
A Framework for
Performance Engineering during

Information System Development

Andreas L. Opdahl* and Arne Sr t
The University of Trondheim

andreaso@ifi.unit.no, asolvber@idt.unit.no

Abs t r ac t

Software performance engineering aims at predicting and improving the
performance of applications during development and in production. This paper
presents a framework for performance engineering of information systems with
emphasis on parameter estimation support.

The need for performance engineering of information systems is discussed.
Views of information system and performance modelling are presented. It is
shown how application specifcations can be extended with performance an-
notations. The resulting framework is applied to predict and improve the
performance of projected applications during development. Sensitivity analy-
sis is supported to point out performance bottlenecks in the application and
suggest which parameters to estimate with most care. Target platform mod-
elling is provided to relieve the information system developer from assessing
the performance of the target platform and operating system software. The
framework is realised in terms of the PrM language for software specification.
Finally, some conclusions are offered.

Introduct ion

Software performance engineering [Smi90, AWS91] aims at predicting and improv-
ing the performance of software during development and in production. Efficient
utilisation of information technology has become a decisive competi t ion factor in
industry and business. Although the price of computers is steadily decreasing, the
total hardware expenses are increasing along with the demand for computing power.

*Department of Informatics, Faculty of Nature Sciences, College of Arts and Sciences
tin:formation Systems Group, Department of Electrical Engineering and Computer Science,

The Norwegian Institute of Technology

66

As a result, hardware expenses have become visible at the organisation level, 'and
therefore a limited resource. At the same time, the price of unacceptable perfor-
mance has grown due to tightened market competition. New methods must be
applied to utilise the organisation's computer resources more efficiently.

This paper will present a framework for performance engineering of information
systems. The framework focuses on predicting the performance of projected appli-
cations during development. It has been developed with the goals of 1) integrating
the state of the art of information system development and performance engineer-
ing [OS92]; 2) supporting performance parameter estimation [Opd91b]; 3) inter-
acting with the capacity management process [Vet91], and 4) supporting database
design [OS81]. In addition, simplicity and generality has been emphasised. This
paper will focus on parameter estimation support in particular.

Although the framework is presented in a theoretical form, it has been developed as
a result of practical considerations and experience. A realisation of the framework
has been made in connection with the experimental integrated CASE tool environ-
ment PPP [GLW91]. A graphical interface for annotating PPP specifications with
performance parameters has been implemented, together with the basic associated
analysis techniques [Opd92b]. The tool has been developed as part of the IMSE 1
project, which provides state-of-the-art performance modelling tools at the computer
system level [tIP89]. A case study has been undertaken, using the framework and
tool to monitor the development of a commercial information system [BOVS91].

Views of information system and performance modelling are presented in sec. 1,
and application specifcations are annotated with performance parameters. The re-
sulting framework is applied to predict and improve the performance of projected
applications during development in sec. 2. Sensitivity analysis is supported to point
out performance bottlenecks in the application and suggest which parameters to
estimate with most care in sec. 3. Target platform modelling is provided to relieve
the information system developer from assessing the performance of the target plat-
form and operating system software in sec. 4 The framework is realised in terms of
the PrM language for software specification in sec. 5. Finally, some conclusions are
offered.

In the remainder of this paper, important terms are bold-faced when introduced.

1 The basic framework

The basic framework for performance engineering during information system devel-
opment is based on general views of information system and performance modelling,
as well as on annotating application specifications with performance parameters.

1The IMSE project was a collaborative research project supported by the CEC as ESPRIT
project no 2143. It was carried out by the following organisations :- BNR Europe STL, Thom-
son CSF, Simulog A.S., University of Edinburgh, INRIA, IPK (Berlin), University of Dortmund,
University of Pavia, SINTEF (University of Trondheim), University of Turin and University of
Milan.

67

. . . .o -r

operation'" ion

.....~
,,,ode,. ~ (~

(a)

n•n _ _ model ~ process

[~176176
(b) (c)

Figure 1: An application specification contains a DAG of models (a). A model
contains a set of processes (b). h non-primitive process has a submodel (c).

The three are treated in separate.

1 .1 I n f o r m a t i o n s y s t e m m o d e l l i n g

Fundamental to the basic framework is the view of information system modelling
presented in [OS92]. According to this view, an application specification S repre-
sents the projected application during development. No assumption is made about
the manner in which this specification is established, only that it exists in a con-
sistent state every time a performance prediction is to be made. An application
specification provides operations o resembling how the projected application will
provide funct ions to the organisation using it. Since the projected application is
likely to be complex, the specification is hierarchical, comprising a DAG (directed
acyclic graph) of models (fig. la). ~

A model m is a composite, dynamic, partial view of an application. A model
provides a set of operations, just like an application specification. It is composite
because it contains a set of processes (fig. lb). 3 Models may have submodels, and
models which are not submodels of any other models are top-level models. The set

2The framework has been developed in the context of dataflow diagram modelling, in which
cycles in submodel graphs are uncommon. Allowing cycles is a possible future extension of this
work.

3 Of course, most models will contain constructs other than "processes," e.g. "stores" and
"flows" in the dataflow based class of languages. However, these constructs are not relevant

68

application operations

~ top-level

Figure 2:OverM1 picture of the information system view.

of operations provided by an application specification corresponds to the operations
provided by its top-level models.

