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Abstract. This paper addresses the problem of constraint integration in database design. 
The approach is inserted in an incremental database design methodology supported by the 
design environment KHEOPS. The view integration step using semantic unification is 
followed by the initial constraint confrontation. The detection phase is a deductive process in 
which the contradictions and redundancies between constraints are exhibited. The following 
conflict resolution depends on the strategy initially chosen by the designer. Four strategies 
are presented and discussed. An example of use is given to illustrate the application of those 
strategies. This approach could be enlarged in an object oriented context where schemata 
would have not only constraints but also methods to compare. 
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1 Introduction 

Initial views considered for integration generally contain a set of integrity constraints. 
Those constraints complete the description of objects and relationships between objects. 
The atomic objects, that is attributes, are characterized by a set of possible values, called 
domain. The link between a molecular object and each of its components can be described 
by cardinalities. The relations between the different constituents of a molecular object 
may be defined in terms of functional and multivalued dependencies. The relationships 
between different molecular objects are also submitted to cardinality constraints. Finally, 
other semantic constraints can be described in specific situations. 

Most of papers aboulb view integration address the problem of generating a global 
schema starting from views. Such a process needs the comparison of view constituents. 
Roughly, for each pair of objects, this comparison can lead to the generation of (i) one 
object by merging of the constituents if they are found identical or equivalent, (ii) two 
objects connected by an inclusion link if one is found as a subset of the other, (iii) two 
disjoint objects if they are found different. In that comparison, the constraints can be 
considered as one criterion, but this step must be followed by the confrontation of initial 
view constraints with the global schema constituents in order to complete the global 
schema. 
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When dealing with the constraints, the view integration literature talks more 
generally about the conflict resolution. Indeed, constraint integration assumes the 
resolution of conflicts consisting of contradictions and redundancies between the different 
constraints. The authors suggest several strategies for conflict resolution but they don't 
proceed to an automatic constraint integration [EI-Masri & Wiederhold 79, Navathe & 
Gadgil 82, Batini & Lenzerini 84, Navathe & al 84, Mannino & Effelsberg 84, 
Spaccapietra & Parent 90, see Batini & al 86 for a survey]. None of these strategies is 
the best one but each one can be applied in a specific context, that is for instance 
database integration. 

The main contributions to constraint integration are the algorithms producing third 
normal form relations from sets of functional dependencies [Beeri & Bernstein 79, 
Bernstein 76]. Such procedures are able to produce a minimal set of functional 
dependencies, thus pointing at the contradictions and eliminating the redundancies. But 
functional dependencies are not sufficient to represent all the constraints between data. 

From a theoretical point of view, Convent has proved that conflictfreeness is 
undecidable [Convent 86]. More precisely, the problem of deciding whether a given set 
of integrity constraints logically implies a single constraint is undecidable. So 
computer-aided integration needs heuristics to support designers in detecting conflicts for 
restricted cases in which logical implication is easily provable. 

This paper describes an investigation in such a direction. The approach is inserted in 
an incremental object-oriented database methodology [Bouzeghoub & Mttais 91]. The 
constraint integration comes after the global schema generation using a semantic 
unification of initial views [Bouzeghoub & Comyn 90]. Its main originality is to use 
deductive techniques to provide a better formalization of integrity constraint knowledge. 

The paper is organized as follows. In Section 2, the view integration process is 
described. Section 3 describes the constraint integration, dividing the problem into (i) the 
detection of conflicts and (ii) the resolution. Section 4 concludes this paper and gives 
directions for further research. 

2 View Integration by Semantic Unification 

Abstractly, the unification problem is the following [Knight 89]: given two 
descriptions x and y, can we find an object z that fits both descriptions ? The logical 
unification of two expressions, as that used in Prolog, consists in successive variable 
substitutions of one expression by corresponding constants of the other expression. For 
example, the unification of the two following terms: P(X,L(a,b),(Z,Y)) and 
P(a,f(Y,Z),(b,a)) leads to the following result: P(a,f(a,b),(b,a)) and P(a,f(a,b),(b,a)) using 
the following substitutions : replace X by a, L by f, Z by b and Y by a in the first 
expression and replace Y by a, Z by b in the second expression. 

