
Elaborating, Structuring and Expressing Formal
Requirements of Composite Systems

Eric Dubois, Philippe Du Bois and Andrg Rifaut

Institut d'Informatique, Facultds Universitalres de Namur
21 rue Grandgagnage, B-5000 Namur (Belgium)

E-mail: {edu,pdu}@info.fundp.ac.be

Abstract. In this paper, we propose a formal specification language supporting
activities performed during the initial requirements engineering phase of the soft-
ware lifecycle. During this phase, those activities include (i) the elicitation and the
capture of the initial description of a given problcm, (ii) the expression of require-
ments associated with a 'composite system' (i.e. a system including manual proce-
dures, hardware devices and software components interacting together) providing
a solution to the original problem and (iii) the organization of the requirements
document in order to enhance its readibility and to promote its maintenance and
reusability.
Keywords : requirements engineering, composite systems, first-order and tempo-

ral logic, structuring mechanisms.

1 I n t r o d u c t i o n

Requirements Engineering (or Requirements Analysis) is now widely recognized as
a critical activity in the context of information systems development. Despite this
fact, only a few methods and tools, providing a real guidance, supporting verifications
and validations, are emerging and used in an industrial environment. We feel that
a part of this difficulty is due to the lack of adequacy of the current requirements
specification languages. In this paper, we present and illustrate a new specification
language based on some recent ideas investigated within the framework of an Esprit
II project (called Icarus) entirely devoted to Requirements Engineering.

We feel that the first quality of a requirements specification language is its ez-
pressiveness. One should keep in mind that requirements should not only address the
description of the functional behavior of the computerized system but should also
encompass the description of a composite system (like, e.g., requirements on man-
ual procedures to be installed or on a specific hardware and/or device to be used).
Thereby, a suitable language should support the expression of computer artefacts
as well as the "natural" (i.e. without any computer bias) description of statements
related to the real-world entities. The language, presented in this paper, devotes
a particular attention to the expression of accuracy requirements (like "the stock's
quantities recorded on the computer should reflect the real-world stock's quantities
with some delta"), and real-~ime requirements (like "this report has to be issued
by the computer within 5 seconds"). On top of its expressiveness, we plead that

328

a requirements specification language should be formal enough so that a number
of analysis activities (not only restricted to syntactic checks) can be supported by
the availability of (i) rigorous rules of ir~gerpretatior~ defining precisely the language
constructs and (ii) a set of deducgive rules allowing to reason about pieces of specifi-
cations. In Sect. 2, we present the basic features of our language with respect to its
expressiveness and its associated formal framework. In Sect. 3, we illustrate them
on an excerpt of a library case study.

The requirements engineering activity is a complex activity which starts from
incompletely defined wishes expressed by several customers about a desired complex
composite system. One could imagine that this activity consists only in the tran-
scription of the customers' wishes in a requirements document. This is far from true
because those wishes are in most cases imprecise, incomplete, ill-structured and even
inconsistent. Thereby, it is essential to have some methodological guidance in the
progressive elaboration of the requirements document (see e.g. [Fin89] [Fea89]). For
some years, we are experimenting an incremental development strategy (i) starting
from a simple specification of the desired external behavior exhibited by the system
to be developed and (ii) gradually moving towards a more complex specification of
the internal behavior of the system considered as a composige one, viz considering the
responsibilities associated with the different components as well as the nature of the
interfaces existing between them [Dub88b] [Dub90]. In Sect. 4, we illustrate the ca-
pability of our language for supporting this incremental elaboration of requirements
for composite systems. In particular, we will suggest how the global specification
associated with the library ease-study can be refined in a more detailed specification
where two library's components are identified.

Usually, an important part of the work performed by the requirements ana-
lysts relies on the organization of the whole requirements document. This is par-
ticularly true for complex descriptions including several thousands of requirements
statements. Thereby, we feel essential that the requirements specification language
be equipped with structuring mechanisms making possible the requirements docu-
ment be organized into specification units with well-defined inter-units relationships.
Structuring mechanisms available in the language are introduced in Sect. 2 and their
use illustrated in the other sections. In particular, in Sect. 5, we suggest how the use
of the parameterization mechanism may support a requirements elaboration mech-
anism [Reu89] [Pro89] based on the identification of generic concepts for a given
problem domain and on their tailoring to the needs of the requirements expressed
for a specific application. In this section, the approach is illustrated by considering
the requirements expressed about one of the library components in terms of basic
concepts related to a resource allocaliou problem domain.

Finally, after a short comparison of our language with some other existing ap-
proaches, Sect. 6 concludes this paper with some directions for future work.

2 O v e r v i e w o f t h e L a n g u a g e

As we pointed out in the Introduction, a suitable language for the Requirements
Engineering activity should be a general customizable language supporting an in-
cremental elaboration and analysis of the requirements document. To this end, the

329

language that we have developed has been designed according to three essential
features : expressiveness, structuring mechanisms and formality.

2.1 Expres s iveness

The language must be sufficiently rich to support some "natural" mapping between
all kinds of things of interest and the various language concepts being available. In
other words, requirements specification should remain a problem definition activity,
not a coding task. In particular :

- The language supports the use of different and possibly mixed styles of spec-
ification. At the Requirements Engineering level, we have experimented that
there are numerous properties which are not of an algorithmic nature, i.e. can-
not be expressed in terms of successive transformations applied on arguments
to produce results. This is why a more declarative style is also supported in the
language.