A process p is an atomic, dynamic, partial view of an application. A process provides
a set of operations, just like an application specification or a model. A process is
atomic because it is not a composition of something else in the way models are. 4
Note that the only difference between the definitions of model and process is that the
former is composite while the latter is atomic. This means that a process at one level
in the decomposition graph may correspond to a model at the next (fig. lc). Such a
model is the submode l of the process. Processes with no submodels associated with
them (yet) are primit ive. Other processes are non-primlt ive.

The operations provided by a model are the ex te rna l opera t ions of that model.
The operations provided by the processes contained in a model are its in terna l
operat ions .

Fig. 2 shows an overall picture of the information system view of this section.

1 . 2 P e r f o r m a n c e m o d e l l i n g

Complementary to the information system view of sec. 1.1 is the view of performance
modelling also presented in [OS92]. According to this view, a pe r fo rmance model
M abstracts a computer system. A performance model provides service centers s to

within the framework, which considers only the dynamics of the application specification.
~However, processes may have submodels containing other processes associated with them.

69

resources ~ ke ~ n a n n n

Real-world view Performance
modelling view

(a)

. ~' workload
/ / ,01 ~]imod.l[,

............... I | fT\ functions / ~a~.l~lwq~ / :
/ / ,./,.#,.,,,.,,, / I I Imodules I I i

_.~._L~_., _.~.~._.~.... ~
Real-world view Performance

modelling view

(c)

/ o rgan i sa t i nn / " - -D" I

.

L.~..~._....L!...__L~._..I t
P.eAI-world view

(b)
f%
)' ~unctlous

ppl~ati~

~,,m / [
Real-world view

(d)

workload
model

Performance
modelling view

operations

workload
module

- ~aters
performance
model

Performance
modelling view

Figure 3: Performance modelling views of performance model (a), workload model
(5), organisation workload (c), and workload module (c-d).

resemble how the computer system provides resources to the applications running
on it (fig. 3a). Examples of such resources are CPU's, disks, communication chan-
nels, and other hardware devices. The aim of performance modelling is to obtain a
performance predict ion through analysis of a performance model under a workload
model, just like the computer system exhibits a certain performance under some
workload.

A workload model W abstracts the projected and existing applications that (will)
run on a computer system and the organisation which uses (will use) them (fig. 35).
A workload model consists of an organisation workload and a set of workload modules
(fig. 3c).
An organisation workload O abstracts how often an organisation uses the functions
provided by the available applications. An organisation workload is a set of oper-
at ion intensities, which abstract how often an organisation uses a specific function
provided by an application. An operation intensity is either transaction, interactive,
or batch [LZGS84]. The set of operation intensities contained in the organisation
workload corresponds to the set of functions provided by the applications and used
by the organisation.

A workload module w abstracts how the functions provided by a projected or ex-
isting application use the resources provided by the computer system (fig. 3d). A
workload module provides operations to the organisation workload and uses the ser-
vice centers of the performance model. The set of operations provided by a workload
module corresponds to the set of functions provided by the application it abstracts,
just as for application specifications. The workload module of an application specifi-
cation S is represented as a module demand matr ix D t~ of average service center

70

uses. Each row of this matr ix represents an operation provided by the workload
module, and each row element represents a number of uses of a service centre of the
performance model.

1 . 3 A n n o t a t i n g a p p l i c a t i o n s p e c i f i c a t i o n s

To interface information system with performance modelling, the information sys-
tem view of sec. 1.1 must be extended so that a workload module D '~ can be derived
from an application specification S. For this purpose, three kinds of performance an-
notations are needed [0S92]. These are the initiation descriptions and the execution
descriptions for models, and the demand descriptions for primitive processes. Each
such description corresponds to annotations that must be added to the application
specification prior to performance analysis.

Initiation and execution descriptions together specify how many uses of each internal
operation of some model that correspond to one use of each of its external operations.
First, the initiation description specifies on average which internal operations are
used initially when each external operation is used. Then, the execution description
specifies on average which internM operations are used next when each internal
operation itself is used.

An ini t ia t ion descr ip t ion abstracts how each external operation on some model
initiates uses of its internal operations (fig. 4a). This defines the initial state of the
model for each of the operations it provides. The initiation description of a model m
is represented as an ini t ia t ion ma t r ix I ra of average initial internal operation uses.
Each row of this matr ix represents an external operation of the model, and each row
element represents an initial number of uses of an internal operation. The framework
requires initiation descriptions for all models in the application specification.

An execut ion descr ip t ion abstracts how each internal operation of some model next
lead to uses of other of its internal operations (fig. 4b). This defines the state tran-
sitions of the model. The execution description of a model m is represented as an
execu t ion ma t r ix 5 A m of average next internal operation uses. Each row of this ma-
tr ix represents an internal operation of the model, and each row element represents
a number of subsequent uses of an internal operation of the model. The framework
requires execution descriptions for all models in the application specification. This
means that creating both initiation and execution descriptions must be simple for a
realisation of the framework to be successful.

In addition to relating internal and external operations of models to one another,
a relation is needed between the operations of primitive processes and the service
centers of the performance model. A d e m a n d descr ip t ion abstracts how each op-
eration of a process or model requires uses of the service centers of the performance
model (fig. 4c). At this stage, we are only interested in the demand descriptions of
primitive processes.

5Note that this execution matrix is no~ a Markov matrix (or transition probability rna~
trix) [TK84], as its elements abstract transitions between processes rather than between s~a~es.

