
A Methodology for Requirements Analysis and
Evaluation of SDEs

Sanjay Dewal

University of Dortmund
Department of Computer Science
Chair for Software Technology
P.O.Box 500500
D-4600 Dortmund 50
Germany

A b s t r a c t

Nowadays software systems can be developed for nearly any purpose. For the development
of such complex software systems appropriate software development environments (SDEs)
are necessary as a "paper and pencil" development is intolerable. For a software producer
the introduction of an SDE is part of the technology deployment process during which the
staff must learn new methods, gain experience and knowledge by applying the SDE, etc.
This paper focusses on a particular activity of the technology deployment process, namely
the selection process (i.e. requirements analysis and evaluation of SDEs). The selection
process must (1) produce selection results which are rept~odudble and comprehensive and
(2) be repeatable and flexible in order to be applied for different software producers.
We have developed a selection method which can be applied (1) for a thorough analysis
of the requirements of the software producer, (2) for the evaluation of existing SDEs and
(3) analyzing the evaluatioja results. For supporting the method we have developed the
environment Requiem.

Keywords: Software Development Environments, CASE, Requirements Analysis, Eval.

uation, Selection, Reuse, Process Modelling

1 I n t r o d u c t i o n

395

Nowadays software systems of varying size and complexity are developed for nearly

any purpose. Sof tware p roduce r s I are aware of the fact that it is not sufficient to

implement the software system, but also to perform a detailed requirements analysis

and a design. As a development using "paper and pencil" only is intolerable, special

software systems called sof tware deve lopment env i ronmen t s (or SDEs) have

been developed and marketed since many years.

For a software producer buying and introducing an SDE in his environment means

that he has to introduce the methods supported by the SDE, train the staff for

applying the methods and the SDE, etc. Such a t echnology d e p l o y m e n t process

takes a lot of time and increase in productivity and/or quality of the software sys-

tems produced cannot be expected for a short term. The success of the technology

deployment is highly dependent on a "high quality" concept. For instance introduc-

ing a highly integrated SDE in an environment where tools such as editor, compiler

and debugger are used currently will not be successful. A more convincing concept

is to integrate the existing tools in the beginning and to add tools which support

early development phases later on.

Thus the technology deployment process is performed repeatedly improving the

current technology gradually. Within each cycle an SDE or parts of an SDE are

selected (i.e. define requirements, evaluate SDEs, analyze evaluation results, compare

software development processes (SDPs)), introduced and applied in the environment

of the software producer and the deficiencies during the development are reported

(see figure 1).

This paper focusses on a particular part of the technology deployment process,

namely the select ion process. Several high-level requirements on the selection pro-

cess can be derived from the technology deployment process. The selection results ~

must be comprehens ive and sof tware p r o d u c e r specific which means that the

environment and the needs of the particu]ar software producer must be considered.

The selection process can be applied r epea t4d ly for the evolved requirements. In

case a consulting company is performing the selection process it is highly important

that the selection results are r ep roduc ib l e in order to exclude dependencies to the

consulting company.

Existing techniques applied for the selection of SDEs are based on ad-hoc ap-

proaches like interviewing experts (see [5, 14, 18, 22, 23]) or evaluation of existing

tools (see [12, 21, 2, 15]). The major disadvantage of these techniques are that (1)

1 . i.e. persons or institutions developing software systems
2 the selection results are the requirements catalogue and the evaluation results of SDEs

396

Report Change L A ~ y
Reqlests r

/
, , ~ Introduce

rl SDE

~[Define
Requirements

Evaluate
SDEs

[Analyze Eva- I
[luation Results

I Comp.re [
SDPs I

Fig. 1. The Technology Deployment Process

the techniques are applied once and can neither be applied for various software pro-

ducers (i.e. not reproducible) nor repeatly for evolved requirements, and (3) it is
difficult to guarantee comprehensive selection results.

We have developed a method (see [8, 10]) for the selection process which includes
(1) the requirements analysis, (2) evaluation of existing SDEs, and (3) the analysis
of the evaluation results for purchasing the most appropriate SDE. The definition
of (1) a notation for the selection results and (2) a highly-incremental and flexible

selection process based on the notation enables a consulting company to repeatedly
apply the selection process and to reproduce selection results. Furthermore as various

aspects of the environment of the software producer can be considered during the
selection process the selection results produced by applying the selection method are
comprehensive and software producer specific.