A view is a structure composed of complex objects. View integration consists in the 
comparison of their structures in order to build a schema including the two initial 
structures. This process can be formalized as a semantic unification of the view 
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structures. The unification of two views consists in comparing element by element, with 
respect to their types (atomic or molecular objects), the components of the two views. 
However, the expected result is not necessarily the strict equality of the two structures 
but the detection of the overlapping parts and the disjoint parts. More precisely, given 
two concepts from two different views, we expect the view integration process to report 
whether these two concepts are equivalent, similar or dissimilar. To reach one of these 
results, instead of making substitution of variables as done in the traditional unification, 
we apply particular restructuring rules which permit in a finite set of transformations to 
decide whether the two compared concepts are equivalent or not. If the two terms are 
equivalent, they are merged into a single fact and represented only once in the resulting 
schema. If the two terms are dissimilar, they are both included in the resulting schema. If 
the two terms are neither equivalent nor dissimilar but present some similarity, if 
possible, we backtrack again to the unification process which will enhance the similarity 
or the dissimilarity by applying other restructuring rules or by interacting with the 
human designer. 

The general principle of view integration is similar to that of the logical unification 
but the substitution rules of the latter one are replaced by restructuring rules in the 
former one. Indeed, as view structures have no variable, the unification proceeds by 
analogy or by deduction process. Matching two symbols mainly consists in comparing 
their natures (atoms, molecules, constraints, etc), their structures (lists of components), 
their constraints (domains, keys, dependencies, cardinalities, etc) and the represented 
populations (instances). The logical unification is inserted into the resolution principle 
whose objective is to prove or to refute a hypothesis. At each resolution step i, if the 
unification succeeds the step i+l is proceeded, if the unification fails there is a backtrack 
to the step i- 1 to choose another rule or to match against another expression. 

The view unification is inserted into a methodological process whose objective is to 
reach a unified representation (called a conceptual schema) of different perceptions of the 
same universe of discourse. At each integration step, if the semantics of the conceptual 
schema is enhanced, the integration is validated and the following step is initiated. 
Otherwise the view to be integrated is considered either as redundant with respect to the 
referent schema or as badly defined with respect to the common understanding of the 
universe of discourse. Figure 1 shows the different steps of integration. The syntactic 
comparison tool examines the two view components using deduction by inheritance if 
necessary. If the first unification does not succeed, a view restructuring is operated. The 
second unification step is validated by interaction with the human designer. The result of 
this unification, i.e. the global schema, is completed by the constraint integration. 



510 

Human '~ 
designer 

Syntactic ~ J 
comparison Deduction by 

tool inheritance 
rules 

, 
! 

v I s y s t e m  

View 
restructuring 

Constraint ~ .. 
integration 

- ~  Usual way of progress 

Interaction between modules 

Fig 1. The view integration tool 

The structural unification is based on three notions : the equivalence, the similarity 
and the dissimilarity. 

(1) Semantic equivalence between two concepts : This notion depends on the nature of 
the two concepts to compare. Roughly, if we distinguish two levels of concepts, the 
basic level (atomic objects) and the structured level (molecular objects), we can 
intuitively define this semantic equivalence as follows : 
* two atomic objects are equivalent if they have the same name and the same domain, 
* two molecular objects are equivalent if they are composed of equivalent objects. 

(2) Semantic similarity between two concepts : two given concepts (atomic or 
molecular) are similar if they have a same name, or a same domain, or a similar 
structure, or if they represent the same population. The similarity is not represented by a 
unique characteristic but by a set of properties which define a similarity degree whose 
value depends on the nature and the number of common properties. Then we consider the 
equivalence between two concepts as a similarity with its high degree, say value 1 if the 
similarity range is defined between 0 and 1. 

(3) Semantic dissimilarity between two concepts : two concepts are dissimilar if they are 
neither equivalent nor similar. The dissimilarity between two concepts corresponds to a 
similarity with a lower degree, say 0 if the similarity range is defined between 0 and 1. 

Consequently, we can represent the result of the unification of two concepts by a 
multiple information called similarity vector whose interpretation of the different 
components will vary from the equivalence to the dissimilarity. This vector is defined 
according to each type of concept. The differents types of concepts constitute a hierarchy 
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starting from the most structured concept to the atomic concept. Then we distinguish 
two types of similarity vectors, corresponding to the two levels of objects : 

Simstructured object(name, structure, constraints, population) 
Simatomic o~ect(name, domain) 

The name cor~ponent specifies if the two names that are compared are identical or not. 
The structure component specifies whether the two compared concepts have same types 
or not. The type of an object consists in its list of components. The constraint 
component specifies if the two compared concepts have the same constraints or not. The 
population component specifies whether the two compared concepts represent the same 
set of instances or not. It concerns the intentional population. This component is only 
provided by the human designer who interacts with the view integration tool. The 
domain component specifies if two compared atomic objects have the same domain, 
included domains or different domains. Each of these components is a value ranging from 
0 to +1. This value is assigned by the unification procedure. If this value is less than 1, 
the unification procedure generates a hypothesis (equivalence or dissimilarity depending 
on the value). If this hypothesis, say equivalence, is validated by the human designer, the 
component value becomes 1, otherwise (case of dissimilarity), the component takes the 0 
value. Consequently, we have the following interpretation of the different components of 
the similarity vector: 

- equivalence iff component = 1, 
- similarity iff 0 < component < 1, 
- dissimilarity iff component = 0, 
- not considered iff component = '_ '. 