71

~176176
ooi~ initiation

(a)

0 0 0 model ~ ~ primitive
. ~ " ' % "" ~ I ; I P r~ / g -'~ .-'- x .-" . execuuon

I i I
.....~.~. ~ . ~. demand

E [o o, performance

(b) (e)

Figure 4: The initiation description relates uses of external operations to the inter-
nal operations used initially (a), the execution description relates uses of internal
operations to the internal operations used next (b), and the demand description re-
lates uses of operations of primitive processes to uses of performance model service
centers (c).

The demand description of a primitive process p is represented as a p r i m i t i v e de-
m a n d matr ix D ~ of average service center uses, where m is the model containing
p. Each row of this matrix represents an operation provided by the process, and
each row element represents a number of uses of a service centre of the performance
model. The framework requires demand descriptions for M1 primitive processes in
the application specification. This means that demand descriptions will be cre-
ated for close to every process of the application specification, since every process
is primitive at some point of application development. Therefore, creating demand
descriptions must also be easy for a realisation of the framework to be successful.

2 P e r f o r m a n c e p r e d i c t i o n

The goal of the basic framework is to predict the performance of projected applica-
tions during development. This section demonstrates how a workload module can be
derived from an annotated application specification, before considering performance
analysis and the performance measures it produces.

72

o o o
model ~ . - ~ - - _ _

/ " o o o "\

(a)

[~ non-primitive
E pr~

~ demand ~. demand
description T description

0 0 0 0 0 0

performance performance
model model

(c) (c)

Figure 5: The operation count relates uses of external operations to uses of inter-
nal operations (a), while the demand descriptions also relates uses of operations of
models (b) and non-primitive processes (c) to uses of performance model service
centers.

2 .1 W o r k l o a d m o d u l e d e r i v a t i o n

The three kinds of performance annotations presented in sec. 1.3 facilitate automat-
ically deriving a workload module from an annotated application specification S.
Workload module derivation proceeds through bottom-up collapsing of its decom-
position graph, starting with the lowest level of models. When all the submodels
of model m have been collapsed, an operation demand matrix D m is derived by O,n
stacking all its process demand matrlces on top of one another in the appropriate
order,

D'n
p l '

D m o.~ = , (1)
Drn p,~

since each internal operation of model m (represented by a row of DR..) corresponds
to an operation provided by some process Pi (represented by a row of Dp'~). An
operation count matrix C m for model m specifies how many times each internal
operation is used when each of its external operations are being used. It is derived
as (fig. 5a) [Low73, OS81]

C m = Ira(1 - A'~) -I, (2)

where 1 is the identity matrix, since the total number of internal operations used
(represented by C m) equals the sum of operations used initially (represented by I m)

73

and subsequently (represented by CmA m) so that

C m = I m + C'~A "~.

For the sensitivity analysis of sec. 3 we also define a process count matr ix C~ for
process p of model m, which specifies how many times each internal operation of
model m provided by process p is used when each of its external operations are used.
It is directly derived as the corresponding subset of columns of the operation count
matrix, since each column of C m corresponds to an internal operation provided by
one of its processes.

A model demand matr ix D "~ for the model is then calculated as (fig. 5b)

D m = C m D r . , (3)

since the total number of service centre uses D m is determined by 1) the number
of service centre uses of its internal operations (represented by the rows of D~m)
and 2) how many times each internal operation is used (represented by the columns
of Cm). If m is the submodel of process p of model m ~, its non-primit ive process
demand matr ix Dp is derived as (fig. 5c)

m ! Dp -- D m,

since the operations provided process p corresponds to the external operations of
its snbmodel m (both represented by the rows of D~" and Din). This prepares
for collapsing of model m ~ at the next-higher level of decomposition. When all the
top-level models of application specification S have been collapsed in this way, its
module demand matr ix D ws can be derived by stacking all its top-level model
demand matrices on top of one another in the appropriate order,

D m l ,

D W ~ ---- ~

DTV~n �9

again since each operation provided by the specification (represented by the rows of
D ws) corresponds to an operation provided by a top-level model of the specification
(represented by the rows of Drni).

Unless the computer system will be dedicated to the projected application, additional
workload modules must be created for each existing application running on the
computer system. Workload modules representing existing applications are similar
to those representing projected ones. All these additional workload modules, as well
as the corresponding organisation specifications, must be established by conventional
means [LZGS84, Fer78].

2 . 2 P e r f o r m a n c e a n a l y s i s

A performance analysis of the computerised information system can be undertaken
as soon as all the workload modules necessary have been derived or established. The

74

performance model used in this analysis must be created by conventional means. In
some cases, the performance model will already have been created for capacity man-
agement purposes, or as a result of previous performance engineering efforts. In
a wider "sense, performance models may be queueing networks, Petri-net models,
or written in special- or general-purpose simulation languages. Within the basic
framework, however, mean-value analysis (MVA) [LZGS84] of separable queueing
network models has been assumed for simplicity. Each operation provided by the
workload modules is represented as a c u s f o m e r class in this analysis. The corre-
sponding row of the module demand matrix, together with its operation intensity,
becomes a customer description of the class.

2 . 3 P e r f o r m a n c e m e a s u r e s

[LZGS84] identifies two groups of performance measures output from this analysis:
1) responsiveness measures, for the provided and existing applications which are
either a) response times r ~ for terminal operations, b) throughputs x ~ for batch
operations, or c) residence times r ~ for transaction operations o of application
specification S, and 2) service centre measures, for the computer system which
are either a) utilisations u s'M or b) sojourn times z ~,M for service centre s of
performance model M.