- Immutable values, such as numbers or strings, are not rich enough for modelling
'real-world' dynamic systems. Observations associated with $he 8ta~e of such
systems are intrinsically time-varying. Thereby, in the language, an important
distinction is introduced between data type (i.e. immutable values) and type
cluster8 (used for recording time-varying states observations).

- With respect to clusters, the language does not only support the expression
of constraints on admissible states or on the transition between two successive
states (the usual pre/post) but also on the ordering of 8tares. These constraints
make possible to refer future states (like e.g. 'if this property holds in this state,
then it holds in all future ones') as well as previous states. Furthermore, real-time
constraints like 'this property is true during 3 minutes' can also be expressed.

- During the incremental elaboration of a requirements specification, it is usual to
deal with incomplete requirements (viz. requirements which are in an interme-
diate - non-finished - stage). The language permits to retain this information
so that it may direct the acquisition of further requirements. Furthermore, the
semantics of the language supports the handling of incomplete requirements.

2.2 S t r u c t u r i n g M e c h a n i s m s

In most cases, the specification of requirements results in large documents where
complex interactions exist between different pieces of descriptions. Such documents
should be organized into separate units which can be combined in a controllable
way to yield the complete specification. Moreover, structuring mechanisms are also
essential to support the reuse of specification's components and the maintenance
of the requirements document. In our language, we have identified four structuring
mechanisms :

- A natural part of the specification process includes the identification of various
things of interest sharing some common characteristics (like, e.g., the set of ad-
missible values for an account number or the set of admissible behaviors (states)

330

for a library system). In the language, this activity is modelled by the intro-
duction of t~/pe# which follow the Object-Oriented paradigm [Fia91] [Jun91] by
packaging a set of properties together. The language also includes a set of built-
in predefined types associated with usual data types (integers, strings, booleans,
etc) and with combinators (cartesian product, sequence, set, bag and table) for
putting together data specifications.

- The language supports the introduction of psrsmeterized type clusters and data
types allowing to factor out common properties shared by individual elements
(playing the role of instantiated units) at different locations of the requirements
document, thus ensuring a better readability of the document. It should be also
noted that parameterization is one of the most useful structuring mechanism
with respect to reusability.

- Two inheritance mechanisms are available in the language. The first one (cor-
responding to the usual mechanism referred in the literature) is based on the
introduction of aub-t~/pes (like, e.g., 'Employee is a Person'). The second mecha-
nism is less classical and is more syntactic in the sense that it is based on a cut

and paste of an existing specification piece (like, e.g. 'Properties of an Airbus
are a copy of the properties of a Boeing'). The inheritance mechanism supports
the definition of a new specification by inheriting another specification and by
extending and/or restricting it.

- The 'scoping' mechanism controls the visibility of names in a large document.
This is particularly helpful when multiple specifiers have to integrate their speci-
fications into a coherent document. This mechanism is not illustrated in the rest
of this paper because no name clashes occur in the small case study considered
here.

2.3 Formal i ty

A formal language depends on the availability of rigorous rule8 of interpretation
which guarantee the absence of ambiguity. Besides, rules of deductive inference are
needed to make possible the derivation of new sentences from given ones. The de-
ductive power supports the analysis, the validation (e.g. with the generation of a
prototype) of formal specifications hut also gives a handle for a rigorous investiga-
tion of the requirements engineering process (see e.g. [Joh88] [Dubglc]).

The choice of a adequate formal framework for our language has been influenced
by two conclusions following the study of existing formal specification languages:

- At the expressiveness level, the use of a first-order logic framework seems to
be a reasonable basis because of the variety and the naturalness of constraints
that can be expressed. Moreover, some specific modal extensions are interesting
because of the availability of specific deductive rules which makes possible to
reason on specific concepts and the conciseness reached in the expression of
constraints. Examples are Infolog [Ser80] and Erae [Dub88] based on a 'temporal
logic' (i.e. a logic dealing with histories) and Mal [Fin87] and [Dub91c] based on
a 'deontic logic' (i.e. a logic dealing with actions and agents).

- At the structuring mechanisms level, only a few syntactical structuring mecha-
nisms are available for first-order logical frameworks but it appears that, within

331

the algebraic framework, a number of semantic relationships can be envisaged
(e.g. parameterization, inheritance, etc). However, in most cases, these mecha-
nisms have been investigated within the framework of an ~equational' logic (i.e.
a subset of first order logic), not sufficiently expressive for our requirements
modelling purposes.

For our language, the conclusion of these experiences led to the choice of the so-called
loose semantics formal framework [Ehr90] [Ore89] based on an algebraic framework
(with the usual structuring relationships) but where the properties can be expressed
in terms of a set of typed first-order formulas.