The rest of this paper is structured as follows. In section 2 we briefly describe the
selection method. The description includes the key issues of the selection method as
well as the particular process which can be applied. In order to provide appropriate
support for applying the selection method, we have developed the environment Re-
qu iem. The architecture and some technical features of R e q u i e m are presented in
the sections 3 and 4, respectively. In section 5 we present some concluding remarks.

2 The Selection Method

397

The selection method consists of the high-level activities requirements analysis, eval-

uation of SDEs and analysis of evaluation results. For each of these activities particu-

lar methods have been defined (see [9]) which are briefly presented in the section 2.1,

2.2, 2.3. Some remarks on the complete selection method are given in section 2.4.

2.1 Requ i remen t s Analysis

The requirements analysis of SDEs is basically the definition of the software develop-

ment process (SDP) currently applied and the improvements and extensions of this

process planned for the near future. Several process models with various scope for

describing such SDPs have been proposed. The process programming language (see

[16]) or the graph grammar model (see [9]) can be applied for modelling and con-

trolling the software development process. The formal process model FunSoft nets

(see [13]) further allows to analyze and simulate the software development process.

The process models are not very useful for the definition of the SDP with the

scope of evaluating SDEs, because elements such as pre- and post-conditions, firing

behaviour, time constraints are necessary for the simulation, analysis and control of

SDPs only and an evaluation of SDEs regarding such aspects is usually impossible.

For the selection process a process model for defining the flow of documents is

sufficient. Thus we introduce the role model . As process modellers usually connect

with the term "activity" the pre- and postconditions as well as subactivities (see [6]),

we preferably use the term "role" as a synonym. In the remainder of this section the

role model is described briefly.

Role Model. The functionalities and/or tasks of the SDP are mapped onto roles 3.

A role is defined by a rolename and a role description which defines the function-

ality of the role, tile necessary and produced documents, management decisions,

non-functional aspects of the functionality, etc. The roles are the main vehicle to de-

fine subsets of requirements in the requirements catalogue. All requirements further

called role-based requ i rements on the functionality of a role build a subset. 4. The

requirements may define various aspects of the functionality such as the particular

functions, necessary and produced documents, management decisions, hardware and

software platforms, integration and extension aspects, etc.

3 Typical examples of roles are the Analyst, Designer, Implementor, Project Manager.
4 For simplification reasons the definition of a role is extended such that a role consists of

a rolename, a role description and the set of role-based requirements

398

The set of role-based requirements is further structured by defining subsets of

role-based requirements called r equ i r emen t s classes. Role-based requirements of

a requirements class define requirements on particular aspects such as necessary and

produced documents, functions, integration aspects and non-functional aspects.

A role can be refined into subroles where a subrole covers part of the functional-

ity of another role. The refinement of roles allows the identification of functionalities

common in the software development process which are defined as c o m m o n sub-

roles. A typical common subrole is the version manager.

According to the definition of role-based requirements, the refinement of roles

implies the refinement of the role-based requirements. Thus it is important to dis-

tinguish the importance of different role-based requirements. For instance the re-

quirements on a particular software platform is usually much more important for

a software producer than the 50th requirements on the functionality of a text ed-

itor. For each role-based requirement a rating which is a value within the interval

[1, 10] is defined for indicating the importance of the requested aspect. The rating

10 indicates that the role-based requirements is crucial, while 1 indicates a quite

unimportant role-based requirement.

Checking lhe Requirements Calalogue. The role model allows particular checks within

the requirements catalogue. The definition of the notation allows to check the syn-

tactical correctness of the roles. The definition of relations between the requirements

classes allows further to check the completeness of a role. For instance the defini-

tion of the uses re la t ion defined between the role-based requirements on functions

and necessary documents allows to check whether any role-based requirement on

necessary documents have been defined and whether at least one function needs a

necessary document defined. Otherwise such a document becomes obsolete.

For checking the redundancy and consistency of the requirements catalogue it is

necessary to standardize and unify the terminology used. We introduce a term dic-

tionary where terms (i.e. functions, documents, etc.) are defined using the method

of conceptual structures (see [19]). The term dictionary is used for identifying syn-

onyms, inconsistent usage of terms, etc.

