A Browser for Software Reuse

Panos Constantopoulos and Elena Pataki

Institute of Computer Science
Foundation of Research and Technology - Hellas
Heraklion, Crete, Greece
e-mail: {panoslpataki} @csi.forth.gr

Abstract

One important aspect of software reuse is the organization of collections of reusable software
artifacts. The Software Information Base (SIB), developed within the ESPRIT project ITHACA,
provides a directory to reusable software by storing information about software objects concerning
the entire software life-cycle, namely requirements, design and implementation descriptions, as well
as aggregate representations of complete systems and application domains. The SIB has an attri-
buted graph structure. The selection of artifacts from the SIB, either directly or through other
software development tools, is performed using a specialized Selection Tool (ST). In this paper we
present the design and functionality of the Selection Tool. The main search mode supported by the
Selection Tool is browsing. It is a flexible navigation process that takes full advantage of the
knowledge representation mechanisms underlying the SIB semantic network, and provides local
search of controllable size, direct access to specific areas or objects in the SIB, filtering mechanisms,
and orientation aids. The information stored in the SIB and displayed by the Selection Tool is mul-
timedia. The representational issues addressed by the SIB - ST system, as well as the relationship
between the ST and hypertext systems are discussed.

1 Introduction

Software productivity is far from being considered satisfactory and several alterna-
tives for improving it are being explored [1,5,21]. Reusing software components is a
natural and very appealing idea, since the reuse of artifacts is encountered in all technical
endeavours. Object-oriented programming, software libraries, Al-based design methods
and organizational support are but some approaches to software reuse. On the other hand,
it is commonly accepted that software reuse concerns not only code but the entire
software development process, including requirements analysis, design, implementation
and the development experiences gained in all stages. Thus source code is only one part
of a reusable software object.

This paper presents the tool used for selecting software objects in connection with a
software information base. The Software Information Base (SIB) is intended to store
information about requirements, designs and implementations of software and supports
selection of software through an associated Selection Tool (ST).

The whole system (SIB-ST) has been developed within the context of the ITHACA
project, a large software engineering project sponsored by the European Communities
through the ESPRIT programme, which aims at developing an integrated application

305

development environment based on object-oriented techniques. The ITHACA environ-
ment includes an object-oriented programming language and database, application
development and support tools, and an evolving software base [8, 9, 33].

As the name indicates, the Software Information Base (SIB) stores information
about software components, not the components themselves. It is meant to serve as a
directory to a collection of software components in order to facilitate their reuse. Informa-
tion about the early stages of software construction (requirements analysis, design) is
important because any necessary modification of an object is easier to identify at those
stages. The representation language used in the SIB is Telos [22]. This is an E-R based
language specifically designed for the development of information systems. The prefer-
ence for Telos over other extended E-R models is due to its treatment of metaclasses and
attributes. The organization of the SIB is based not only on the usual conceptual modeling
principles of classification, generalization and aggregation, but also on principles address-
ing particular user and methodological needs, such as modularization, versioning, seman-
tic similarity and others. Besides, the contents of the SIB actually are multimedia objects
created and used by different development tools which require them to be presented in
corresponding particular forms (e.g., E-R diagrams, data flow diagrams).

The Selection Tool (ST) is the main communication point between the SIB and the
external world, i.e. users and other software development tools (e.g. the ITHACA Visual
Scripting Tool [23]. Its task is to extract information from the SIB and to provide an
interface for presenting this information in an appropriate way. The ST views the SIB as
an abstract data type through the SIB Query Processor. The latter filters the SIB and
passes the information to the ST for further processing.

The ST has two major functional parts. A querying mechanism filters the SIB to
produce a subset of it possibly containing candidates for reuse. A browser allows viewing
parts of the SIB at various levels of detail and navigating in a hypertext-like fashion
through them. The filtering and browsing functions are actually interleaved in the opera-
tion of the ST.

Choosing a software component for reuse from the SIB is an ill-structured decision
problem and there is no "best" solution to it that an automated procedure could find. There
are subjective factors in judging the suitability of a software component for reuse, there-
fore the user will eventually have to examine a set of candidates in order to select the one
that best fits his needs.

Browsing suggests itself as a natural mechanism not only for examining a query
answer set containing potential candidates for reuse, but also for exploring a subset of the
SIB in small steps. Indeed, browsing is a navigational search process that exploits the
references established between objects by the SIB structuring principles. The structure of
the SIB is designed to be rich enough to ensure the effectiveness of browsing which, in
view of the uncertain nature of the software selection process, is the search mode of
choice. As we shall see, the browser of the SIB has a substantial resemblance to a hyper-
text system. Consequently, the ST has the functional advantages of hypertext systems yet
it also has to deal with their problems.

In section 2 we introduce the contents and structure of the SIB and the selection
mechanisms. In section 3 we describe the functionality and current implementation of the

306

Selection Tool. In section 4 we discuss the relationship of the ST with hypertext systems
and planned further development.

2 Description and Selection of Reusable Software

The SIB contains information about software objects in the form of a variety of
descriptions of software objects and semantic relations that hold among them. Moreover,
aggregations of descriptions pertaining to specific systems or even to entire application
domains are defined as Application Frames. The notion of the Application Frame (AF) is
central to the scenario for software reuse adopted in ITHACA [8, 33].

2.1 Structure of the SIB

The exposition in this subsection mostly follows [10]. The SIB is structured as an
attributed directed graph the nodes and links of which represent descriptions of software
objects and semantic relations respectively.

There are three kinds of descriptions:
° requirements descriptions (RD);
° design descriptions (DD); and
. implementation descriptions (ID).
These descriptions provide three corresponding views of a software object:
° an application view, according to a requirements specification model (e.g., SADT);

° a system view, according to a design specification model (e.g., data flow diagram);
and

° an implementation view, according to an implementation model (e.g., set of C++
classes together with documentation).