3 Writing and Structuring Expressive Formal Requirements

The objective of this section is to illustrate the expressiveness and the formali ty of
our language sketched in Sect. 2. To this end and all along the rest of this paper,
we will refer to a simplified version of a library problem. The informal description
of this case study is the following one :

We consider a library where users may issue requests for books belonging to the
library and become borrowers of these books. The following rules are:

- the set of books owned by the library and the set of library's users are con-
sidered fixed in time. Books can be either available on shelves or borrowed by
users. Users are identified by their name and surname;

- requests are issued by users for books and remained pending up to their sat-
isfaction that should occur without unecessary delay;

- books can be borrowed by users for a period of maximum 30 days. The bor-
rowing of a book by a user is possible only if this user has issued a request for
this book.

3.1 A F i r s t S p e c i f i c a t i o n

To help in the elicitation and the understanding of a problem, we have found useful
to express it in terms of an ERA diagram complemented with constraints (this
approach was inspired by some previous experiences made by the authors using the
ERAE language [Dub88] [Dub91a]).

Figure 1 proposes a graphical ERA diagram associated with the library case
s tudy where :

- Books and Users are considered as sets of entities,
- Requests and Borrowings are relationship between users and books,
- Name and Surname are attributes identifying users.

332

Books

u
I O:N

LIBRARY

0:, (orro ,no O:N

Requests > ,

Users

U
O:N I

Name

II
II I

Surname

Fig. 1

Hereafter, in Fig. 2, the formal specification of the requirements associated with
the library case study is presented.

Type Cluster LIBRARY]

State inspection operations

Fixed Books : B O O K
Users : U S E R

Varying Borrowings : B O O K x U S E R
Requests : B O O K x U S E R

Constraints
* Constraints (1), (2), (3) are connectivity constraints derived

from the ERA diagram
* (1) Borrowings are restricted to books and users of the library
Borrowings(b, u) = BooksCb) ^ UsersCu)
* (2) Requests are restricted to books and users of the library
Requests(b, u) ==~ Books(b) ^ Users(u)
* (3) A book may be borrowed by at most one user
Borrowings(b, ul) ^ Borrowings(b, u2) ~ ul = u2

* (4) A user cannot issue a request for book he/she borrows
Requ sts(b, -.Bo.owings(b, u)

* (5) Books available on shelves and for which requests are pending are allocated
without unecessary delay

(f l u : Borrowing,(b, u))^ (3u': Requests(b, u')) ~ O (3u": Borrowings(b, , :))
* It should be noted that no particular assumption is taken about which pend-

ing request is served first

333

* (6) A book can only be allocated to a waiting user
Borrowings(b, u) A @ (-,Borrowings(b, u)) =~ @ (Requests(b, u))

* (7) Borrowed books are returned within 30 days
Borrowings(b, u) ~ <> <_soa=uo(-~Borrowings(b, u))

* (8) A waiting user is waiting until he/she borrows the book he/she is waiting
for

Requests(b, u) ~ O (Requests(b, u) V Borrowings(b, u))

Data T y p e B OOK]

Data Type U S E R

is CP[Name : STRING, Surname : STRING]

Fig. 2

The following features should be noted:

- In the specification, properties are grouped in type definitions, respectively as-
sociated with the specification of the library cluster and with the specification
of data values.
Data types are associated with the definition of immutable values, i.e. values
which are not supposed to change with time. In our example, data types are
associated with BOOK and USER. In the case of USER, the use of the cartesian
product (CP) combinator precises that a user is identified with two string values
(respectively associated with the name and the surname of a user).
By contrast, if we consider the set of users belonging to the library case study,
data are not sufficient for modelling it since this set will typically vary with
time. This is why the library is described as a type cluster. In our example, the
type cluster is used to characterize the set of possible histories modelling all the
admissible behaviors of the library. A history is a discrete sequence of states,
each labeled by a time value which increases all along the history. The state
can be inspected through a set of so-called state inspection operations which are
used to return all relevant informations about the system at that moment. These
inspections are modelled in terms of data values. In the above example, there
are four inspection operations (Books, Users, Borrowings, Requests) for the dif-
ferent library state components. It should be noted that these components can
be denoted state varying (e.g. Borrowings) or fized (e.g. Books).

334

- In the specification, there are data types (e.g. STRING) and combinators (e.g.
cartesian product) which are built-in in the language. Using these types makes
possible to inherit from their predefined associated operations. For example, one
may write "Name(u)" to access the name of a user.

- The purpose of first order constraints is to identify the set of admissible histories.
Constraints are written according to the usual rules of strongly typed first order
logic. In particular, they are formed by means of logical connectives -~ (not), A
(and), V (or), =~ (implies), ~ (if and only if), V (for all), 3 (exists). Moreover, it
should be noted that the outermost universal quantification of formulas can be
omitted. The rule is that any variable, which is not in the scope of a quantifier,
is universally quantified outside of the formula. There are different kinds of
constraints.

1. There are constraints which act as inwriaa~8, i.e. which are true in all states
of the system. This is the case in our example for constraints (1) to (4).