Acquisilion of Requiremenls. With the role model the requirements catalogue can

be defined and checked. However, a software producer may not provide the informa-

tion appropriate for the role definition. It is necessary to define how to acquire the

appropriate information from the software producer. The acquisition includes the

elicitation of the information by using various types of interviews and observation

techniques. The elicited information is interpreted for identifying the terms and for

standardizing the terminology of the software producer using conceptual structures.

399

The interpreted terms are stored in the term dictionary and used as a basis for the

definition of roles.

The acquisition process is not only used for the definition of new requirements,

but also for validation of acquired requirements.

Reuse of Existing Roles. The role model as well as the standardization of the termi-

nology enables the reuse of existing roles. Reuse of roles is very likely, because many

requirements are not software producer specific, but are dependent on the methods

applied.

For appropriate reuse the roles are stored in a global role l ib rary (R-library).

The software producer may retrieve roles by defining particular retrieval criteria from

a global term dictionary or by navigating through the role hierarchy. As retrieval is

based on viewing parts of a role only, it is important that the retrieved roles must

be adapted, i.e. role-based requirements may be added, deleted and/or modified.

For enhancing reuse the quality of the global R-library is essential. For improving

the quality it is indispensable to update and extend the contents of the global R-

library. We ommit the maintenance process in this paper due to space limitations.

A detailed definition of the various activities and cases is in [10].

2.2 Evaluat ion of SDEs

During the evaluation process existing SDEs are evaluated regarding the role-based

requirements defined by applying the role model. For a software producer it is usually

not sufficient to know whether a particular functionality is provided by an SDE or

not, but also to know how "good" the functionality is. More precisely the functional

requirements are evaluated regarding different evaluat ion aspects. Each evaluation

aspect defines a particular view on the functional requirement defined. Examples of

evaluation aspects are user-friendliness, functional completeness or integratedness.
The evaluation aspects are defined in a special requirements class. This approach

allows one to define the evaluation aspects for a potential software producer during

the requirements definition process.

For the different evaluation aspects it is necessary to define different evaluation

techniques. For instance documentation is sufficient to evaluate whether a function

exists or not. However, aspects such as user-friendliness can be evaluated after a

practical use of an SDE only. We distinguish two different evaluation techniques,

namely analy t ica l evaluat ion and exper imenta l evaluat ion.

Analytical Evaluation. The analytical evaluation is based on any documents such as

marketing material or user documentation. The aim is to evaluate existing SDEs

400

on the basis of the documents available by using a bivalent measure only. Typical

evaluation aspects considered are functional completeness and integratedness.

Experimental Evaluation. In contrast to the analytical evaluation the experimental

evaluation is based on defining and executing a software producer specific experi-

ment. Typically a part of the software systems usually developed by the software

producer is developed during the execution of the experiment. There the experiment

is defined by precisely identifying the different experiment steps which are executed

sequentially. Typical evaluation aspects considered are user-friendliness and perfor-
mance. The evaluation results of an SDE regarding role-based requirements using

experimental evaluation are presented informally.

Aggregation of Evaluation Results. As the functional requirements are ordered in a

hierarchy, it is sufficient to evaluate SDEs regarding a tomic r equ i r emen t s (i.e.

functional requirements which are not further refined). The evaluation results of

an SDE regarding non-atomic requirements are aggregated from the evaluation re-

sults of the SDE regarding the atomic requirements. As the evaluation results of the

analytical evaluation are mapped on a bivalent measure, it is possible to define a

straightforward linear additive function for the aggregation. In contrast the aggre-

gation of the evaluation results of the experimental evaluation must be performed

manually, as the evaluation results are represented by an informal text.

The evaluation results of the different evaluation aspects are not aggregated, as

it cannot be guaranteed that the different evaluation aspects are independent. Thus

the evaluation results on an SDE of each evaluation aspect are presented to the

software producer.

Exclusion of "unlikely" SDEs. Although many SDEs should be evaluated regarding

the requirements of the software producer, it is sufficient to evaluate only "most

likely" SDEs to the very detail. The ratings defined for the role-based requirements

are used for identifying "unlikely" SDEs. The idea is that crucial requirements must

be fulfilled by a selected SDE. This means that any SDE which does not fulfill a

crucial requirement is regarded as "unlikely" and is therefore excluded from the

further evaluation. Such crucial requirements usually focus on particular functional-

ities, hardware and software platforms, budget restriction and SDEs can be usually

evaluated regarding the crucial requirements very quickly.