Descriptions can be simple or composite, consisting of other descriptions. The term
descriptions reflects the fact that these entities only describe software objects. The objects
themselves reside outside the SIB. Descriptions are related to each other through a
number of semantic relations listed below. In addition to the usual isA, instanceOf and
attribute relations supported by object-oriented data models and knowledge representation
schemes, several special attribute categories have been defined for the purposes of the
SIB. The SIB is defined, as mentioned, in terms of the Telos knowledge representation
language which supports creating an infinite instantiation hierarchy and treats attributes as
objects in their own right (which, therefore, can also have attributes). These features of
Telos are fully exploited in structuring the SIB.

The following relations are supported in the SIB (the link names are those appearing on
the ST interface, see fig. 1):

(1) Auribution, represented by attribute links. This is a general, rather unconstrained
representation of semantic relations, whereby the attributes of a description are defined to
be instances of other descriptions. An attribute can bave zero or more values.

Example:

Description SoftwareObject with
attributes

307

author: Person
version: VersionNumber

Software Object has attributes author and version whose values are instances of Person
and VersionNumber respectively.

(2) Aggregation, represented by hasPart links. This relates an object to its components
which have to be objects of the same kind.
Example:

Description SoftwareObject with
hasPart
components: SoftwareObject

The components of an object have a distinct role in the function of the object and
any possible changes to them affect the aggregate object as well (e.g., new version).

(3) Classification, represented by instanceOf links. Objects sharing common properties
can be grouped into classes. An object can belong to more than one classes. Classes them-
selves are treated as generic objects which their members are instances of and which, in
turn, can be instances of other, more generic objects. In fact, every SIB object has to be
declared as an instance of at least one class. Thus, an infinite classification hierarchy is
established starting with objects that have no instances of their own, called tokens. Multi-
ple instantiation is allowed. Instantiation of a class involves instantiating all the associated
semantic relations. Thus relations are treated as objects themselves.

Example:

Description BankIS instanceOf SoftwareObject with
author
Panos
version
0.1
components
CustomerAccounts, Credit, Investments

The attribute and hasPart links of BankIS are instances of the corresponding attribute and
components links of SoftwareObject.

Classification is perhaps the most important modeling mechanism in the SIB ([34], and
[25] give a detailed account of the construction of models and descriptions in the SIB).

(4) Generalization, represented by isA links. This allows multiple, strict inheritance of
properties between classes leading to the creation of multiple generalization hierarchies.
A class inherits all the attributes of its superclasses (one or more, multiple inheritance),
however inherited properties can only be constrained, not overridden (strict inheritance).

(5) Correspondence, represented by correspondsTo links. A software object can have
zero or more associated requirements, design and implementation descriptions. In fact, a

308

requirements specification may generate more than one alternative designs and a design
may give rise to more than one implementations. Correspondence links denote such
correspondences between requirements, design and implementation descriptions of a sin-
gle software object.

Correspondence links define the internal structure of application frames. An Appli-
cation Frame (AF) is a construct of coarse granularity in the SIB which represents a com-
plete system or family of systems and comprises (hasPart) at least one implementation
and optional design and requirements descriptions. Thus AF’s encapsulate all the infor-
mation pertaining to specific applications regardless of complexity (e.g., inventory moni-
toring or complete production planning and control system). In addition they support a
natural organization of the SIB by application domain.

(6) Similarity, represented by similarTo links. The similarity relation is defined between
objects of the same kind (i.e., RD, DD, ID, or AF) and has two attributes: a similarity cri-
terion and a similarity measure. Two objects are said to be similar with respect to some
criterion if they can substitute one another with regard to this criterion. The similarity cri-
terion can be endogenous, defined in terms of relations already stored in the SIB, or exo-
genous, provided by the user who specifies a particular similarity link. Accordingly, simi-
larity links can be computed or user-defined. The similarity measure expresses the degree
to which the substitution of two similar objects, in either direction, is satisfactory and is a
number in the range [0,1]. The similarity criterion is a mandatory attribute while the
measure is optional.

Similarity links give rise to equivalence classes, possibly endowed with their own
internal distance measures, which can support the application of analogical reasoning in
software reuse and development.

(7) Specificity, represented by specialCaseOf links. This relation is defined only between
application frames to denote that one application frame is less parameterized than another.
E.g., a bank accounting and a hotel accounting application frame could both be derived
from a more general, parametric accounting application frame,

2.2 Selection in the SIB

The SIB system offers a number of maintenance, selection and workspace manage-
ment functions. Maintenance functions include insertion, deletion and update of informa-
tion in the SIB and are supported by appropriate textual and graphical editors. Selection
functions include querying and browsing the SIB for purposes of selecting reusable
artifacts. And workspace management involves the dynamic definition and modification
of workspaces to provide easier and more efficient interaction with the SIB [8].

The selection of software descriptions from the SIB is accomplished through the
Selection Tool (ST) and it is an iterative process comprising alternate stages of retrieval
and browsing. Browsing usually is the final and often the only stage of the process. The
functional difference between the retrieval and the browsing mode is that the former sup-
ports the retrieval of an arbitrary subset of the SIB while the latter supports local explora-
tory searches withing a given subset of the SIB. Operationally, both selection modes
address queries to the SIB.

309

Seen as operations on an abstract data type, the selection functions can be defined
as follows [10]:
Retrieve: Query x Associations — SetOf (Descriptions , Weights)
Browse: Identifier x Links x Associations — Views

Associations can be seen as groupings of descriptions (see [10] for details). The
SIB system is intended to support non-Boolean queries. Query conditions consist of logi-
cal combinations of predicates which are, in general, fuzzy. A real number between 0 and
1, called weight is associated with each predicate. Boolean predicates are simply special
cases with weight 1 if the value of the predicate is "yes’ and 0 if the value is 'no’. The
result of a query is a set ranked by weight. Weights of logical expressions are computed
on the basis of the following rules:

Let p and g be predicates with weights w(p) and w(g) respectively. Then

w(p OR q) = max {w(p), w(q)}

w(p AND) = w(p) * w(q)

w(NOTp)=1-w(p)

Alternative rules for the computation of weights exist (e.g., see [16,29]), as well as alter-
native retrieval models altogether. An important feature of the present approach (though
not unique to it) is the ability to express such notions as similarity or affinity [26] in terms
of weights on fuzzy relations which give rise to fuzzy predicates. Boolean queries are
merely a special case.