2. There are constraints on the evolution of the system. Writing these con-
straints require to be able to refer more than one state at a time. This is
done in our language by using additional temporal connectives which are
prefixing statements to be interpreted in different states. The following ta-
ble introduces these operators (inspired from temporal logic, see e.g. [Ser80]
[Dub91a]) and their intuitive meaning (4 and ~b are statements):

O ~ 4 is true in the next state
O 4 4 is true in the previous state
O 4 4 is true sometimes in the future (including the present)

4 4 is true sometimes in the past (including the present)
[] 4 4 is always true in the future (including the present)

4 4 is always true in the past (including the present)
U ~b 4 is true from the present until ~b is true (strict)
S ~ ~ is true back from the present since ~b was true (strict)

Constraints can involve two successive states (like in constraints (5), (6) and
(8)) or states which are further apart (like in constraint (7))

3. There are constraints related to the expression of real-time properties. There
are needed to express delays or time-outs. For instance, in the library system,
the constraint (7) uses an extension of the temporal O operator subscripted
by a time period. This time period is made precise by using predefined
functions that can be used to model the usual time units : Sec~ Min, ttour8
and Days.

- Finally, it should be noted the use of a ' , , , ' notation in the library's specification.
This symbol is used to model that the set of properties which have been modelled
here is not complete, viz. that the specification document is in an intermediate
stage of its elaboration. This means that the analyst needs to further discuss
with the customer to elicitate additional requirements. But even when the '0~,'
occurs, the semantics of our language supports formal checks and analysis on
the requirements document and the deduction of properties about the system's
behavior.

335

3.2 O r g a n i z i n g t h e Spec i f ica t ion

In the previous sub-section, we proposed a first elicitation of the library problem in
terms of an ERA diagram. A next step in the requirements process is to achieve a bet-
ter structured version of the original specification in order to promote its readibility,
maintenance and reusability. To this end, the language offers number of mechanisms
for organizing complex requirements descriptions. Hereafter, in Fig. 3, we present
a better structured version of the library's specification introduced in the previous
sub-section.

Type Cluster LIBRARY

State inspection operations

Fixed Books : B O O K
Users : U S E R

Varying Borrowings : B O O K U S E R
Requests : B O O K U S E R

Constra ints

* Constraints (1), (2), (3), (4) and (7) are similar to Fig. 2

* (5) Books available on shelves and for which requests are pending are allocated
without unecessary delay

OnShelves(b) A (3u: Requests(b, u)) ~ 0 (3u ' : Borrowings(b, u '))

* (6) A book can only be allocated to a waiting user
CheckiugOuts(b, u) =~ @ (Requests(b, u))

* (8) A waiting user is waiting until he/she borrows the book he/she is waiting
for

"~CheckingOut(b , u) A @ (Requests(b, u)) ~ Requests(b, u)

Auxiliary operations

Varying OuShelves : B O O K -4 B O O L E A N
asserts

OnShelvea(b) ~ -~Iu(b, Borrowings)
* A book is on-shelf i f it is not borrowed

CheckiugOu~ : B O O K • U S E R -4 B O O L E A N
asserts

CheckiugOut(b, u)
r Bo,rowiugs(b, u) A @ (~Borrowiugs(b, u))
* A user is checking out a book if be/she is borrowing a book

that was not borrowed in the previous state

336

l Data T y p e B OOK l

I Data Type USER I

is C P [N a m e : STRING, Surname : STRING]

l Data Type BOOKUSER J

is CP[BOOK, USER]

Operations

In : BOOK • SET[BOOKUSER] -* BOOLEAN
asserts

In(b, bu) ~ (3~: < b,u >E bu)
* Test the membership of a book to the relationship between books and users

In : U S E R x S E T [B O O K U S E R] --* B O O L E A N
asserts

In(,,, (3b: < b, >E
* Test the membership of a user to the relationship between books and users

Fig. 3

This new organization has been achieved by using two mechanisms.

- The first mechanism is based on the introduction of ~uziliarT] in termediate oper-
ations inside the type cluster. These new operations help to better structure and
clarify the set of constraints. Each operation is defined in terms of an assertion
specifying the relationship that must hold between arguments in the domain and
results in the range.

- The second mechanism proposes an organization of the new introduced opera-
tions following the O-O paradigm. To this end, the language offers the possibility
to define additional r ttli0es on top of already existing ones by using the
predefined types constructors. In our example, a new intermediate data type
cluster (called BOOKUSER) has been introduced. This cluster associates two
new intermediate operations with a new intermediate type defined as a set of
tuples.

337

4 S p e c i f y i n g C o m p o s i t e S y s t e m s

In some recent work, we are investigating an incremental elaboration process start-
ing with the specification of a problem considered as a monolithic one and gradu-
ally moving towards the description of a more complex composite system [Dub88b]
[Dub91c]. More precisely, we propose:

1. to express specifications about the goals assigned to the system to be installed
and to its environment (considered as a whole - black-box approach -) to be
developed;

2. to express specifications about f iner r e q u i r e m e n t s that are assigned to the
different components (e.g. a software component, a hardware piece, or a manual
procedure) and to verify that the set of all requirements attached to individual
components meet the goals originally introduced.

To support this approach, we need a language where, at some stage of the process,
it is possible to capture descriptions of composite systems rather than to consider the
system as a monolithic one. Thereby, we have extended our language so that it offers
mechanisms for combining several single components together and for specifying
properties characterizing the individual behavior of each separate component as
well as the interactions taking place between the different components.

Let us refer to the library problem again. Up to now (see Fig. 2), we have con-
sidered this system as a monolithic one. At a more finer level, one could imagine a
more detailed organization making the distinction between :

- The environment of the library system composed of users issuing requests and
having books in their possession.