In this manner, performance predictions are obtained for the computerised informa-
tion system before the projected application is in production. The responsiveness
measures for the projected application indicate whether it will perform clearly ac-
ceptable or clearly unacceptable, or if further analyses based on refined application
specifications are needed. These measures may also be used to compare the perfor-
mance of alternative designs. The responsiveness measures for the existing appli-
cations predict to what extent their performance will be degraded by the projected
one. If 'the performance of some projected or existing application is unacceptable,
precautions can be taken before the projected application in put in production. Ser-
vice centre utilisations for the performance model indicate where bottlenecks will
be located. This information is useful if the computer system must be upgraded, or
in case some application must be optimised. In the latter case, its module demand
matrix predicts which resources it will use most heavily.

A service centre sojourn time predicts how much time a single use of the corre-
sponding computer system resource will take on average. The sojourn time vector
Z M for performance model M is defined as

z M = zsM,M). (4)

These sojourn times will become important in sec. 3.

Performance analyses should be carried out several times throughout application
development. The workload module representing the projected application must be
derived anew every time the application specification has been changed. However,
the operation intensities, workload modules for existing applications, as well as the
performance model, can be reused. This considerably reduces the effort involved.

75

3 Sensit ivity analysis

The basic framework of sec. 1 requires numerous parameters. Secs. 3 and 4 will
extend the framework to support estimation of performance parameters.

Sensitivity analysis on the residence times of a model is useful for determining:
1) which parameters that are most crucial to performance, thus focusing design and
code optimising effort, and 2) which parameters that must be estimated with most
care and which parameters are less important, thus focusing parameter capture effort
accordingly. Sensitivity analysis is either: 1) local, deriving the sensitivity of a model
residence time on parameters of that model, or 2) global, deriving the sensitivity
of a model residence time on parameters of its direct or indirect submodels. We
will treat the two in separate, after introducing the concept of residence times of
models. This section applies methods developed in [OS81], and extends them to
cover hierarchical modelling.

3 . 1 R e s i d e n c e t i m e s

A residence t ime vector R m for model m specifies how much time is spent when
each of its external operations are being used. It is derived as

R "~ = D m Z M, (5)

since each row of D "~ represents the number of times each performance model service
centre is used by model m when each of its external operations are used, and each
element of Z M represents how much t ime is spent per service centre use. By insertion
of eqs. 3 and 2 into eq. 5, we arrive at

Rm = r n (1 - Arn~-ID'~/ o . . Z M , and (6)

r ~ = (I~ A m~-l~m Z M , (7)

for the residence time r ~ of operation o on model m, where I ~ is the o' th row
vector of I m and r ~ is the o'th element of R m . These equations define the residence
times of a model in terms of its initiation and execution descriptions, and in terms
of the demand descriptions of its processes.

3 . 2 L o c a l s e n s i t i v i t y a n a l y s i s

The sensitivities of the residence time of operation o on model m can now be deter-
mined by differentiation of eq. 7. The sensitivities of residence time r ~ on initiation
row vector I ~ on execution matrix A "~ and on operation demand matr ix D m ' Om
become

~ro,rr~
(1 m -1 m - - A) D o m Z M, (8) 0/o,-~

~rO,rr~
-- [(1 - A m) - I] T I ~ -- Am)- l] T, and (9)

0A m

76

Or oJ m

-- [(1 - A r n) - I] T I ~ (10)

O r o , m
where the non-trivial derivation of ~ is outlined in appendix A. Appendix B
accordingly defines (trivial) vec tor f o r m s of eqs. 8-10 which are necessary in sec. 3.3.

These vector equations provide all local parameter sensitivities on r ~ with a min-
imum of calculation. A local sensitivity analysis for model m implies calculating
the sensitivities of all its parameters and sorting the results. Top parameters in the
sorted list are most important to the model residence time, while middle and lower
rank parameters can be regarded as unimportant. In this way, sensitivity analysis
not only suggests which parameters to estimate with most care, but also points out
where design and code optimisations will have the most impact, as already men-
tioned.

3 . 3 G l o b a l s e n s i t i v i t y a n a l y s i s

The equations of sec. 3.2 defined the sensitivities of the residence times r ~ for
model ml on all its parameters. However, these residence times may also depend on
parameters of the direct and indirect submodels m,~ of model rnl. This case calls
for global sensitivity analysis, as opposed to local.

Let r ~ be the residence time for operation o on model ml and let x "~ be a
scalar parameter of one of its direct or indirect submodels mn. Assuming that the
decomposition graph of the application specification is a tree 6, the sensitivity of
residence time vector R "~1 = (r~ r ~ on x "~ is derived as [Opd91b]

ORm~ ORrn~
Oxm, " - C ; , C~2 . . ' C m'~-'p,~_, Ox,~,, , (11)

where ~ is one of the vector forms 7 of eqs. 8, 9, and 10 defined in appendix B, and
the process count matrices Cp'~ ~ were defined in see. 2.1, and model m i + l decomposes
process pi of model m i , i ..~ 1 . . . n - 1.

An exhaustive global sensitivity analysis for model m implies calculating the sensi-
tivities of all its parameters, as well as all the parameters of its direct and indirect
submodels, and sorting the results. Again, top parameters in this list are most im-
portant to the model residence times, while middle and lower rank parameters can
be regarded as unimportant.