The Retrieve function takes as input an association and a (compound) non-Boolean
query and returns a subset of the association with weights attached indicating the degree
to which the descriptions in the answer set match the query. In the current implementation
only Boolean queries are supported, yet the extension to non-Boolean is currently under-
taken.

Browsing clearly is a special retrieval operation. It starts at a specified SIB descrip-
tion which is the focus of attention and is called current object and produces a view of a
neighbourhood of interest of the current object within a given association. Since the SIB
has a network structure, the neighbourhood of the current object (node) is defined in terms
of the links of interest adjacent to it. As we shall later see, the size of the neighbourhood
can also be controlled. Thus, the Browse function takes as input the identifier (name) of
the current object, a list of names of link classes of interest and an association, and deter-
mines a local view centered around the current object. By calling Browse again with the
identifier argument equal to the name of one of the objects contained in the browser’s
view, that object is made current and the view is updated. Effectively, the Browse func-
tion provides a moving window with controliable filters and size, which allows naviga-
tional search over subsets of the SIB network. The default association is the entire SIB.

The multimedia nature of SIB descriptions calls for the development of a hyper-
media annotation mechanism that would gracefully complement the SIB semantic net-
work. This is accomplished by establishing referential links between descriptions, treated
as a special category of attribute links, thus completely integrated in the SIB network
model. Hypermedia annotations include text, graphics, raster images and algorithm ani-
mations.

310

3 The Selection Tool of the SIB (ST)

Queries to the SIB can be classified as explicit or implicit and as interactive or pro-
grammatic. An explicit query involves an arbitrary predicate explicitly formulated in a
query language or through an appropriate form interface. An implicit query, on the other
hand, is one generated as a result of navigational commands in the browsing mode, or one
of particular significance and frequent occurrence, "pre-canned" for ease of use and
offered as a button or menu option. An interactive query is formulated through the user
interface of the ST, while a programmatic one is submitted by another software develop-
ment tool, such as the Visual Scripting Tool of ITHACA, through its own user interface.

The ST is designed to support all the relevant kinds of queries. In the current
implementation, priority has been given to implicit, interactive queries. As already
explained, these correspond to the browsing selection mode and are expected to take up
the majority of the interaction with the ST. A form-based query interface, closely related
to the data entry form of the SIB, as well as a query language are being developed to sup-
port explicit, interactive queries. Finally, explicit, programmatic queries are supported by
the ST providing a programmatic interface to other tools, through which the primitive
query operations of the Telos system underlying the SIB can be used.

In what follows we present the browsing functions of the ST.

3.1 Functionality of the Selection Tool
The ST user interface consists of the following windows (fig.1):

e a Graphical Browser which displays a part of the network of the SIB around a
selected object (current object).

e a Link Filter with buttons, each corresponding to a link type, used for filtering the
information displayed by the Graphical Browser.

e a History List which keeps a record of users’ moves through the SIB network.

e an Application Frames List listing the contents of the entire SIB in terms of appli-
cation frames.

e a Main Form which shows information about the current object.

e an Auxiliary Form which displays information about any other object, after a
selection made by the user in a hypertext-like manner on the Main Form.

e a Function Menu which offers a variety of useful functions.
In what follows we describe the functionality of each component.

® Graphical Browser:

The Graphical Browser, built using the LABY graphical editor, displays a part of
the SIB network around a selected object (current object). The structures currently
displayed have the form of a star whose central node is the current object. The window of
the Graphical Browser is semantically divided in two parts. From each node appearing in
the lower part emanates at least one link pointing to the current node. Similarly, there is at
Jeast one link emanating from the current node and pointing to each node appearing in the

3N

upper part. The types of links are denoted by a colour code. For example the isA relation
is shown with red links while the instanceOf relation with green links. The colour code is
shown in the Link Filter. Nodes appearing in the graph of the browser are selectable with
the mouse. When selected, a node becomes current, it is placed in the middle of the
display and a move in the SIB network results. The links displayed include direct links
from the current object to other objects and computed isA and instanceOf links.

The population of the display is controlled by means of the Link Filter (see below)
and the Instance Box. The Instance Box appears in the display of the Graphical Browser
when the instances of a certain active link class (i.e. selected by the Link Filter) adjacent
to the current object are too many to be shown on the display. On selecting the Instance
Box of a link class with the mouse, a list of objects related to the current one by that type
of links appears (see fig.4). The objects on this list are selectable just as those displayed
graphically.

° Link Filter:

The Link Filter provides buttons corresponding to link classes and is used for
activating/deactivating links thus controlling the information displayed in the Graphical
Browser. Each button acts as a filter on a certain relation. If the button is selected (on), the
corresponding relation is displayed and vice versa. The isA and instanceOf buttons further
offer the option of displaying computed in addition to direct isA and instanceOf links. All
buttons show the colour code of the link classes and have a help facility. When moving
from node to node in the Graphical Browser, the state of the Link Filter does not change
unless the user does so expliciy.

. History List.

The History List is a navigation aid intended to prevent users from getting lost, a
common problem in hypertext systems [6]. The History List is scrollable and contains
the names of the objects selected as current during a session in chronological order, the
most recent one shown at the bottom (as in the history command of Unix). All entries of
the list are selectable. A selection made on the History List is functionally equivalent to
one made on the Graphical Browser.

. Application Frames List.

The Application Frames List contains the names of the application frames,
reflecting the overall structure and contents of the SIB. The purpose of the Application
Frames List is to compensate for the limited scope of the Graphical Browser, which is a
shortcoming if an extended area of interest is sought by navigation rather than by explicit
querying. The application frames are displayed in an indented list representing the exist-
ing hierarchical structure. Each item on the list is selectable, which effectively allows big
steps over the SIB network in the browsing mode.

Moreover, the Application Frames List serves as the initial entry point to the ST.

' Main Form:

The Main Form is the top right-most window of the ST and invariably displays
information about the current object. It shows the abstracted definition of the object in a
form layout. The information presented is generated by unparsing the SIB. The form can

312

also contain multimedia annotations to the object, each one displayed in a separate win-
dow. At present, this annotation is textual and graphical (fig.5), but can be of any other
type with no additional effort, provided that appropriate tools exist in the working
environment.