- The system itself where a librarian is in charge of managing the set of books on
shelves in the library as well as the allocation of these available books according
to the requests issued.

- The introduction of the system and its environment goes with the identification
of the nature of the communications that should take place between them. A
priori, each component only has access to the informations that it manages.
Clearly some communication medium (i.e. interface [Doegl]) has to be installed
between the different components so that a component may offer some services
to another one.

In Fig. 4, we introduce a graphical ERA representation of the new situation where
the system (LIBRARY-S) and its environment (LIBRARY-E) are made distinct. It
should be noted that :

1. the library system is embedded in its environment. This is due to the fact that
we want to indicate that changes occurring in the environment (i.e. requests and
returns made by users) should not be constrained by the system behaviour.

2. we introduce events (graphically depicted with ovals) to describe the nature of
the interface between the system and its environment. A visibility relationship
(graphically depicted with arrows) makes precise the perception of a component
with respect to events happening in the other component.

338

OnShelfBooks

L I B R A R Y - S

] O:N<endingReqs~l:N

Requesting
Users

i i

Name
I I
I
I I
Surname

Allocations

RequestsN, - f Returns

Name

BorrowedBooksl I Users I Surname

L I B R A R Y - E

Figure 4

In Fig. 5, we present the formal specification associated with the graphical rep-
resentation presented above.

Type Cluster LIBRARY]

Composed of

LIB-S is SYSTEM
LIB-E is ENVIRONMENT

339

Type Cluster LIB-S I

Interface events

Allocations : B O O K x USER

State inspection operations

Varying OnShelfBooks : B O O K
RequestingUsers : USER
PendingReqs : B O O K • USER

Constra ints

* The three following constraints are derived from the ERA diagram

* A check-out is related to an on-shelf book and to a requesting user
AUocatio,~s(b, u) ~ O,~S hel/ B ooks(b) ̂ RequestingU ser s(u)
* A pending request exists between a book of the library (i.e. which is or has

been on-shelf) and a requesting user
Pending Reqs(b, u) ~ 0 (OnS helf Books(b)) A RequestingU aer s(u)
* A user is requesting i f and only if he/she has at least one pending request
RequestingUsers(u) r 3b : PendingReqs(b, u)

* A request is pending from the time it is issued in the environment and until
the book is allocated

Requests(b, u) =~ 0 (PendingReqs(b, u) U Allocations(b, u))

* A pending request and a book on shelf are removed i f and only i f the
corresponding book is allocated

Allocations(b, u) =~ 0 (~PendingReqs(b, u) A -~Onshel f Books(b))

* A book can only be allocated to a waiting user
Al locat ions(b, u) = e (PendingReqs(b, u))

* Books available on shelves and for which requests are pending are allocated
without unecessary delay

(3b: OnShel.fBooks(b)) A (3u: PendingReqs(b, u))
=~ 0 (3u': Allocations(b,u'))

340

T y p e C lus t e r L I B - E l

I n t e r f a c e even t s

Reguests : BOOK • USER
Returns : BOOK x USER

S t a t e i n s p e c t i o n o p e r a t i o n s

F ixed Users : USER

V a r y i n g BorrowedBooks : BOOK
Borrowings : BOOK x USER

C o n s t r a i n t s

* The five following constraints are derived from the ERA diagram

* A request is issued by a user of the library
Requests(b, u) =~ Users(u)
* A return happens for a borrowed book of the library and is performed by a

user of the library
Returns(b, u) =~ BorrowedBooks(b) A Users(u)
* A borrowing links a borrowed book of the library to a user of the library

Borrowings(b, u) ::~ BorrowedBooks(b) A Users(u)
* A book is borrowed i f and only i f i t is linked by a borrowing
Borro~edBooks(b) ~* 3u : Borrowings(b,,,)
* A book may be borrowed by at most one user
Borrowings(b, ul) A Borrowings(b, u2) =~ ul -- u2

* A book is borrowed from its allocation to a user until i t is returned to the
library

Allocations(b, u) ~ 0 (Borrowings(b, u) II Returns(b, u))

* A borrowing and a borrowed book are removed i f and only i f the correspond-
ing book is returned

Returns(b, u) = 0 (~Borrowing~(b, u) ^ ~BorrowedBook~(b))
@ (Borrowings(b, u)) A ReturnsCb, u) ~ Borrowings(b, u)
e (SorrowedBook,(b)) ^ Returns(b, BorrowedBook,(b)

* A book can be returned only i f i t was borrowed
Retur,=s(b, u) : * e (Borrowi,~gs(b, ,~))

* Borrowed books are returned within 30 days
AUocation,(b, u) ~ 0 _<~o~=,,(Returns(b, u))

* In the init ial state, the set of borrowed books is empty
-~Empty?(BorrowedBooka) =~ ~ Empty?(BorrowedBoolcs)

341

Data Type USER

is CP[Name : STRING, Surname : STRING]

Data Type BOOK I

Fig. 5

Finally, due to the formality of our language, it would be possible to give a formal
proof that the joint behavior of the two components meet the behavior of the original
system. For example, in our first specification (Fig. 2), the set of books was declared
fixed in time. This property is preserved by the combination of the behaviors of the
two components of Fig. 5 from which it results that :

Books = BorrowedBooks U OnShel f Books

(i.e. the set of books of the library is the union of both sets of borrowed and on-shelf
books).