An important special case of global sensitivity analysis is the overa l l sens i t iv-
i t y ana lys is , which is an exhaustive global sensitivity analysis for all the top-level
models of an application specification. Although the equations of this section have
been designed to be computationally efficient, the cost of performing an exhaus-
tive sensitivity analysis may become prohibitive due to the possibly large number
of parameters involved. Methods to reduce the search space should be sought for.

s [Opd91b] also considers the more general case where the decomposi t ion g raph is a DAG.
7 . . . depending on whether x m'~ is an initiation, execution, or d e m a n d ma t r ix element.

77

The simplest approach is of course to restrict the scope of a global sensitivity anal-
ysis to 1) certain kinds of parameters or 2) certain levels of decomposition only.
[Opd91b] also extends the framework with residence time analysis to provide some
of the sensitivity analysis support at lower computational cost.

3 . 4 P e r f o r m a n c e m o d e l s e n s i t i v i t y a n a l y s i s

A single parameter of the annotated application specification is not likely to have
major impact on the overall workload generated by the application. Therefore, the
performance model sojourn time vector Z M of eq. 4 can be regarded as constant
during sensitivity analysis. However, if this assumption does not hold, the Z M
vector will vary slightly when application specification parameters are changed. In
particular, this may be the case for initiation and execution matrices of higher-level
models in the specification. A forthcoming paper [Opd92a] will address this topic
in detail, providing exact sensitivity analysis for combined software and hardware
performance models. Hence, it must be kept in mind that the sensitivities calculated
from eqs. 8-11 are only approximations in such cases.

4 Target platform modelling

Sec. 3 introduced sensitivity analysis to support performance parameter estimation,
based on the assumption that some parameters already had been estimated. This
section makes parameter estimation easier in the first place by extending the basic
framework with target platforms.

So far, we have annotated application specifications with resource demand estimates
in terms of computer system resources. This creates two main problems:

�9 Today there is a tendency to build software by putting together existing com-
ponents [Sr Vet91]. Common examples of such components are high-level
languages (HLL's), database management systems (DBMS's), and screen han-
dlers constituting the target platform software of the projected application.
This means that an application is specified in terms of target platform func-
tions rather than in terms of resources at the computer system level.

This makes the framework difficult to apply because: 1) application developers
are not used to think in terms of computer system resources, and it is diffi-
cult for them to annotate application specifications in terms of such low-level
concepts, and 2) assessing the performance of the target platform software,
e.g. an optimised relational database management system, is a very specialised
task.

�9 Every application running on a computer system induces operating system
overhead on that computer system. Common examples of such overhead are
the workloads of virtual memory managers, dispatchers, and interrupt han-
dlers constituting the operating system software of the computer system.

78

(.) (.)

Figure 6: A target platform model (a), and composite workload model (b).

This means that the resource annotations of an application specification must
include estimates of the induced operating system overhead for the derived
workload module to be correct.

Again, this makes the framework difficult to apply because: 1) application de-
velopers are not used to take the performance of the operating system software
into consideration when designing applications, and 2) the operating system
overhead of an application is not fixed for that application, but a function of
the total workload on the computer system. This workload is produced both
by the projected application and by other, already existing applications.

All the above difficulties conflict the aim of making performance engineering closely
integrated with information system development.

4 .1 T h e t a r g e t p l a t f o r m m o d e l

The framework therefore introduces target platform modelling to avoid the above
problems. A target platform model P abstracts the target platform and operating
system software of a computer installation. A target platform model provides oper-
ations, just like application specifications, models, and processes. Since the target
platform and operating system software is likely to be complex, the target platform
model is again hierarchical, comprising a DAG of workload modules (fig. 6a).s

As in the basic framework, we derive a workload module from the annotated ap-
plication specification, and establish additional workload modules for each existing

8This view of workload modelling is based on Hughes' sp approach [Hug88].

79

application by conventional means. The resulting workload model therefore consists
both of 1) top-level application workload modules and 2) lower-level target plat-
form workload modules (fig. 6b). In contrast to the workload models of sec. 1.2, a
composite workload model W thus comprises a DAG (as opposed to a set) of work-
load modules. The target platform model (without workload modules representing
applications), is itself a composite workload model in this sense.

In this way, target platform modelling resolves the problems stated at the beginning
of this section:

The higher-level target platform workload modules correspond to the target
platform software components that the projected application will be imple-
mented upon, typically a high-level language (HLL), a database management
system (DBMS), and a screen handler. Each top-level target platform module
provides operations that the application workload modules use. Thus instead
of annotating the primitive processes of the application specification in terms
of performance model service centre uses, we supply them with demand de-
scriptions in terms of target platform operations.

The lower-level target platform workload modules correspond to the operat-
ing system software components of the computer system, such as the virtual
memory manager, the dispatcher, and the interrupt handler. Thus instead
of having to include estimates of the induced system software workload in
the demand descriptions, the overhead is automatically calculated during the
workload model analysis of sec. 4.2.

4 . 2 W o r k l o a d m o d e l a n a l y s i s

The composite workload model resulting from target platform modelling must be
analysed prior to performance analysis. Analysis proceeds through bottom-up col-
lapsing of its module graph with repeated matrix multiplications, much as in the
workload derivation of sec. 2.1. The outcome is a collapsed module demand matrix
D ~~ for each application workload module w of the workload model. These matrices
constitute the workload modules representing the projected and existing applica-
tions. The workload modules are applicable for performance analysis according to
sec. 2.2.