® Auxiliary Forn.

To get information about a displayed object, other than the current one, without
changing the actual view in the Graphical Browser, the user can select the name of the
desired object on the Main Form in a hypertext-like fashion (see fig.1). An Auxiliary
Form will appear at the bottom right of the ST and display information about the selected
object in the manner of the Main Form. To prevent user distraction, only one auxiliary
form can be open at a time; also objects are not selectable on auxiliary forms. The auxili-
ary form is actually a preview mechanism and is offered as an orientation aid.

'y Function Menu:

Through the Function Menu, several other windows for performing various useful
functions can appear on demand. Currently these functions are:

. GotoObject: Allows direct access to invisible objects by name.

) EnterData: A Data Entry Form is offered for entering data into the SIB (fig. 6). The
Query Form, currently under construction, will have a similar appearance.

° KeepObject: Keeps a retrieved object in a local workspace.
° Iconify and Quir: Closes and iconifies a window; and quits the ST respectively.

3.2 Usage Example

Suppose we would like to add in the SIB an application dealing with processing of
letters, which will assist secretaries, managers, and others to write professional letters,
check them, and, after final approval, mail them through post or electronic mail. Looking
at the Application Frames List, we observe that there is already an Office Information
System called WooRKS. The basic concepts in WooRKS are actors, roles and pro-
cedures.

Our starting point will b¢ WooRKS, which we select through the Application
Frames List. As we can read in the natural language comment attached to the correspond-
ing Main Form, WooRKS is a work flow system for offices, which handles a variety of
activities (see fig.1). So this might be one of the candidate places to search for a letter
processing application. WooRKS has three attributes which are further explained in its
Main Form. One of them, regDescr, deals with WooRKS requirements descriptions and it
will probably provide us with more information about what the WooRKS system actually
does. Before making it current, we preview its contents on the Auxiliary Form, by select-
ing WooRKS1_RD_FORM from the Main Form, and we decide to visit it. In figure 2
WooRKS1_RD_FORM is current in the Graphical Browser window. We observe that it
handles the following classes of activities: OrderProcessing, WarehousePro-
cessing, and AccountProcessing. OrderProcessing sounds the most
close to letter processing, since letter and order processing share some operations, such as
checking and archiving. We decide to visit OrderProcessing to see if it includes

313

what is needed for letter processing in general. After examination we conclude that this is
not true. We return to WooRKS1_RD_FORM through the History List and decide to pre-
view WarehouseProcessing and AccountProcessing to see if there is any-
thing relevant there. By previewing these nodes we realize that none of them fulfills our
needs. We further notice that they are all instances of FormProcessClass.

We take a closer look on FormProcessClass by moving to it through the
GotoObject facility (fig.3). As FormProcessClass is a subclass of FormClass, it
inherits its attributes. By previewing FormClass, we find out that it has two attributes,
roles and baseRole (see fig.3) and decide to create a new instance of FormPro-
cessClass, called LetterProcessing, whose roles will correspond to the initial
requirements imposed on our letter processing application. In particular, the baseRole of
LetterProcessing will be LP_base_role, and the roles will be
LP_letterCompose, LP_letterCheck, LP_letterApprove,
LP_letterSend, LP_letterReceive,and LP_letterArchive.

We have chosen this convention for naming the roles by analogy to the existing
roles of the other activities. To see these names we first made FormRole current using
the GotoObject facility (see fig.4). Since FormRole has too many instances to be
displayed on the Graphical Browser, an Instance Box appears by clicking on the "MANY
INSTANCES" box of the Browser.

At this point we start creating the roles and baseRole of LetterProcessing.
Before creating LP_letterArchive, we visit OP_orderArchive by selecting it
from the Instance Box (fig.4). This act is worthwhile because we find a correspondsTo
link from OP_orderArchive to ArchiveAct, which is an instance of ADMAc-
tivity (see the Main Form in fig.5). Knowing that ADMActivity handles the design
descriptions, we can further proceed by defining the ADMActivity corresponding to
the new LP_letterArchive inasimilar way, or even use the ArchiveAct as the
ADMActivity of LP_letterArchive. Similarly, we may use CompileRefAct
and/or EvaluationOrderAct which correspondTo OP_orderCheck as the
ADMActivity of LP_lettercCheck, etc.

Finally, we are in a position to define the new LetterProcessing node. We
move to FormProcessClass using the GotoObject option and use the EnterData
facility, which will make our task easy, even if we have no knowledge of the syntax of
Telos. The Data Entry Form for LetterProcessing is shown in figure 6. In the
same figure you can see the results of entering the information.

3.3 Implementation
The SIB system consists of the following major parts (Figure 7):

e The SIB Interactive User Interface generates and coordinates the other parts,
including the interface tools of the Data Entry Forms and the Selection Tool, except
for the Graphical Browser. It is implemented using the OSF/Motif toolkit.

e The Graphical Browser presents parts of the SIB network graphically and allows
the user to browse through it by sending messages to the SIB Interactive User Inter-
face in response to user actions. The Graphical Browser is a LABY graphical editor
with only the working area present.

314

e The Display Forms are used to provide information about the current node or
another selected node in a form layout. They are designed to support multimedia
information (text, graphics, images, animation, etc.).

e A special Data Entry Form provides for entering data into the SIB through a form
interface.

o The Query Interface handles queries about SIB objects, issued to it by the various
components of the ST or by the Data Entry Form. As a result of processing a query
it constructs a file suitable for display by the Graphical Browser or the Data Entry
Form. In the current implementation a separate query interface (based on the
client-server model) is used for programmatic queries. However, the two query
interfaces will be integrated in the future.

LABY is a general purpose graphical editor developed in part within the ITHACA
project [19]. The entire SIB-ST prototype system has been implemented in C++, includ-
ing the underlying Telos system. The Telos implementation has particularly emphasized
query performance and efficiency of memory usage (for more details see [8]). The sys-
tem runs on Sun3, Sund series, SparcStations and 386 machines under Unix and requires
the X window system and a colour monitor.