5 Capturing Problem Domain Knowledge

In Sect. 3, we have suggested how the use of types may provide help in the organiza-
tion of a large requirements document. However, we have experimented that these
mechanisms are not yet sufficient for promoting the use of a formal specification
language. A major drawback relies on the number of formal statements that should
be written so that the requirements be completely and consistently expressed. In
particular, when we consider two applications belonging to the same application do-
main, it is definitively tedious to have to encode similar specifications twice. Those
are conclusions which are shared for example by IDle89] and [Reu91] and which
have led to the introduction of libraries of reusable cliches for some application do-
main. Analogously to the paradigm considered in the Esprit Project Ithaca [Pro89]
[Per90], we feel essential to be able to distinguish between two roles for the analyst,
namely the "application engineer" and the "application developer". The application
engineer is responsible for providing generic concepts for a given application domain
while the application developer is in charge of reusing and tailoring these generic
concepts to the needs of the requirements expressed for a particular application.

In our language, the introduction of structuring mechanisms (in particular, the
parameterization mechanism associated with the syntactical inheritance mechanism)
follows the same objective, i.e. to make distinct the modelling of requirements typical

342

of some application domain from the modelling of requirements specific to a partic-
ular application. In Fig. 6, we have illustrated the use of this mechanism by making
distinct the part of the requirements related to a general allocation of resources
problem from the specific requirements associated with the borrowing of books in
the library. These specific requirements are obtained by instantiating the parameter-
ized RESOURCE-ALLOCATION specification (Fig. 6a) with substitution of BOOK
and USER for RESOURCE and CONSUMER respectively. In the resulting instan-
tiation (Fig. 6b), it should be noted the renaming of the operations inherited from
the parameteriv.ed cluster.

Doing so, it should be noted how the specification of the LIBRARY-S has been
considerably simplified with respect to its previous specification presented in Fig. 5.
Moreover, we have experimenting the usefulness of the RESOURCE-ALLOCATION
parameterized type by considering it in a completely different case study related to
a telephone switching network system.

Type Cluster RESOURCE-ALLOCATION[RESOURCE,CONSUMER] I

Interface events

Gran~, : R E S O U R C E x C O N S U M E R

State inspection operations

Varying Re,ource , : R E S O U R C E
Wai~ingCon,umer8 : C O N S U M E R
PendingReque , t , : R E S O U R C E • C O N S U M E R

Constraints

* The three following constraints are derived from the ERA diagram

* A grant occurs to an available resource and for a waiting consumer
Grant,(b, u) =~ Re,ources(r) A WaitingCon,urnet#(c)
* A pending request links a resource of the system (i.e. which is or has been

available) and a waiting consumer
PertdingReque, t , (r , c) = 0 (Resource,(r)) A Wai t ingConsumers(c)
* A consumer is waiting if and only i f he/she has at least one pending request
Wai t ingCon ,umer , (c) ~ 3r : PendingReque, t , (r , c)

* A request is pending until the resource is granted

* A pending request and an available resource are removed if and only i f
corresponding resource has been granted

@ (PendingRequeste(t, c)) A -~Grant, s(r, c) =~ PendingReques~s(r, c)
e (R~.o~ce,Cr)) ^ (~c: C.=.*e(r, c)) ~ R~.o.r~e.(.)

343

* A resource can only be granted to a waiting consumer
Grants(r, c) =~ (9 (PendingRequests(r, c))

* Available resources for which requests are pending are granted without un-
necessary delay

(3r: Resources(r) A (3c: PendingRequests(r, c)) =1, 0 (3c': Grants(r, c'))

Data Type R E S O U R C E]

Data Type C O N S U M E R

Fig. 6a

I Type Clus ter LIBRARY-S is R E S O U R C E - A L L O C A T I O N [B O O K , U S E R]]

In ter face events

CheckOuts for Grants

State inspect ion opera t ions

Varying OnShel f Books for Resources
RequestingUsers for WaitingConsuraer8
PendingReqs for PendingRequests

Cons t ra in t s

* Link with the requests coming from the environment
Requests(b, u) = 0 (PendingReqs(b, u))

Fig. 6b

344

6 C o n c l u s i o n

For more than fifteen years, a number of requirements specification languages have
been proven useful in industrial environments. These include, e.g., PSL/PSA [Tei77],
SADT [Ros77], SREM [Alf77] or REMORA [Ro182]. We feel however that such lan-
guages present limitations of several natures. First, they lack a sound theoretical ba-
sis and the semantics of the various language constructs is in some cases ill-defined.
Thereby, the accompanying tools provide limited support (essentially editing, stor-
age and manipulation facilities) and analysis capabilities are restricted to syntactic
checks. Second, they also have a limited expressiveness because only some aspects of
the requirements can be formulated, like data-structures, data flows, and limited ad-
ditional properties. In particular, it should be noted that, in most case, the dynamic
aspects of the system evolution can only be captured with algorithmic descriptions,
i.e. with the risk of introducing over-specifications.