2.3 Analysis of Evalua t ion Resu l t s

The evaluation results must be analyzed thoroughly. In particular it is necessary to
compare the evaluation results of the different SDEs. Furthermore the SDP defined

401

by the requirements catalogue must be compared with the one supported by an

SDE. For this purpose the functionalities, produced and used documents and the

sequence of the functionalities are compared. A report is produced for each SDE

indicating the particular deficiencies detected during the comparison. On the basis

of the report the most appropriate SDE is suggested.

2.4 Remarks on the Select ion M e t h o d

The role model and tile processes defined for the different activities of the selec-

tion process allow to reproduce the selection results, to apply the selection method

repeatedly, and to produce selection results which are comprehensive and software

producer specific. The selection process is very complex and complicated. Figure 2

shows the top-level diagram of the selection process defined using Funsoft-nets (see

[13]) 5. The boxes in figure 2 denote the activites and the circles denote the docu-

ments. Shaded boxes are refined further by a Funsoft-net.

Thus it is highly recommended to interlink the activities of the selection process

and not to perform them sequentially. For instance a result that none of the existing

SDE fulfills the requirements of the software producer, can be identified much quicker

by interlinking the different activities. After the most appropriate SDE has been

identified, the selection results for this SDE are stored in an archive. As the selection

results of the chosen SDE describes the environment of the software producer after

introducing this SDE, the effort of a repeated selection process is reduced by restoring

the selection results and adding the evolved requirements.

3 T h e A r c h i t e c t u r e o f t h e E n v i r o n m e n t R e q u i e m

In the previous section we have presented the major issues of the selection method.

Selections made for potential software producers (see [1, 3, 20]) have shown that the

method is applicable. However, many data must be maintained throughout the se-

lection process. For instance in [20] 300 requirements have been defined for a tool for

the method Structured Analysis (see [7]) only. Five SDEs have been evaluated using

five evaluation aspects. Thus around 1500 evaluation results hd to be maintained

for each SDE. The huge amount of data and the complexity of the requirements

definition and evaluation make it necessary to develop an environment which pro-

vides appropriate functionalities for applying the selection method. In this section
we describe the architecture of the environment Requ iem.

All components of the environment are integrated regarding the user-interface.

In addition to the integration of the user-interface, data-integration is supported via

5 Funsoft-nets are high-level Petri-nets.

402

G-Lib

�9
G_Lib

CO

Req Def

CO ST

EvaSDE

SP-Info

SP

SP-Info 1

OU

IN ~ StSelProc Cihl ! ~ep

BOOLEAN J Text

Archive ~v SDE

G b IN

OU A r c S D E J

Fig. 2. The Top-Level Diagram of the Selection Process

OU

Term i

a common database. All objects produced by the different components are stored

in the common database. In figure 3 the complete architecture of the environment

is shown. The boxes in figure 3 denote the different components of the environment

(in the sense of modules), the arrows denote a use-relationship.

The common services are the user-interface (X-Windows) implemented using

X-Windows and the database management system (Oracle) using a commercially

403

J U1Par I I MM I

J [IS O:'acle I

Fig. 3. Architecture of the Environment Requiem

404

marketed database management system Oracle. The user-interface is accessed by the

different components of the environment via the unparser (UnPar) and the database

management system is accessed via the object management module (OMM) which

passes all requests of the components regarding objects stored in the database to

the database management system,

On top of these components are the components providing the necessary function-

alities for the requirements definition process and the evaluation process. A detailed

description of the components is presented in [17]. In the following the functionalities

provided by the different components are briefly described.

Role Editor (R-Ed). The role editor provides the functionalities for maintaining a

role. Maintenance of a role means that it must he possible (1) to define a role "from

scratch", (2) to modify a role, and (3) to delete a role. In particular it is possible (1)

to maintain the role (i.e. the sets of superroles and subroles, as well as the rolename),

(2) to view a role, (3) to maintain the role description of the role, (4) to maintain

the role-based requirements of the different requirements classes, (5) to maintain the

tuples which are elements of the relations defined between the requirements classes

of the viewed role.

