

0A m 
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Or oJ m 

-- [(1 - A r n ) - I ] T I ~  (10) 

O r o ,  m 
where the non-trivial derivation of ~ is outlined in appendix A. Appendix B 
accordingly defines (trivial) vec tor  f o r m s  of eqs. 8-10 which are necessary in sec. 3.3. 

These vector equations provide all local parameter sensitivities on r ~ with a min- 
imum of calculation. A local sensitivity analysis for model m implies calculating 
the sensitivities of all its parameters and sorting the results. Top parameters in the 
sorted list are most important to the model residence time, while middle and lower 
rank parameters can be regarded as unimportant.  In this way, sensitivity analysis 
not only suggests which parameters to estimate with most care, but also points out 
where  design and code optimisations will have the most impact, as already men- 
tioned. 

3 . 3  G l o b a l  s e n s i t i v i t y  a n a l y s i s  

The equations of sec. 3.2 defined the sensitivities of the residence times r ~ for 
model ml on all its parameters. However, these residence times may also depend on 
parameters of the direct and indirect submodels m,~ of model rnl. This case calls 
for global sensitivity analysis, as opposed to local. 

Let r ~ be the residence time for operation o on model ml and let x "~  be a 
scalar parameter of one of its direct or indirect submodels mn. Assuming that  the 
decomposition graph of the application specification is a tree 6, the sensitivity of 
residence time vector R "~1 = (r~ r ~ on x "~ is derived as [Opd91b] 

ORm~ ORrn~ 
Oxm,  " - C ; ,  C~2 . . ' C  m'~-'p,~_, Ox,~,, , (11) 

where ~ is one of the vector forms 7 of eqs. 8, 9, and 10 defined in appendix B, and 
the process count matrices Cp'~ ~ were defined in see. 2.1, and model m i + l  decomposes 
process pi of model m i ,  i ..~ 1 . . .  n - 1. 

An exhaustive global sensitivity analysis for model m implies calculating the sensi- 
tivities of all its parameters, as well as all the parameters of its direct and indirect 
submodels, and sorting the results. Again, top parameters in this list are most im- 
portant to the model residence times, while middle and lower rank parameters can 
be regarded as unimportant.  

An important special case of global sensitivity analysis is the overa l l  sens i t iv-  
i t y  ana lys is ,  which is an exhaustive global sensitivity analysis for all the top-level 
models of an application specification. Although the equations of this section have 
been designed to be computationally efficient, the cost of performing an exhaus- 
tive sensitivity analysis may become prohibitive due to the possibly large number 
of parameters involved. Methods to reduce the search space should be sought for. 

s [Opd91b] also considers the more  general case where the decomposi t ion g raph  is a DAG. 
7 . . .  depending on whether  x m'~ is an  initiation, execution, or  d e m a n d  ma t r ix  element.  
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The simplest approach is of course to restrict the scope of a global sensitivity anal- 
ysis to 1) certain kinds of parameters or 2) certain levels of decomposition only. 
[Opd91b] also extends the framework with residence time analysis to provide some 
of the sensitivity analysis support at lower computational cost. 

3 . 4  P e r f o r m a n c e  m o d e l  s e n s i t i v i t y  a n a l y s i s  

A single parameter of the annotated application specification is not likely to have 
major impact on the overall workload generated by the application. Therefore, the 
performance model sojourn time vector Z M of eq. 4 can be regarded as constant 
during sensitivity analysis. However, if this assumption does not hold, the Z M 
vector will vary slightly when application specification parameters are changed. In 
particular, this may be the case for initiation and execution matrices of higher-level 
models in the specification. A forthcoming paper [Opd92a] will address this topic 
in detail, providing exact sensitivity analysis for combined software and hardware 
performance models. Hence, it must be kept in mind that the sensitivities calculated 
from eqs. 8-11 are only approximations in such cases. 

4 Target platform modelling 

Sec. 3 introduced sensitivity analysis to support performance parameter estimation, 
based on the assumption that some parameters already had been estimated. This 
section makes parameter estimation easier in the first place by extending the basic 
framework with target platforms. 

So far, we have annotated application specifications with resource demand estimates 
in terms of computer system resources. This creates two main problems: 

�9 Today there is a tendency to build software by putting together existing com- 
ponents [Sr Vet91]. Common examples of such components are high-level 
languages (HLL's), database management systems (DBMS's), and screen han- 
dlers constituting the target platform software of the projected application. 
This means that an application is specified in terms of target platform func- 
tions rather than in terms of resources at the computer system level. 