4 Discussion

[20] identifies the following three steps in reusing software: selection, specializa-
tion, and integration. Abstraction plays a central role in each of these steps. It makes
artifacts easier to understand and to specialize, by chosing specific realizations, and
allows information about their interface to be abstracted from the definitions. In the work
reported here we are concerned with abstractions for supporting the process of selecting
software for reuse.

The same steps of the reuse process are identified by Prieto-Diaz [27,28], with an
additional evaluation step, when there is no exact match with the imposed requirements.
The candidates for reuse are ranked according to the adaptation and conversion effort they
require before reuse can actually take place. In this approach, a faceted classification
scheme supports both the retrieval process and the evaluation and adaptation of code seg-
ments, The terms in each facet are organized in a directed acyclic graph with weights
indicating their conceptual closeness. The selection of the facets and terms (namely the
faceted classification schedule) is a process that requires careful consideration in order for
the classification scheme to be successful. The system allows for a flexible change of the
classification schedule as implied by the specific application domain the library is sup-
posed to cover. The query process allows the modification, generalization/specialization
and expansion of queries while vocabulary control is assisted by a dictionary of
synonyms. Despite the shortcomings of defining the conceptual distances, the
classification scheme is promising, yet the query interface is suitable for expert users only.
Browsing through the conceptual graph would be an easier and, in some cases, more
efficient retrieval method.

User interface and functionality issues have, in fact, been so far one of the chief
three problems that have hindered the acceptance of database technology in software
engineering, the other two being the technical support (efficiency, safety) and the

315

Even elementary configuration management features, such as the re-configuration of
objects as a result of component changes, are hardly supported by databases (an exception
is CACTIS [18)).

[2] recognize the importance of good documentation for understanding the reus-
able components. Hypertext systems allow the attachment of various annotation elements
interconnected with each other, to components, and provide instant access to this support-
ing information. The SIB allows the user to relate any kind of annotation to a description.
Furthermore, our plans for a Hypermedia Annotation Mechanism, explained below, will
greatly support the understanding of the reusable components.

The node and link model of the SIB resembles the hypertext model. In both, nodes
and links are of equal importance, serving as units of information and as orientation cues.
The type of link emanating from a given node conveys information about the target node.
In addition, the name of a node usually reflects its content. This helps the user find a path
to his destination. The question naturally arises of whether an existing hypertext system
could provide a satisfactory interface to the SIB. It turns out that the full representational
power of Telos, underlying the SIB, cannot be rendered by one of the currently available
hypertext systems known to us, let alone efficiency issues arising from heterogeneity. The
tools that compose the Selection Tool (e.g. the Graphical Browser and the Link filter, the
Application Frames List, the Forms, etc.) take advantage of the underlying knowledge
base in order to help the user locate and reuse the software modules. Moreover, given that
the SIB will be highly populated, other features common in most hypertext systems (e.g.
global browsers) or the ability to directly following links are not enough to prevent
disorientation and cognitive overhead [6], which are inherent problems of hypertext sys-
tems. On the other hand, using Telos, we provide users with pre-defined views (e.g.
Application Frames List), constructed by querying the SIB and updated dynamically
reflecting changes in it. Such views reduce the cognitive overhead problem. The History
List combined with the ability to preview the contents of a specific object on the Auxiliary
Form before actually visiting it prevent disorientation,

Of a number of advanced hypertext systems, such as gIBIS [7], DIF [13,14],
Intermedia [15,35], NoteCards [17,32] and Neptune [3, 12, all of which have some of
the desirable features for a selection tool of the SIB, DIF is designed to serve a purpose
similar to the SIB-ST system, namely to support a software life-cycle with emphasis on
reuse. However, the basic reusable constructs of DIF, Basic Templates and Standardized
Jorms, have only one level of instantiation and the system relies upon the use of keywords
to preserve the consistency of information. Structural information is kept in an Ingres
database, which has to be queried or navigated through to locate reusable Basic Tem-
plates. Unfortunately, the searching process cannot use the actual information stored
using software engineering tools for functional and architectural specifications and this
limits the flexibility of the selection process.

The current version of the SIB prototype system, including the ST presented here,
has been subjected to relatively extensive experimentation by users inside and outside the
implementors’ organization, indicating a high acceptance level. Nevertheless, no formal
evaluation experiments have yet been conducted. A number of desirable improvements,
on the other hand, have been identified [24], briefly listed below.

316

Several enhancements to the Graphical Browser are planned. First, the presentation
of all direct links on the display, not only the ones adjacent to the current node, so as to
show all the direct relations that exist between nodes in the local view. Second, the option
to control the size of the displayed neighbourhood of the current node will be provided. In
a graph-theoretic sense, the size of the neighbourhood currently is 1 : each path connect-
ing the current node to another node in the neighbourhood contains exactly one link. This
restricts the view to a small area and imposes a small step size during navigation. On the
other hand, it also keeps the information in the browser’s window from exploding. Con-
trol over the neighbourhood size will be granted by attaching scope parameters to the but-
tons of the Link Filter. The value of a scope parameter will determine the size of the
neighbourhood with regard to the corresponding type of links. Third, the layout of the
browser’s display will be re-arranged so that the spatial distribution of links will be
directed by their semantics. ‘

The History mechanism will be enhanced to support the rense of paths [36] once
the context mechanism of Telos [8] is available.

Similarly, the context mechanism will enable the definition of context-specific
Application Frames Lists. Highlighting the current view area in the Application Frames
List is an obvious further orientation aid.

Given that attribute links can be specialized to represent user-defined relations, the
question naturally arises of representing such relations in the Link Filter. A user-
configurable Link Filter with the present one as a default is a possible solution. Further-
more, it has been noted that a sequence of changes of state in the Link Filter results in an
unpleasant sequence of updates of the display. This can be avoided by committing all the
changes at once at the user’s command.

The free-text comments that appear in the Forms serve as a primitive annotation
mechanism. We are currently exploring ways to provide an enhanced Hypermedia Anno-
tation Mechanism by either incorporating in the SIB one of the existing hypertext models
[4,11,30,31] or developing a new one that will best serve our needs for tlexibility and
efficiency.