By contrast, new emerging requirements languages (e.g. LARCH [Gut85], RML
[Gre86], Z [Suf86] GIST [Fea87], MAL [Fin87], OBLOG [Ser89], ERAE [Dub88,
Dub91a] or TELOS [Mylg0]) are based on logical/mathematical semantics (e.g. ini-
tial algebras, first order logic) and exhibit two essential features, i.e. ezpressiveness
and structuring mechanisms.

- At the expressiveness level, we have drawn the following conclusions :
the use of a first-order logic framework seems to be a reasonable basis because
of the variety and the naturalness of constraints that can be expressed;
things of interest have not only to he expressed in terms of data but also in
terms of clusters when we want to model real-world persistent entities;
dynamic aspects of the system can be modelled using a state-based view (with
transitions explaining state changes) or an event-based view (with events
supporting the description of interactions). We feel that the latter supports
the description of interactive systems whereas the former is more suited for
the description of sequential systems;

�9 the description of a system can be snapshot or history oriented. The snapshot
view only supports descriptions expressed in terms of two successive states
of an history. By contrast, an historical perspective allows to refer to the
whole history of states. The historical view supports a more declarative view
than the snapshot view;

�9 only a few approaches permit the reference to (i) real-time aspects without
the introduction and the management of somewhat artificial clocks and to
(ii) organizational aspects related to the responsibility and the cooperation
of different agents within the system.

the structuring mechanisms level, it appears that many approaches only offer
a syntactical scoping mechanism to deal with name's clashes in large specifica-
tion. By contrast, within the algebraic framework, a number of more semantic
relationships are envisaged (e.g. parameterization, inheritance, etc). However, in
most cases, these mechanisms have been investigated within the framework of
an Cequational' logic (i.e. a subset of first order logic), not sufficiently expressive
for our requirements modelling purposes.

- A t

345

In the Icarus project, the conclusion of these experiences have led to the development
of the GLIDER language (a General Language for an Incremental Definition and
Elaboration of Requirements) [Dubglb] supporting the expression of the different
kinds of requirements presented above and offering powerful semantic and syntactic
structuring mechanisms (e.g. parameterization and inheritance). The language we
have introduced in this paper is a dialect of this GLIDER language also inspired by
some recent experiences of two of the authors with the ERAE language.

Our research plans are in four directions :

- the enhancement of the language with the expression of organizational require-
ments (like "this department is responsible for producing data to be processed
by the computer system"). Preliminary experiences [Dub91c] consider the in-
troduction of the notion of agent and action in order to model and to reason
on a responsibility relationship as well as to be able to express requirements on
performances, reliability and security aspects;

- the validation of the methodology proposed for composite systems through the
study of the conclusions resulting from large experiments currently done in dif-
ferent industrial environments;

- the development of an integrated environment of tools made of textual and
graphical syntactic editors, an object-oriented repository for managing interme-
diate specifications fragments and semantic analyzers for verifying consistency
and completeness of requirements fragments and also for deriving some new
relevant properties about them;

- the development of a requirements assistant supporting the process followed by
the analysts during the elaboration of the requirements document, as well as the
study of the rationale that have led to the choice of a particular process.

Acknowledgment: This work was partially supported by the European Commu-
nity under Project 2537 (ICARUS) of the European Strategic Program for Research
and Development Technology (ESPRIT). We are indebted to :I.P. Finance, A. van
Lamsweerde, F. Orejas, J. Souqui~res and P. Wodon who participated in the de-
sign of the GLIDER language. We are also grateful to 3. Hagelstein for his basic
contribution in the design of the ERAE language.

References

[Alfr~]

[Die89]

[Doe91]

[DuhSS]

M.W. Alford, "A Requirements Engineering Methodology for Real-time Process-
ing Requirements," IEEE Trans. Soft. Eng., SE-3(1), pp. 60-69, 1977.
N.W.P. van Diepen and H.A. Partsch, "Some Aspects of Formalizing Informal
Requirements," Department of Computer Science, University of Nijmegen, The
Netherlands, 1989.
E. Doerry, S. Fickas, R. Helm and M. Feather, "A Mode] for Composite System
Design," in 6th Int. Workshop on Software Specification and Design, Milano,
October 1991.
E. Dubois, J. Hagelstein and A. Rifaut, "Formal Requirements Enginee6ng with
ERAE," Philips Journal of Research, 43, nos. 3/4, 1988.

346

[DubSSb]

[Dub90]

[Dub91a]

[Dubglb]

[Dub91c]

[Ehr90]

[Fia91]

[Fin89]

[Fea87]

[Fea89]

[FinS~]

[Gre86]

[Gut85]

[JohSS]

[Jun91]

[Myl90]

[OreS9]

[Per90]

[Pro89]