This makes the framework difficult to apply because: 1) application developers 
are not used to think in terms of computer system resources, and it is diffi- 
cult for them to annotate application specifications in terms of such low-level 
concepts, and 2) assessing the performance of the target platform software, 
e.g. an optimised relational database management system, is a very specialised 
task. 

�9 Every application running on a computer system induces operating system 
overhead on that computer system. Common examples of such overhead are 
the workloads of virtual memory managers, dispatchers, and interrupt han- 
dlers constituting the operating system software of the computer system. 
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Figure 6: A target platform model (a), and composite workload model (b). 

This means that the resource annotations of an application specification must 
include estimates of the induced operating system overhead for the derived 
workload module to be correct. 

Again, this makes the framework difficult to apply because: 1) application de- 
velopers are not used to take the performance of the operating system software 
into consideration when designing applications, and 2) the operating system 
overhead of an application is not fixed for that application, but a function of 
the total workload on the computer system. This workload is produced both 
by the projected application and by other, already existing applications. 

All the above difficulties conflict the aim of making performance engineering closely 
integrated with information system development. 

4 .1  T h e  t a r g e t  p l a t f o r m  m o d e l  

The framework therefore introduces target platform modelling to avoid the above 
problems. A target platform model P abstracts the target platform and operating 
system software of a computer installation. A target platform model provides oper- 
ations, just like application specifications, models, and processes. Since the target 
platform and operating system software is likely to be complex, the target platform 
model is again hierarchical, comprising a DAG of workload modules (fig. 6a).s 

As in the basic framework, we derive a workload module from the annotated ap- 
plication specification, and establish additional workload modules for each existing 

8This view of workload modelling is based on Hughes' sp approach [Hug88]. 
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application by conventional means. The resulting workload model therefore consists 
both of 1) top-level application workload modules and 2) lower-level target plat- 
form workload modules (fig. 6b). In contrast to the workload models of sec. 1.2, a 
composite workload model W thus comprises a DAG (as opposed to a set) of work- 
load modules. The target platform model (without workload modules representing 
applications), is itself a composite workload model in this sense. 

In this way, target platform modelling resolves the problems stated at the beginning 
of this section: 

The higher-level target platform workload modules correspond to the target 
platform software components that the projected application will be imple- 
mented upon, typically a high-level language (HLL), a database management 
system (DBMS), and a screen handler. Each top-level target platform module 
provides operations that the application workload modules use. Thus instead 
of annotating the primitive processes of the application specification in terms 
of performance model service centre uses, we supply them with demand de- 
scriptions in terms of target platform operations. 

The lower-level target platform workload modules correspond to the operat- 
ing system software components of the computer system, such as the virtual 
memory manager, the dispatcher, and the interrupt handler. Thus instead 
of having to include estimates of the induced system software workload in 
the demand descriptions, the overhead is automatically calculated during the 
workload model analysis of sec. 4.2. 

4 . 2  W o r k l o a d  m o d e l  a n a l y s i s  

The composite workload model resulting from target platform modelling must be 
analysed prior to performance analysis. Analysis proceeds through bottom-up col- 
lapsing of its module graph with repeated matrix multiplications, much as in the 
workload derivation of sec. 2.1. The outcome is a collapsed module demand matrix 
D ~~ for each application workload module w of the workload model. These matrices 
constitute the workload modules representing the projected and existing applica- 
tions. The workload modules are applicable for performance analysis according to 
sec. 2.2. 

4 . 3  I n t e r f a c e  w i t h  s e n s i t i v i t y  a n a l y s i s  

Apart from the additional workload model analysis prior to performance analysis, 
target platform modelling does not require modifications of the basic framework. 
However, to combine the sensitivity analysis technique of sec. 3 with target plat- 
form modelling, we need to redefine the concept of residence times of operations 
on models. Sec. 3.1 defined these times in terms of service centre sojourn times. 
Since target platform modelling replaces the concept of performance model service 
centres with target platform operations, we need to introduce the new concept of 
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platform estimates Z ~  representing the sojourn time of operation o provided by 
target platform P.  Again, a target platform operation sojourn time predicts how 
much time a single use of the corresponding target platform function will take on 
average. 

To provide such platform estimates we first need perform a target platform analy- 
sis. Target platform analysis proceeds exactly like the workload model analysis of 
sec. 4.2, with the top-level application workload modules removed. The outcome is 
a platform demand matrix D P for target platform P. 