Term Dictionary Editor (T.Ed). The term dictionary editor provides the function-

alities for maintaining terms in the term dictionary. In particular the functionalities

provided must enable the requirements engineer (1) to maintain the terms, (2) to

maintain the concept types, (3) to view terms, (4) to maintain the elements which

are elements of the relations defined for terms and concept types.

Role Checker (R-Check). The role checker provides the functionalities for checking

a single role or for checking a role hierarchy. The checking of the completeness of a

single role as defined in section 2 is performed automatically.

In contrast to the checking of a single role, the checking of the role hierarchy can-

not be automated. Therefore the functionalities provided by the component which

support the requirements engineer must be appropriate and adequate for the check-

ing task. For instance the component provides functionalities to navigate through

the role hierarchy and to view each role. Furthermore the requirements engineer

must be able to view terms defined in the local term dictionary in order to check

the consistency of the terms used.

Retrieval Editor (Rtr-Ed). The retrieval editor provides the functionalities for re-

trieving roles from the global R-library. As described in the section 2 it is necessary
to support the point retrieval as well as the guided retrieval. For the point retrieval

405

the component provides functionalities for defining and executing queries. In partic-

ular it is possible (1) to view the global term dictionary to find the terms for the

query, (2) to create a new query from already defined queries and (3) to view the

roles retrieved. For the guided retrieval the component must provide functionalities

for (1) navigating through the role hierarchy of the global R-library and (2) for

viewing the role descriptions of a role.

Adaptation Editor (Adap-Ed). The adaptation editor provides the functionalities for

adapting roles in the local R-library and the terms in the local term dictionary. The

adaptation of a role means that retrieved roles can be modified or that a role can

be defined "'from scratch". Adaptation of a term means that retrieved terms can be

modified or that terms can be defined "from scratch". The adaptation editor uses the

components (1) R-Ed for maintaining a role, (2) R-Check for checking a role or the

role hierarchy and (3) T-Ed for maintaining the terms in the local term dictionary.

Update Editor (Upd-Ed). The updating editor provides the functionalities for inte-

grating the roles from the local R-library into the global R-library and for integrating

the terms from the local term dictionary into the global term dictionary. There the

integration of a role in the global R-library means that the requirements engineer

must add the role from the local R-library to an existing role hierarchy into the

global R-library. For this purpose the component provides functionalities (1) to nav-

igate through the role hierarchy of both R-libraries (i.e. the global and the local

R-library), (2) to view a role in the local R-library and (3) to maintain a role in

the global R-library. Similar functionalities must be provided for integrating terms

corresponding to integrated roles from the local term dictionary into the global term

dictionary. The update editor uses the components (1) R-Ed for maintaining a role,

(2) R-Check for checking a role or the role hierarchy and (3) T-Ed for maintaining
the terms in the local term dictionary.

Evaluation Resulr Editor (Res-Ed). The evaluation results editor provides function-

alities for maintaining the evaluation results for a given SDE. The component fur-

thermore allows the maintenance of different evaluation aspects. In particular the

component provides the functionalities for (1) viewing atomic requirements and as-

sessable requirements of a role, (2) to maintain the evaluation results of the SDE

regarding the atomic and assessable requirements and (3) to check whether the

evaluation results of the SDE regarding all atomic requirements have been defined

and whether all evaluation results of the SDE regarding all functional requirements

refined from a non-atomic requirements have been defined.

In case an SDE is evaluated using the analytical evaluation, the component pro-

vides functionalities to define values (i.e. "0" for not fulfilled and "1" for fulfilled)

406

as evaluation results. Furthermore the component provides the functionality for the

aggregation of evaluation results in order to create the evaluation results for the

SDE regarding the non-atomic requirements.

In case an SDE is evaluated using the experimental evaluation the component

provides functionalities (1) to maintain experiments and to map each experiment

step onto one or more atomic or assessable requirements, (2) to check the complete-

ness of the experiment (i.e. are all atomic and assessable requirements covered by

the experiment), (3) to maintain the evaluation results of an SDE regarding atomic

and assessable requirements as well as (4) to maintain the evaluation results for

non-atomic requirements.

Evaluation Report Editor. (Rep-Ed). The evaluation report editor provides the func-

tionalities for maintaining the evaluation report presented to the software producer.

Furthermore the component provides functionalities for viewing the totally aggre-

gated evaluation results in order to produce and print the evaluation report.