Finally, the Query Form, currently under development, will complete the Selection
Tool. The Query Form will offer a form-based query interface similar to the Data Entry
Form (fig. 4) and the option to formulate queries directly in a query language.

References

1. 1. Bigelow, ‘‘Hypertext and CASE,”” IEEE Software, March 1988.
2. Ted Biggerstaff and C. Richter, ‘‘Reusability, Framework, Assessment & Direc-
tions,”” IEEE Software, vol. 4(2), March 1987.

3. Brad Campbell and Joseph M. Goodman, ‘“HAM: A general purpose Hypertext
Abstract Machine,”” Communications of the ACM, vol. 31(7), pp. 856-861, July
1988.

10.

11.

12.

13.

14.

15.

16.

17.

18.

317

R. Caudillo and M. Mainguenaud, ‘‘A Hypertext - Like Multimedia Document
Data Model,”” Int’l Conf. on Multimedia Information Systems, pp. 221-241,
McGraw-Hill, 1991.

E. Chikofsky and Rubenstein B., ‘““CASE: Reliability Engineering for Information
Systems,”” IEEE Software, March 1988.

J. Conklin, ‘‘Hypertext: An Introduction and Survey,”” IEEE Computer, September
1987.

J. Conklin and M. Begeman, ‘‘gIBIS: A Hypertext Tool for Exploratory Policy
Discussion,”” ACM Tr. on Office Information Systems, vol. 6(4), October 1988.

P. Constantopoulos, M. Doerr, E. Pataki, E. Petra, G. Spanoudakis, and Y. Vas-
siliou, The Software Information Base-Selection Tool integrated prototype, Institute
of Computer Science, Foundation of Research and Technology - Hellas, Heraklicn,
Crete, January 12 1991,

P. Constantopoulos, M. Jarke, J. Mylopoulos, B. Pernici, E. Petra, M. Theodori-
dou, and Y. Vassiliou, The ITHACA Software Information Base : Requirements,
Functions, and Structuring Concepts, Institute of Computer Science, Foundation of
Research and Technology - Hellas, Heraklio, Crete, May 1989:

P. Constantopoulos, M. Jarke, J. Mylopoulos, and Y. Vassiliou, Software Infor-
mation Base - A Server for Reuse, Institute of Computer Science, Foundation of
Research and Technology - Hellas, Heraklion, Crete, November 1991.

W.B. Croft and H. Turtle, ‘“A Retrieval Model for Incorporating Hypertext
Links,”” Hypertext '89, Proc., pp. 213-224, Pittsburgh, Pennsylvania, November 5-
8, 1989.

Norman M. Delisle and Mayer D. Schwartz, ‘‘Contexts - A Partitioning Concept
for Hypertext,”” ACM Tr. Office Information Systems, vol. 5(2), pp. 168-186, April
1987.

PXK. Garg and W. Scacchi, ‘‘Composition of Hypertext Nodes,”” Proceedings of
the 12th Online Information Meeting, London, December 6-8, 1988.

P.K. Garg and W. Scacchi, ““A Hypertext System to Manage Software Life-Cycle
Documents,”” IEEE Software, vol. 7(3), pp. 90-98, May 1990.

Garrett, Smith, and N.K. Meyrowitz, ‘‘Intermedia: Issues, Strategies and Tactics
in the Design of a Hypermedia Document System,”” Proc. Conf. on Computer-
Supported Cooperative Work, MCC Software Technical Program, Austin, Texas,
1986.

S. Gibbs, “‘Querying Large Class Collections,’” Object Management (D. Tsichritzis,
ed.), Centre Universitaire d’ Informatique, Universite de Geneve, 1990.

F.G. Halasz, ‘‘Reflections on NoteCards: Seven Issues for the Next Generation of
Hypermedia Systems,”” Communications of the ACM, vol. 31(7), pp. 836-852, July
1988.

S.E. Hudson and R. King, ‘‘Cactis: A Self-Adaptive, Concurrent Implementation
of an Object-Oriented Database Management System,”” ACM Trans. on Database
Systems, vol. 14(3), September 1989.

19.

21,

22.

23.

25.

27.

29.

30.

31

32.

33.

35.

318

M. Katevenis, T. Sorilos, C. Georgis, and P. Kalogerakis, LABY User's Manual,
Computer Science Institute, Foundation of Research and Technology, Heraklio,
Crete, May 1990.

C.W. Krueger, Models of Reuse in Software Engineering, Camegie Mellon,
December 1989.

C. Martin, ‘‘Second Generation Case Tools: A Challenge to Vendors,”” IEEE
Software, March 1988.

J. Mylopoulos and others, TELOS: Representing Knowledge about Information
Systems, Institute of Computer Science, Foundation of Research and Technology -
Hellas, Heraklion, Crete, August 1990.

O. Nierstrasz and others, ‘‘Objects + Scripts = Applications,”” Esprit "91, pp. 534-
552, Commission of the European Communities, 1991.

E. Pataki and P. Constantopoulos, ‘*The Selection Tool of the Software Informa-
tion Base: A Hypertext Perspective,”” Working Paper, Institute of Computer Sci-
ence, Foundation of Research and Technology - Hellas, Heraklion, Crete,
November 1991.

E.Petraand C.V. Vezerides, SIB Content’s Manual, Institute of Computer Science,
Foundation of Research and Technology - Hellas, Heraklion, Crete, January 1991.
X. Pintado, “‘Selection and Exploration in an Object-Oriented Environment: The
Affinity Browser,”’ Object Management (D. Tsichritzis, ed.), Centre Universitaire
d’ Informatique, Universite de Geneve, 1990.

Ruben Prieto-Diaz, ‘‘Implementing Faceted Classification for Software Reuse,”’
Communications of the ACM, vol. 34(5), pp. 89-97, ACM, May 1991.

Ruben Prieto-Diaz and Peter Freeman, ‘‘Classifying Software for Reusability,”
IEEE Software, pp. 6-16, January 1987.