We now define the platform estimate vector Z P = ( z l ' P , . . . , z  ~ for target 
platform P as 

Z P = D P z  M, (12) 

since 1) each row of D R represents the number of times each performance model 
service centre is used when each target platform operation is used, and 2) each 
element of Z M represents how much lime is spent per service centre use. 

Sensitivity analysis now proceeds with platform estimates z ~ and Z P replacing the 
computer system resource sojourn times z s'M and Z M. This substitution, however 
convenient for the purpose of sensitivity analysis, is not obvious. [Opd91b] presents 
two alternative techniques for validating this platform estimate assumption. 

4 .4  D a t a b a s e  o p t i m i s a t i o n  

The critical point in establishing a target platform model, is representing the op- 
timised database management system (DBMS) as a workload module. [BO91, 
BOVS91] discusses alternative parameter capture strategies for an SQL-type DBMS 
in the context of a practical case study. Wieland [Wie91] has established and vali- 
dated a workload module specification for simple queries on the INGRES relational 
database system. This is a topic for further research. 

5 A rea l i sa t ion  of  t he  f r a m e w o r k  

This paper has presented a framework for performance engineering during informa- 
tion system development based only on a minimal set of requirements about the 
development methodology and modelling language used. Isolating the framework in 
a linear algebra representation, as has been done, ensures its generality. In principle, 
it can be interfaced with any operationally oriented and hierarchic methodology for 
information system development, and with any performance evaluation method. To 
demonstrate the practicalness of the approach, a realisation of the framework has 
been made in connection with the IMSE environment for performance evaluation 
and the experimental integrated CASE tool PPP. 

The  I M S E  is an integrated modelling support environment for performance eval- 
uation. It focuses on 1) availability of state-of-the-art performance evaluation meth- 
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PPP 

Graphical Interface 

Common Database OMS I 

Figure 7: The performance modelling and analysis support provided by the IMSE 
made available to the PrM tool user. 

ods through easy-to-use graphical interfaces, and 2) integrating and supporting the 
performance evaluation methods through a common set of utilities. The IMSE builds 
on existing performance evaluation tools for workload derivation [CS85], workload 
modelling [Hug86], queueing networks [Pot85], Petri-net models [BC89], and special- 
purpose simulation [PB88]. In addition, the IMSE provides a set of environmental 
tools supporting execution of static and dynamic performance models, animation of 
model executions, automated support for planning and performing experiments, and 
generation of reports from experiments. The IMSE tools share a support environ- 
ment containing a graphical user interface system and a common object management 
system. 

P P P  (processes, phenomena, and programs) is an experimental integrated CASE 
tool for information system development [GLW91]. It focuses on 1) formality to fa- 
cilitate early verification and validation as well as automated model-to-model trans- 
lation and code-generation, and 2) integration between the modelling tools used, and 
between different phases of development) PPP builds on well-known approaches to 
information system development, such as top-down design and the DFD and ER 
paradigms. 

In particular, the PrM language [BCSA86] of PPP is a formalised extension of 
dataflow diagrams, avoiding several of their imprecisenesses by introducing 1) flow 
of control as well as data flow; 2) triggering and termination to define process 
dynamics; 3) port connectives to define what is consumed and produced by each 
process per execution, and 4) operations to distinguish between different ways of 
triggering a process or a model. A PrM tool has been implemented as a realisation 
of the framework of this paper. Fig. 7 depicts how the IMSE and PPP environments 

9And between the problem analysis and design phases in particular. 
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can be integrated through the PrM tool, which lets PrM specifications be annotated 
with performance parameters. The tool automatically generates IMSE workload 
models from annotated application specifications, using the algorithm of sec. 2.1. 

Conclus ions  

The need for performance engineering of information systems was discussed. Views 
of information system and performance modelling were presented in sec. 1, and ap- 
plication specifcations were extended with performance annotations. The resulting 
framework was applied to predict and improve the performance of projected applica- 
tions during development in sec. 2. Sensitivity analysis was supported to point out 
performance bottlenecks in the application and suggest which parameters to esti- 
mate with most care in sec. 3. Target platform modelling was provided to relieve the 
information system developer from assessing the performance of the target platform 
and operating system software in sec. 4 The framework was realised in terms of the 
PrM language for software specification in sec. 5. 

In the introduction, the goals of the framework were stated as 1) integrating the 
state of the art of information system development and performance engineering; 
2) supporting performance parameter estimation; 3) interacting with the capacity 
management process, and 4) supporting database design. 