Requiem Control. (Requiem). The Requiem control component control the complete

environment R e q u i e m and provides the functionalities for the invocation of the

different components like the adaptation component, or the retrieval component.

Figures 4 and 5 give an idea about how the environment R e q u i e m appears to the

requirements engineer and the evaluation engineer, respectively. Figure 4 shows a

snapshot of a session of the requirements engineer and figure 5 shows a snapshot of

a session of the evaluation engineer.

4 Technical Details of the Environment Requiem

The environment R e q u i e m has been implemented in C on Sun/Sparc workstations

under the SUN OS 4.1.1. The current version of the environment consists of 70000

lines of code. As mentioned before we have used Oracle as the database management

system in order to use a commercially distributed database management system

which provides functionalities for parallel access as well as for security regarding

system crash, etc. For increasing the user-friendliness of R e q u i e m we have used the

X-windows systems which is state-of-the-art and is widely accepted.

The current version of the environment R e q u i e m has been already used to

define several requirements catalogues. During the definition of these requirements

catalogues we have detected several problems regarding the user-friendliness of the

environment. A new version of R e q u i e m which is currently developed will thus focus

on the improvement of the user-friendliness by installing an improved help system

4 0 7

W ~ R e l u
E ~ . r g

S o ~ e l n

L t t l a b t c r i ~ l m - -

m J ~ ~ r t u ~ N * ~ i r m ~ �9 * e f t l ~ * s ~ t m f i r �9 ~ r r
inltmi! e I s ~ * the r e ~ e m t ~ ~ e I v ~ ~ i l v . lhe
i S ~ t e ~ e - ~ e 6 z ~ ~ R the ~ r ~ l d R s a e ~ J m ~ Lhl e e f t u ~ I ~ f i r
ImLl i l r l H l u l ~ I m l l l l i l . ~ LheL the SIA%mre-IPrlduclr d s f l ~ 8 b
m ~ h l t e ~ of the JoFtear,e eM~.en t i e r i n g t h e d e l l p ~ m . ~ l n g the

| ~ [m oJm�9 u, fLuaro surtax, Om'loql t*eLl~8 the $ofLu~eJ-Predueor tes~*
l lb~l l l lL
Oeelomr

JJ
n

Fun~/on~l ~ n L e
l ~ l e u ~ . a l J o n

d e b i t h f d
t .e~hte

i

faLher t lo l :

| e u ~ l ~ i r g l ~ l u J r ~ m t ~
na [nU~ RBS~e8

rrovldee
S ~ r t *

0eJLete]
II,dAnll

!
Tmc-l-d I ~ I l i I I I IIII I

I m

P

I II

Fig. 4. A Snapshot from a Session with the Requirements Module Editor

and error handling as well as improvements of functionalities for the requirements

definition and the evaluation of SDEs.

5 Conclusions and Summary

In this paper we have outlined the selection method and we have presented the envi-

ronment Requ iem which provides functionalities for applying the selection method

adequately. The selection method has practically been applied for selecting SDEs for

various software producers (see [1, 20], etc.). The practical experiments have pointed

out that the selection method is appropriate for the selection of SDEs. Especially the

possibility of reusing the roles from the global R-library enables the requirements

engineer to support and especially guide the software producer during the definition

of the requirements. The archiving of the requirements catalogue of a software pro-

ducer allows the requirements engineer to consider the evolution of requirements of

the software producer over a long period of time.

The development of the environment Requ iem has increased the practicabil-

408

I,'.,F~/,~I

I AdapbUon I l Ret.r'levad I [l%:du,a, Iota]

] MalnD'm~ I [Exit] [Help I

i '~ I 1 ' - - ' - , - I 1 " - - - ' " - ' 1
I "-" I I ' - " I I " I

NwA~zdle~ ~ ta
8~l~mn lg~wlk
tint|
D F D - E ~
DTD -Pmdrer
DD-~a~mmr
DD-P~rer

IM. - NQ'4d- 1PMeir~
Cndltt4hLu~
Tanllpdhl~

T,ma~

.~,n7

Ic

iw,t~

Fig. 5. Evaluation Editor

ity of the selection method, as the "paper and pencil" technique for applying the

selection method prevented the use of all advanced features of the method. The

first version of Requ iem has been developed so far and shown that most of the

functionalities necessary for supporting the selection method appropriately are al-

ready implemented and tested. The second version which is currently developed will

focus on the improvement of Requ iem regarding the missing functionalities and

user-friendliness.