G. Salton, E.A. Fox, and H. Wu, ‘‘Extended Boolean Information Retrieval,”
Communications of the ACM, vol. 26, pp. 1022-1036, 1983.

M.A. Shepherd and C. Watters, ‘“Virtual Structures for Hypertext,”” Int’l Conf. on
Multimedia Information Systems, pp. 201-219, McGraw-Hill, 1991.

F.WM. Tompa, ‘‘A Data Model for Flexible Hypertext Database Systems,”” ACM
Tr. on Information Systems, vol. 7(1), pp. 85-100, January 1989.

Randall H. Trigg and Lucy A. Suchman, ‘‘Collaborative Writing in NoteCards,”
In: Ray McAleese (Ed.), Hypertext: theory into practice, pp. 45-61, Intellect Inc.,
Oxford, 1989,

Y. Vassiliou, M. Jarke, E. Petra, T. Topaloglou, G. Spanoudakis, and C. Vez-
erides, Technical Description of the SIB, Institute of Computer Science, Foundation
of Research and Technology - Hellas, Heraklio, Crete, January 1990.

C.V. Vezerides, ‘“The organization of an SIB for software reuse by a programming
community,”” Master’s Thesis, University of Crete, 1991.

N. Yankelovich, B.J. Haan, N.K. Meyrowitz, and S.M. Drucker, ‘‘Intermedia:
The Concept and Construction of a Seamless Information Environment,”” IEEE

319

Computer, pp. 81-96, January 1988.

36. P.T. Zellweger, ‘‘Scripted Documents: A Hypermedia Path Mechanism,”’ Hyper-
text ‘89 Proceedings, 1989,

320

* (RYO-d) TPPoR SaToy
Yy3Tn ®109fqQ uy fyyrevoriouny
syl Jo ®sn 9y3} yBnoayy

sqaed Srweufip gHyooM IYY 3o

uot1drass9(q siuswauynbay 9yj

Sugsevdosgixaf) 4
SHYOON
sfigojuradT44()
1ddyBuriueg
2IYPURHIUA]G
uotyezTueBiggud
uotiedfddyueo]
wpyqng
IXIPIETA
qusuodwoleIsTA
3dTA2GRISTAl ¥

$gose]Teyaeds

.- §HPIUBIGUT

SHUOOM T

ol

1577 sdwedy uotresTTddy

187 Ra09STH

ufewoguoTIedTTddy :
BuyssedOdUapag
BUTEEID0IJISNOYIIRY 3
BUTEEID0LJIUNOIDY
qusenoog
uosaay :
s97Y4 :

‘5985872

uoT1dTaD89(W10 4 : JO9ouBISUT

WY0J QU™ TSHYOOH

40 T9AST y3yy pus suoyriIduny
jaoddns SurprAoad *S9TITATIOE
aoTjjo0 g0 Fisreea o@Buer @
s8euew pue jussaadad ued eyl
uotiearTdde ayqeunBrjuod
*§33743Q 40j waisfig moTy)100H

RFETEN -1

HOY~aa~TSHYooH :
*ADE3(JSIP

01 SHYyooH :
*a2s3gduT

4ys * sPgojuadTsyg :4092ue3Isul

SHYOoOH

1904”80”15 NHOH

TRg4u1 601470

01" CA ABYT

1P Ajyuooyr 1o9f qpdaay q2sfqpoioy

e39(49iu3

1°0A LS/8IS

hical Browser

the Grap

tion Tool of the Software Information Base. Current in

The Selec
WooRKS

.

Figure 1
is

iat of the usage example.

the starting po

)

321

%234 J43pdoTdQ
329f ayaspaoTdQ
23N2aXJLIPI0T (0
EYS YENTISEL NT- 1]
*s3T04

aTo4"9seq 40 :
ra[oYeseq

S88TJSEID0UAgwa0 | 1 jgasuelsutr

Buyssad04d1x9)|
SHUOOH
5A50JUTIT $10)
1ddy8utrueg
JBTPUBHIUIAT
uotiezTUEBAQQYd
uorj3eoFTddyueo)
upyqnd
IX2[@ISTA
juauoduolelst
1dT4D5RISTA v

HY04~OYU™TSHUOOH *2 |~ s0e2uesur|
SHyoou 'I L n

1877 sowedj uoTiedTTddy

1577 fid0ysTH

durssadoudaapag

* (WY0~-d4) T°POoW 5370y
yitm s32efqQ ur frTTevoTioung
ay3y jo esn 3y} ydnouyy
‘qa0d otvweulip gyyooy Yy jo
uoT1dyuosag sjuawsaTnbay 3yj

uyewoquoTiedTTddy :
duyssanoadaapIgil
Burssadodgasnoysde)y :
BUTES920443uUNoIDY :
Juauno0(:
uosuayd
§9TT¥4 :

*SIESRTD

uoT1dTAo89QUI0 4 : jo@dueIsuUT

HY03~ 0y TSHYOoH

373 105004 240 90% 3 4

Buiiiasougaeny)

[oivsssoianmonsy] ey

[osrmer) VJs:.. [aiis) Fei i)

3TN Ajyuooy

0T CA AgUl

123f qgodasy ejeglajul

193 qQoj0g

oA 1S/81S

ing.