Concerning the first one, [OS92] has presented a conceptual integration of informa- 
tion system and performance modelling. This paper has focused on meeting the 
second of the goals. Furthermore, [Opd91b] extends the framework with additional 
techniques for a) residence time analysis which suggests which parts of the appli- 
cation to annotate; b) bounds analysis as an alternative to average analysis early 
in the design, and c) parametric analysis in case obtaining one or a few parameters 
is infeasible. The third goal of relating capacity management to the framework is 
discussed in [Vet91, BOVS91], while database design has been treated in [OS81]. 
Thus while work remains on the latter two, two of the goals have been met so far. 
Furthermore, a tool has been implemented to support the framework [Opd92b], and 
has been applied in a practical case study [BO91]. 

Composite workload models for the organisation's software systems can be used 
to balance workload between the available computers while controlling application 
response times. Alternative hardware configurations can be evaluated and compared. 
Workload modules for projected applications can be combined with models of the 
existing ones, and the hardware resources can be extended at the right moment. 
The performance of the projected application is continuously monitored throughout 
development. Good resource utilisation is ensured and it is made clear where the 
design and code may be improved. 

The framework is an advancement on contemporary approaches to performance en- 
gineering of information systems in the areas focused on. The framework gains on 
its simplicity, generality, and emphasis on parameter estimation support. The most 
important advancement, however, is integrating the information system and perfor- 
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mance modelling fields at the conceptual level and at the tool level. This facilitates 
bringing together recent advances in performance modelling with integrated CASE 
tools for information system development. 

The complexity of contemporary information systems will continue to increase along 
with the organisation's dependency on them. Controlled, tool-supported manage- 
ment of the computer resources will therefore give the organisation an increasing 
competitive edge in the future. 
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A D e r i v i n g  e x e c u t i o n  m a t r i x  d e r i v a t e s  

The sensitivity of r ~ on execution matrix A m becomes 

O r ~  m) _ r ~  ~ + dA m) - rO,~(Am ) 
cgA m dA m 

We have [OS81] 

r~ m + d A  m) 

We set 

and get 

r ~  m + dA m) 

This means that  

0ro,~(A m) 
0A m 

( i o , m ) T ( 1  A m m - :  m = - - d A  ) D o  Z M 

( r , m ) r [ 0  Am)( t  ( t  m - 1  ~ - 1  m . . . .  A ) dA  )] D o  Z m 

= ( I ~  -- (1-- A m ) - : d A m ) - l ( 1 -  Am~-ID m 7M 
] O , ~  ~ �9 

q- = (:-Am) -~ 

= ( I ~  Q m d A m ) - l Q m D ~  Z M 
o o  

o , m  T m m i m m M = (I ) [ E ( Q  dA ) ] Q  D o  Z 
i = 0  

= ( I~  + Q m d g  m + (QmdAm)2 + . . . ] Q ' ~ D ~  Z M 
o , m  T m m Z M o , m  T m m m m = (I ) Q Do. +(I ) q dA q Do Z M 

( i o , m ) T ( 1  _ A m a - i D  m z M  o , m  T m m m m = ) o.~ + (I  ) Q d A  Q D o  Z M 

= r~ m) + [ T ~  Z M .  

r~ + dA m) - rO,m(A m) 
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d A  m 
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B T h e  vec tor  forms of  eqs.  8 - 1 0  

The vector forms of eqs. 8-10 are defined as 

O R,~ Orl,m Oro,'~ COro~,,~ ), 

O~ o,, :p,, O~ o,,,r "' Oz o,,,r "' COZ o,, v,, 

OR "~ Or 1,'~ OrO,m OrO~,~ 
m, = (o m' ' " "  m' ' " "  m' ), and 

Oa(o,,v,),(o,,,v,, ) ~ ) ' Oa(o,,v,),(o,,,p,, ) ' Oa(o,v,),(o,,,v,, ) 
cORm Or 1,.~ cOro,,~ cOro~ ,m 

o,p, - ( O ~ , , . . . , ~ , o , , p , , . . . ,  o ,~ , ) ,  
Od , , ~  ~ , M  V ~  s , M  cOd , , ~  

where 
o r O ,  rrt 

O~ oU ,pU 

is element (o ' ,  p ' )  of vector ~ defined in eq. 8; 

Oro,m 
fr t  I 

Oa( o,,p, ),( o,,,p,, ) 

~ r o ,  rn 
is element [(o', p'), (o ' ,  p')] of the matrix o--A-w defined in eq. 9, and 

o r o ,  rr~ 

o I i 
Od ~ , ~  

O r o , m  
is element [(o',p'), (s, M)] of the matrix ~ defined in eq. 10. 