Acknowledgements Thanks to the members of the students group, Dirk Altenhoff,
Christian Bunse, Hatice Carman, Mirco GrSger, Manfred Hiibner, Martin Kamp-
mann, Dirk Ohrndorf, Guido Quelle, Sabine Sachweh, Michael Schmidt and Paolo
Secci, for their engagement in the development of the environment Requiem. Thanks
also to my guides Prof. Herbert Weber and Udo Kelter for their valuable comments

on the thesis.

References

[1] Albrecht, T.: Evaluation and Comparison of several Tools supporting the Design, M.S.
thesis, University of Dortmund, to appear (in German)

409

[2] Baram, G., Steinberg, G.; Selection Criteria for Analysis and Design of CASE Tools,
ACM Software Engineering Notes, Vol. 14, no. 6, Oct'89

[3] Becket, S.: Evaluation of Software-Engineering.Tools on the Basis of a user-specific
Requirements Analysis, M.S. thesis, University of Dortmund, Jan'89 (in German)

[4] Boehm, B. W.: Improving Software Productivity, IEEE Computer, Sep'87
[5] Castor, V. L.: Criteria for the Evaluation of ROLM, Corporation's Ada Work Center,

Air Force Wright Aeronautical Laboratories, Jan'83
[6] Cheatham, T. E.: Emerging Issues, Proceedings of the 4th International Process Work-

shop, editor C.J. Tully, Moretonhampstead, ACM SigSoft Software Engineer Notes,
Voi. 14, Number 4, Jun'89

[7] DeMarco, T.: Structured Analysis and System Specifica- tion, New York, Yourdon
Press, 1978

[8] Dewal, S., Kelter, U.,Stock, M.: A Methodology for Requirements Analysis and Evalu-
ation of SDEs, ESF Seminar, Berlin, Nov'90

[9] Deiters, W., Schs W., Vagts, L: Formal Methods for the Description of Software
Development Processes, Internal Memo of the Chair of Software Technology, University
of Dortmund, Apr'88

[10] Dewal, S.: A Methodology for Requirements Analysis and Evaluation of SDEs, Ph.D.
thesis, University of Dortmund, Department of Computer Science, Jan'92

[11] Working Group 8: ESF Requirements, Internal Report, Oct'87
[12] Glickman, S., Becker, M.: A Methodology for Evaluating Software Tools, Trans. on SE,

Jan'85, p.190
[13] Gruhn, V.: Validation and Verification of Software Process Models, Ph.D. thesis, Uni-

versity of Dortmund, Jun'91
[14] Houghton, R. C.: A Taxonomy of Tool Features .for the Ada Programming Support

Environment (ASPE), U.S. Department of Commerce, National Bureau of Standards,
Dec'82

[15] Houghton, R. C., Wallace, D. R.: Characteristics and Functions of Software Engineer-
ing Environments: An Overview, ACM Software Engineering Notes, Vol. 12, no. 1,
Jan'87

[16] Osterweil, L.: Software Processes are Software too, Proc. of the 9th Int. Conf. on
Software Engineering, Monterey, California, Apr'87

[17] Projektgruppe Requiem: Development of the Environment Requiem, Final Report,
University of Dortmund, to appear (in German)

[18] Schulz, A.: Ein Klassifizierungs- und Bewertungsschema fiir Software-Engineering-
Werkzeuge, insbesondere CAS- Systeme, Angewandte Informatik, Vol.28, No.5,
Mai'86, p191-197

[19] Sown, J. F.: Conceptual Structures: Information Processing in Mind and Machine,
Addison-Wesley, 1983

[20] Stock, M.: Evaluation and Comparison of several Tools for the Method Structured
Analysis, M.S. thesis, University of Dortmund, to appear (in German)

[21] Troy, D. A.: An Evaluation of CASE Tools, CompSac'87, 1987, p124ff
[22] Weiderman, N. H., Habermann, A. N., Borger, M. W., Klein, M. H.: A Methodology

for Evaluating Environments, SigPlan Notices, Jan'87, p199-207
[23] Zucconi, L.: Selecting a CASE Tool, ACM Software Engineering Notes, vol 14, no 2,

Apr'89

This article was processed using the I~TEX macro package with LMAMULT style