E. Dubois, "Logical Support for Reasoning about the Specification and the Elab-
oration of Requirements," in The Role of Artificial Intelligence in Databases and
Information Systems, WG2.8/WG8.1 Conference, Guangzhou, China, pp. 29-48,
July 1988.
E. Dubois, "Supporting an Incremental Elaboration of Requirements for Multi-
agent Systems," in Draft Proceedings of International Working Conference on
Cooperating Knowledge Based Systems, University of Keele (England), October
3-5, pp. 130-134, 1990.
E. Dubois, J. Hagelstein and A. Rifaut, "From Natural Language Processing to
Logic for Expert Systems. Chapter 6 : a Formal Language for the Requirements
Engineering of Composite Systems," A. Thayse (Editor), Wiley, 1991, 535 pages.
E. Dubois, Ph. Du Bois, A. Rifaut, P. Wodon, "GLIDER User Manual," Spec-
Func Deliverable, ESPRIT Project Icarus 2537, June 1991.
E. Dubois, "Use of Deontic Logic in the Requirements Engineering of Composite
Systems," First International Workshop on Deontic Logic in Computer Science,
Amsterdam, The Netherlands, 11-13 december, 1991.
H. Ehrig and B. Mahr, "Fundamentals of Algebraic Specifications : Module Spec-
ifications and Constraints," EATCS Monographs on Theoretical Computer Sci-
ence, W. Brauer, G. Rozenberg, A. Salomaa (Eds), Springer-Verlag, 1990.
J. Fiadeiro and T. Malbaum, "Describing, Structuring and Implementing Ob-
jects," in Proe. Foundations of Object-Oriented Languages, Noordwijkerhoud
(The Netherlands), LNCS 489, Springer Verlag, pp. 275-310, 1991.
A. Finkelstein and H. Fucks, "Multiparty Specification," in Proc. Fifth Interna-
tional Workshop on Software Specification and Design, pp. 185-195, 1989.
M.S. Feather. "Language Support for the Specification and Development of Com-
posite Systems," in ACM TOPLAS, vol. 92 2, pp. 198-234, April 87.
M.S. Feather. "Constructing Specifications by Combining Parallel Elabora-
tions," in IEEE Trans. Soft. Eng., vol. 15 (2), February 1989.
A. Finkelstein, C. Potts. "Building Formal Specifications Using 'Structured
Common Sense'," in Proc. Fourth International Workshop on Software Speci-
fication and Design, pp. 108-113, 1987.
S.J. Greenspan, A. Borgida and J. Mylopoulos, "A Requirements Modeling Lan-
guage and its Logic," Information Systems, vol 11(1), pp. 9-23, 1986.
J. Guttag, J. Horning and J. Wing, "Larch in Five Esasy Pieces," Research
Report 5, Digital Systems Research Center, 1985,
W. L. Johnson, "Deriving Specifications from Requirements," in Proc. lOth Int.
Conf. on Software Engineering, Singapore, pp. 428-438, 1988.
R. Junglaus, G. Saake and C. Sernadas, "Formal Specification of Object Sys-
tems," in Proc. TAPSOFT'91, Brighton (UK), LNCS 494, Springer-Verlag, pp.
60-82, 1991.
J. Mylopoulos, A. Borgida, M. Jarke and M. Koubarakis, "Telos : A Language for
Representing Knowledge about Information Systems," ACM Trans. Information
Systems, 1990.
F. Orejas, V. Sacristan and S. Clerici, "Development of Algebraic Specifications
with Constraints," in Categorical Methods in Computer Science, Springer LNCS,
1989.
B. Pernici, "Class Design and Metadesign," in Object Management, D. Tsichritzis
(ed), Geneva University, p. 117-132, 1990.
A. Profrock, D. Tsichritzis, G. Muller and M. Ader, "ITHACA: an integrated

347

[Reu89]

[Reu91]

[Ro182]

[Ros77]

[SerSo]

[Set89]

[SufS6]
[Tel77]

toolkit for highly advanced computer application," in Object Oriented Develop-
ment, D. Tsichritzis (ed), Geneva University, pp. 321-344, 1989.
H.B. Reubenstein and R. C. Waters, "The Requirements Apprentice : An Initial
Scenario," in Proc. Fifth International Workshop on Software Specification and
Design, pp. 211-218, 1989.
H.B. Reubenstein and R. C. Waters, "The Requirements Apprentice : Automated
assistance for requirements acquisition," in IEEE Trans. Soft. Eng., 17(3), March
1991.
C. Rolland and C. Richard, "The Remora Methodology for Information Systems
Design and Management," in Information Systems Design Methodologies: A
Comparative Review, T.W. Olle, H.G. Sol, A.A. Verrijn-Stuart (eds), North-
Holland, pp. 369-426, 1982.
D.T. Ross and K.G. Schoman, "Structured Analysis for Requirements Defini-
tion," IEEE Trans. Soft. Eng., SE 3(1), pp. 1-65, 1977.
A. Sernadas, "Temporal Aspects of Logic Procedure Definition," Information
Systems, vol. 5, pp. 167-187, 1980.
A. Sernadas, C. Sernadas and H.-D. Ehrich, "Abstract Object Types: a Temporal
Perspective," Colloquium on Temporal Logic and Specification, B. Banieqbal, H.
Barringer and A. Pnueli (eds), LNCS 398, Springer-Verlag, pp. 324-350, 1989.
B. Sufrin (ed), "Z Handbook," Oxford Programming Research Group, 1986.
D. Teichroew and E.A. Hershey, "A Computer Aided Technique for Structured
Documentation and Analysis of Information Processing Systems," IEEE Trans.
Soft. Eng., SE-3(1), pp. 41-48, 1977.

This article was processed using the I~TEX macro package with LMAMULT-LNCS style