4 . 3 I n t e r f a c e w i t h s e n s i t i v i t y a n a l y s i s

Apart from the additional workload model analysis prior to performance analysis,
target platform modelling does not require modifications of the basic framework.
However, to combine the sensitivity analysis technique of sec. 3 with target plat-
form modelling, we need to redefine the concept of residence times of operations
on models. Sec. 3.1 defined these times in terms of service centre sojourn times.
Since target platform modelling replaces the concept of performance model service
centres with target platform operations, we need to introduce the new concept of

80

platform estimates Z ~ representing the sojourn time of operation o provided by
target platform P. Again, a target platform operation sojourn time predicts how
much time a single use of the corresponding target platform function will take on
average.

To provide such platform estimates we first need perform a target platform analy-
sis. Target platform analysis proceeds exactly like the workload model analysis of
sec. 4.2, with the top-level application workload modules removed. The outcome is
a platform demand matrix D P for target platform P.

We now define the platform estimate vector Z P = (z l ' P , . . . , z ~ for target
platform P as

Z P = D P z M, (12)

since 1) each row of D R represents the number of times each performance model
service centre is used when each target platform operation is used, and 2) each
element of Z M represents how much lime is spent per service centre use.

Sensitivity analysis now proceeds with platform estimates z ~ and Z P replacing the
computer system resource sojourn times z s'M and Z M. This substitution, however
convenient for the purpose of sensitivity analysis, is not obvious. [Opd91b] presents
two alternative techniques for validating this platform estimate assumption.

4 .4 D a t a b a s e o p t i m i s a t i o n

The critical point in establishing a target platform model, is representing the op-
timised database management system (DBMS) as a workload module. [BO91,
BOVS91] discusses alternative parameter capture strategies for an SQL-type DBMS
in the context of a practical case study. Wieland [Wie91] has established and vali-
dated a workload module specification for simple queries on the INGRES relational
database system. This is a topic for further research.

5 A rea l i sa t ion of t he f r a m e w o r k

This paper has presented a framework for performance engineering during informa-
tion system development based only on a minimal set of requirements about the
development methodology and modelling language used. Isolating the framework in
a linear algebra representation, as has been done, ensures its generality. In principle,
it can be interfaced with any operationally oriented and hierarchic methodology for
information system development, and with any performance evaluation method. To
demonstrate the practicalness of the approach, a realisation of the framework has
been made in connection with the IMSE environment for performance evaluation
and the experimental integrated CASE tool PPP.

The I M S E is an integrated modelling support environment for performance eval-
uation. It focuses on 1) availability of state-of-the-art performance evaluation meth-

81

I
The IMSE

SDMF

PPP

Graphical Interface

Common Database OMS I

Figure 7: The performance modelling and analysis support provided by the IMSE
made available to the PrM tool user.

ods through easy-to-use graphical interfaces, and 2) integrating and supporting the
performance evaluation methods through a common set of utilities. The IMSE builds
on existing performance evaluation tools for workload derivation [CS85], workload
modelling [Hug86], queueing networks [Pot85], Petri-net models [BC89], and special-
purpose simulation [PB88]. In addition, the IMSE provides a set of environmental
tools supporting execution of static and dynamic performance models, animation of
model executions, automated support for planning and performing experiments, and
generation of reports from experiments. The IMSE tools share a support environ-
ment containing a graphical user interface system and a common object management
system.

P P P (processes, phenomena, and programs) is an experimental integrated CASE
tool for information system development [GLW91]. It focuses on 1) formality to fa-
cilitate early verification and validation as well as automated model-to-model trans-
lation and code-generation, and 2) integration between the modelling tools used, and
between different phases of development) PPP builds on well-known approaches to
information system development, such as top-down design and the DFD and ER
paradigms.

In particular, the PrM language [BCSA86] of PPP is a formalised extension of
dataflow diagrams, avoiding several of their imprecisenesses by introducing 1) flow
of control as well as data flow; 2) triggering and termination to define process
dynamics; 3) port connectives to define what is consumed and produced by each
process per execution, and 4) operations to distinguish between different ways of
triggering a process or a model. A PrM tool has been implemented as a realisation
of the framework of this paper. Fig. 7 depicts how the IMSE and PPP environments

9And between the problem analysis and design phases in particular.

82

can be integrated through the PrM tool, which lets PrM specifications be annotated
with performance parameters. The tool automatically generates IMSE workload
models from annotated application specifications, using the algorithm of sec. 2.1.

Conclus ions

The need for performance engineering of information systems was discussed. Views
of information system and performance modelling were presented in sec. 1, and ap-
plication specifcations were extended with performance annotations. The resulting
framework was applied to predict and improve the performance of projected applica-
tions during development in sec. 2. Sensitivity analysis was supported to point out
performance bottlenecks in the application and suggest which parameters to esti-
mate with most care in sec. 3. Target platform modelling was provided to relieve the
information system developer from assessing the performance of the target platform
and operating system software in sec. 4 The framework was realised in terms of the
PrM language for software specification in sec. 5.

In the introduction, the goals of the framework were stated as 1) integrating the
state of the art of information system development and performance engineering;
2) supporting performance parameter estimation; 3) interacting with the capacity
management process, and 4) supporting database design.