OrderProcess

viewing

Figure 2. Inspecting the requirements descriptions of WooRKS and pre

322

aToysseguio :afoyeseq
IToYwlo4 ;8304

Butssadouqixo)| 4
SHYoou
sfgoJuTaOT 440
Tddyduryueg
49TPUBHIUIAY
uotiezTUEBagQyd
uoTiea7Tddyuro sse[)ssaT0adudn] ‘g
wpyqnd WY04™ QY TSHUOOH “p
IXD]EISTA Burssasoudaapag ‘g
jusuoduo)elsTy HY04 QYT TSHYOOM *8
1dT45583STAl v SHYOOH T

1577 saweud uoyiedtrddy

1817 AL018TH

| @olspuodsaaaod

N DG EELE

*31nqr433e
39N13SU0JW IO § : Jgeduelsul
sSeT)uio4

SSeT)S5ID0aJuwuo

Ui ewoguoTyEs] [doy

T T

Teoue]

| awar _

nuaAUnuuUOngLuu_

‘03 03 juem nofi
saaym 99fge gIs syl

kS 0] AgFuooy

GO EEY] 40 aweu ay3 odfy
[0309 I—

0T 2A ASEN T T
q00f qgdea)y elegl93ul 193l qgoioy

T°04 157918

ts superclass, FormClass

iewing i

Flgure 3. Visiting FormProcessClass and prev

Butssadoadixa) 4
SHYooH
sAgoJuTadT 40
TddyButjueg
JaTpUBHIUIAT
uotieztuedagQyd
uotieorTddyusor
wpyqnd
1X2|23ISTA
Juauoduo)eSTAl
1dT40881ISTA] v|

aToywio4 *g
SS@)SEI00LJWd0] G
HY04~ QYT TSHUOOH ‘b
Suyssanouguaapag g
HY04™CYTISHYoOH "2

SHYOOH "1

1ST] sawed4 uoTiEatTddy

1877 RaoasTy

] anqraIe

_ 350712

woyd~(y _
©38Rg~saTes" Qg

ANIOXJUOPLO Y|

e CTessareseagasog)

323

Ajaadoagudoj :sa7349doud
23e35Wl0] 15930)S
a8essopuwio :soBessouw
sTnywuo 4 :SITNL
+9NqT413e

1oNJIsUOJWI0 4 1 jgPoueIsSuUy

sToyu+04

ATYDagepao™dof]
pULepacTUOS 48,
49pJQTIUBWNIO
¥OPUJ3 TP243d
[Pl GRCT UL LIVE S
DATPRISTUOS US|
Q3UIAUTTLOSUS
2439y TUIWNAC
spoond 1ys 4|
11787d
STHIOPIQ ST,
POONSATRIVIL |
¥] 103URAUTTSSTT

1Tnh fijyuo

o1

OT"CA AQUT
o3 qodaay

e18Q493u]

09 qpojog

T'0A 1S/9IS

Figure 4. The Instance Box handles the instances of FormRole.

324

ax0Ll 3290QI0TwON “392gpg0edhy

124”3307ON3)
045 NOTLY
2921601 woN
1NdLN0
3990'q0J01woN” 3997qQg0adR|
1naNI

5193780
Aoy ALIATLY 430

maTA =

T

8utssad0adix9||
SHYOOH
sfigojura2T 430
1ddyBupjueg] FOYSATYDIY g
LOA?‘QI.«CO>U 0>.—...-UL¢L0?LOI&O .h
CDﬁGQNﬂCﬂMLQO¢Q O.ﬂomﬁhou .@
COﬂdﬂUﬂﬁQ&CCﬂO:— mmﬂHUMWOOOLQELO.m .m
“pyqnd HY0470UTTSHYOoH b 5 d
dxuh.ﬂdm.ﬂ> m:.ﬂanUOL&LOvLO .M” . hOUTﬁUA@#UU S
UU0dwo)eISTA WUOA~ QYT TSHYooM "2
1dT495RISTAl Y SHYOOM T
18717 sewedq uoyieoyddy 1517 Aa03sTH |] !

9yq 4o
ayy 4o
Japdo
243

8utussaadsa A1TATIOY

*491397 19489y
wi04 dapag 2337dwod
sueaw Aq -aunpadoud
ay3 3o ButATyoue

A 9- 0T-0T~pIx09 Rua1awoad- waayx, :

Da.ﬂ>.—.du¢zc¢ 1 jo9duejsuy

fqpjoTwoN :
*s3o9fqo

*Retdstp

SATYDIGIRPIOT Q) :
*o]spuodsaluod

I2YIATY2IY

[Feasention]

ey

U] JOTNONIQBaRL

|o> 14OMIIIPIO” IO

0T"CA AQYT
123l qgoioy

1IND AgTuooy 323 qgdasv)y g18(@4diug

T°0A 1S/91S

Figure 5. An annotation attached to ArchiveAct.

325

Butssedougixag)4 [} E
SHYOON BuTSS8204d431197 * QT
ety bt mmmo;cwouq:o £5@T)568004dus0{ *§
ues 230l ol Tddydumiueg) 1DYSATYIaY °8 -
aalpint | e
il _HHHMH””H xwmm_ S50)5690044Wl0] G | o]ieTrwIS
reoegmrie upgqnd HUO A~ QY TSHYOON " W igose1e10ads
anossdgaerrel-a STA mcammoum._nto_u._o g
nowHI3e1 %4 JCISTA WY04~ QY TSHYooM "¢ | g
F1ouNaod _ #50dwo) 2033017 d { se104 e [gnI0d SPISTA v, SHYoOoH °T
SioueseguI0s s1ouesea~ay | atoyeseq] $se|us0] JQUHHQQG ISTT mLo.vmﬂI |] !
ETIY i | I | 20efag
tenprATpU]] | I | 1R ATPUL
TergtATPUl] { ormives] 1enpAIPY]
TRRETATPUT ! [sosseaiersads] Terp1AIPul
lerey ! I v a%e erpiAY
_ o] ew]] Gmmu
Jem
JUTE£200udUR 8 _ 1wEN BOURITUL
[sseroTmienniaipul sss1gssesaagioaa]|

puagual1IaT ¢l :
SATaDOYID119T 4] -
9a0addya911977d1
asodwoqus1121 4]
*5aT0d
aoyeseq di :
RED CHEELED

SSBT)SS9D0.44wd0 4 : jgPoue3suy

Burss9004dua313}a]

fpuess913217 4

104857 Q~ g1

0T CA AGYT
1TnY figruooy 193f qgdaay eqe(qaajuy 303fqgoijon

1704 1S/9IS

the SIB.

ing in

Figure 6. The EnterData facility used to insert LetterProcess:

326

SIB- Interactive User Interface
Selection Tool
Data Eotry Application Lspl
Forns Frames Display
. Forms
List
Link
Filter
Graphical _ITHACA
Browser “tools
History
List
TELOS Query Interface
parser

Telos Runtime System

SIB

Figure 7. The architecture of the SIB-ST