Concerning the first one, [OS92] has presented a conceptual integration of informa-
tion system and performance modelling. This paper has focused on meeting the
second of the goals. Furthermore, [Opd91b] extends the framework with additional
techniques for a) residence time analysis which suggests which parts of the appli-
cation to annotate; b) bounds analysis as an alternative to average analysis early
in the design, and c) parametric analysis in case obtaining one or a few parameters
is infeasible. The third goal of relating capacity management to the framework is
discussed in [Vet91, BOVS91], while database design has been treated in [OS81].
Thus while work remains on the latter two, two of the goals have been met so far.
Furthermore, a tool has been implemented to support the framework [Opd92b], and
has been applied in a practical case study [BO91].

Composite workload models for the organisation's software systems can be used
to balance workload between the available computers while controlling application
response times. Alternative hardware configurations can be evaluated and compared.
Workload modules for projected applications can be combined with models of the
existing ones, and the hardware resources can be extended at the right moment.
The performance of the projected application is continuously monitored throughout
development. Good resource utilisation is ensured and it is made clear where the
design and code may be improved.

The framework is an advancement on contemporary approaches to performance en-
gineering of information systems in the areas focused on. The framework gains on
its simplicity, generality, and emphasis on parameter estimation support. The most
important advancement, however, is integrating the information system and perfor-

83

mance modelling fields at the conceptual level and at the tool level. This facilitates
bringing together recent advances in performance modelling with integrated CASE
tools for information system development.

The complexity of contemporary information systems will continue to increase along
with the organisation's dependency on them. Controlled, tool-supported manage-
ment of the computer resources will therefore give the organisation an increasing
competitive edge in the future.

Acknowledgement

We would like to thank the edp-personnel at The Regional Hospital in Trondheim,
Tandem Computers in Trondheim and Oslo, and Twinco in Oslo for their continuing
support and supply of information throughout this work.

References

lAWS91]

[BC89]

[BCSA861

Reda A. Ammar, J. Wang, and H. A. Sholl. Graphic modelling tech-
nique for software execution time estimation. Information and Software
Technology, Vol. 33, No. 2, Butterworth-Heinemann Ltd., March, 1991.

Gianfranco Balbo and Giovanni Chiola. Stochastic Petri net simulation.
Technical report, University of Turin, 1989.

S. Berdal, S. Carlsen, A. S01vberg, and R. Andersen. Information system
behaviour expressed through process port analysis. Technical report,
Division of Computer Science, The Norwegian Institute of Technology,
1986.

[Ber84] Margaret E. Berry. The best of both worlds: An integrated approach to
capacity planning and software performance engineering. Proc. Computer
Measurement Group Conference XV, San Fransisco, pages 462-466, Dec.
1984.

[BO91] Gunnar Brataas and Andreas L. Opdahl. Deriving workload models of
projected software: A case study. Technical report, IMSE Project Report
R6.6 - 9, Version 1, The Norwegian Institute of Technology, October 23,
1991.

[BOVS91]

[cs85]

Gunnar Brataas, Andreas L. Opdahl, Vidar Vetland, and Arne Sr
Information systems: Final evaluation of the IMSE. Technical report,
IMSE Project deliverable D6.6 - 2, Version 1, SINTEF (Unversity of
Trondheim), December, 1991.

M. Calzarossa and G. Serazzi. A software tool for the workload analysis.
Proceedings from 'Modelling Techniques for Performance Analysis', 1985.

[FerZ8]

[GLW91]

[HP89]

[HugS3]

[Hug86]

tHug88]

[LOSS8]

[Low73]

[LZGS84]

[Opd91a]

[OpdOlb]

[Opd92a]

[Opd92b]

84

Domenico Ferrari. Computer Systems Performance Evaluation. Prentice-
Hall, Inc., Englewood Cliffs, New Jersey 07632, 1978.

Jon Atle Gulla, Odd Ivar Lindland, and Geir Willumsen. PPP - - An
integrated CASE environment. Proceedings of "CAiSE91, Trondheim,
Norway", May 1991.

Peter H. Hughes and Dominique Potier. The integrated modelling sup-
port environment (ref. rl.2-3 vet. 1). Presented at the ESPRIT-Week,
Briissels, 1989.

Peter H. Hughes. A structural analysis of information processing systems
(with applications to the sizing problem). Technical report, no. 28/83,
Division of Computer Science, The Norwegian Institute of Technology,
June, 1983.

Peter H. Hughes. Notes on system structure and performance specifi-
cation. Technical report, The Norwegian Institute of Technology, April,
1986.

Peter Hughes. sp principles. Technical report, STC Technology Ltd.
o59/ICL226/0, July 1988.

Odd Ivar Lindland, Andreas L. Opdahl, and Guttorm Sindre. PPM - -
The process ~ phenomenon model. Proc' Infotech '88, Oslo, 1988.

T. C. Lowe. Analysis of an information system model with transfer penal-
ties. IEEE Trans. Comput C-22, pp. ~69-~80, 1973.

Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C.
Sevcik. Quantitative System Performance: Computer System Analysis
Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 07632, 1984.

Andreas L. Opdahl. Deriving workload models of projected software:
Basic framework. Technical report, IMSE Project Report R6.6 - 8, Ver-
sion 2, The Norwegian Institute of Technology, October 23, 1991.

Andreas L. Opdahl. Deriving workload models of projected software:
Parameter estimation support. Technical report, IMSE Project Report
R6.6 - 10, Version 1, The Norwegian Institute of Technology, October
23, 1991.

Andreas L. Opdahl. Sensitivity analysis of combined software and hard-
ware performance models. Not yet published, 1992.

Andreas L. Opdahl. A CASE tool for performance engineering during
software design. Proceedings of "The Fifth Nordic Workshop on Program-
ming Environment Research", Tampere/Finland, 8-10 January, 1992.

85

[0S81]

[OS92]

[PB88]

[Pot85]

[San77]

[SB75]

[Smi80]

[Smi90]

[Sr

[TK84]

[Vet91]

[Wie91]

tIarald Oftedahl and Arne Sr Data base design constrained by
traffic load estimates. Information Systems, Vol. 6, No. 4, PP. 267-282,
1981.

Andreas L. Opdahl and Arne Sr Conceptual integration of infor-
mation system and performance modelling. Proceedings of IFIP WG 8.1
Working Conference on: "Information Systems Concepts: Improving the
Understanding", Alexandria/Egypt, 13-15 April, 1992.

R. a. Pooley and M. W. Brown. A diagramming paradigm for hierarchical
process oriented discrete event simulation (ref. csr-254-88). Technical
report, University of Edinburgh, January 1988.

Dominique Potier. New users introduction to QNAP2. Technical report,
Rapport technique 40, INRIA, 1985.

John Winston Sanguinetti. Performance prediction in an operating sys-
tem design methodology. Technical report, Ph.D. Thesis, University of
Michigan, 1977.

Howard A. Sholl and Taylor L. Booth. Software performance modelling
using computation structures. IEEE Transactions on Software Engineer-
ing, Vol. SE-1, No. 4, December, 1975.

Connie U. Smith. The prediction and evaluation of the performance of
software from extended design specifications. Technical report, Ph. D.
dissertation, Department of Computer Sciences, The University of Texas
at Austin, August, 1980.

Connie U. Smith. Performance Engineering of Software Systems.
Addison-Wesley Publishing Company, 1990.

Arne Sr Integrated modelling and support environments for in-
formation systems. Paper presented at the 23rd Newcastle-upon- Tyne In-
ternational Seminar on ~the Teaching of Computing Science at University
Level, 1990.

Howard M. Taylor and Samuel Karlin. An Introduction to Stochastic
Modeling. Academic Press, Inc., 1984.

Vidar Vetland. Deriving composite workload models of existing software.
Technical report, IMSE Project Report R6.6 - 7, Version 1, The Norwe-
gian Institute of Technology, 1991.

Peter Wieland. Performance modelling and performance measurements
of a relational dtabase management system. Technical report, Diploma
Thesis, The Norwegian Institute of Technology, The University of Trond-
heim, 1991.

86

A D e r i v i n g e x e c u t i o n m a t r i x d e r i v a t e s

The sensitivity of r ~ on execution matrix A m becomes

O r ~ m) _ r ~ ~ + dA m) - rO,~(Am)
cgA m dA m

We have [OS81]

r~ m + d A m)

We set

and get

r ~ m + dA m)

This means that

0ro,~(A m)
0A m

(i o , m) T (1 A m m - : m = - - d A) D o Z M

(r , m) r [0 Am)(t (t m - 1 ~ - 1 m A) dA)] D o Z m

= (I ~ -- (1-- A m) - : d A m) - l (1 - Am~-ID m 7M
] O , ~ ~ �9

q- = (:-Am) -~

= (I ~ Q m d A m) - l Q m D ~ Z M
o o

o , m T m m i m m M = (I) [E (Q dA)] Q D o Z
i = 0

= (I~ + Q m d g m + (QmdAm)2 + . . .] Q ' ~ D ~ Z M
o , m T m m Z M o , m T m m m m = (I) Q Do. +(I) q dA q Do Z M

(i o , m) T (1 _ A m a - i D m z M o , m T m m m m =) o.~ + (I) Q d A Q D o Z M

= r~ m) + [T ~ Z M .

r~ + dA m) - rO,m(A m)
d A m

o , m T m m m m m (I) q dA Q D o Z

d A m
o , m T m T rn rn M T = [(I) Q] [Q D o , Z]

m T o,m M T O m T m T = (q) I (z) (o .) (q)
A m ~ - : I T I o , . ~ r z M ~ T ~ D m ~Tryl Am)-:]T. = [(1 - - ~ } j ~ J ~ O.J t', ~ -

Q.E.D.

87

B T h e vec tor forms of eqs. 8 - 1 0

The vector forms of eqs. 8-10 are defined as

O R,~ Orl,m Oro,'~ COro~,,~),

O~ o,, :p,, O~ o,,,r "' Oz o,,,r "' COZ o,, v,,

OR "~ Or 1,'~ OrO,m OrO~,~
m, = (o m' ' " " m' ' " " m'), and

Oa(o,,v,),(o,,,v,,) ~) ' Oa(o,,v,),(o,,,p,,) ' Oa(o,v,),(o,,,v,,)
cORm Or 1,.~ cOro,,~ cOro~ ,m

o,p, - (O ~ , , . . . , ~ , o , , p , , . . . , o ,~ ,) ,
Od , , ~ ~ , M V ~ s , M cOd , , ~

where
o r O , rrt

O~ oU ,pU

is element (o ' , p ') of vector ~ defined in eq. 8;

Oro,m
fr t I

Oa(o,,p,),(o,,,p,,)

~ r o , rn
is element [(o', p'), (o ' , p')] of the matrix o--A-w defined in eq. 9, and

o r o , rr~

o I i
Od ~ , ~

O r o , m
is element [(o',p'), (s, M)] of the matrix ~ defined in eq. 10.