The '_' symbol is used by analogy with the anonymous variable in Prolog. 

Remark 1. Internally, when the designer is requested, we add 1 to the component (case of 
equivalence) or we subtract 1 from the component (case of dissimilarity). Hence at any 
time we know if the degree of similarity or dissimilarity is enhanced by the unification 
procedure or by the interaction with the human designer. At the end of the integration, 
the process may report the contribution of the human designer compared to the 
algorithmic decisions of the unification procedure. 

Remark 2. This view integration process relies on one main heuristic, say 'if two objects 
have identical structures, they represent the same population'. Such a hypothesis is 
necessary to make the process more automatic. 

A more detailed description of the unification procedure and mainly the evaluation of 
the similarity between views is given in [Bouzeghoub & Comyn 90]. 

3 C o n s t r a i n t  I n t e g r a t i o n  

We have defined earlier the role of constraints in the comparison of objects. These 
comparisons permit to enhance the similarity of the objects but they are not sufficient to 
infer the constraints associated to the global schema. The final step of integration 
consists in the constraint integration. The constraints which are considered are domains, 
keys, cardinalities and functional dependencies. 

The domain constraints are considered at the time of the atomic constituent 
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integration. So we consider here the integration of cardinalities, key and functional 
dependencies. It is relatively simple to detect a contradiction between two similar 
constraints, for example a contradiction between keys. If the subset A is a key for the 
object O in one view and the subset A is not a key for the same object in another view, 
the contradiction is explicit. However, it is necessary to detect contradictions between 
different constraints, that is for example between functional dependencies and keys. More 
generally, the conflict does not exist between only two constraints C and ~C but inside a 
set of several constraints. For example, let E, A and B be objects belonging to both 
initial views, the set: 

A is a key of E, 
B is a monovalued constituent of E, 
The functional dependency A->B is not valid. 

contains a contradiction, but each pair of sentences is consistent. 

To facilitate the expression of detection rules, we first describe the data model used. 
Then, the conflict detection process is described. The detection is followed by the 
resolution presented later. 

3.1 The Data Model 

The internal representation is the semantic model inspired by the different commonly 
used models (entity-relationship, extended entity-relationship, object models). Its content 
is easy to understand and allows a good representation of constraint interaction rules. We 
just describe the concepts used hereafter. 

The atomic and molecular objects of views, namely attributes, entities and 
relationships, are the nodes of the semantic network. The arcs describe the semantic links 
between those objects. These arcs are labeled to express the constraints. 

An arc 'p' goes from a molecular object to each atomic constituent. Its label contains 
minimum and maximum cardinalities of the link. The inverse arc is called 'a'. For 
example, p(E,A,[1,1]) means that each instance of the object E has exactly one value for 
its constituent A. a(A,E,[1,1]) means that each value of A corresponds to a unique 
instance of E. 

The key constraint is expressed by the arc key : key(E,A) means that the set of 
atomic constituents A is a key of the object E. The functional dependencies are 
represented by fd' arcs. 

The constraint integration needs the representation of negative informations, for 
example it can be important to save the information about the fact that there is no 
functional dependency between two constituents. We use two arcs to express such 
negative information: notkey(E,A) means that A is not a key of the object E. 
notfd(E,A,B) means that, for the object E, the atomic constituent B is not functionally 
dependent on the subset A. 
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3.2 The Conflict Detection 

The objective of view integration is to produce a minimal and consistent global 
schema. The minimality condition means that no redundancy may remain. The 
consistency condition means that any contradiction must be removed. The constraint 
integration operates as a deductive process aiming at the detection of contradictions and 
redundancies. The principle of this detection is described here. 

The constraints contained in the initial views are added one by one to the global 
schema. They constitute the fact base. If the tool detects a contradiction between the fact 
base and the new constraint to be added, the conflict resolution step begins, leading to a 
possible fact base modification. 

The rule base contains several types of rules. The first ones are Armstrong's axioms 
[Armstrong 74]. They formalize the interactions between functional dependencies. Let X, 
Y and Z be subsets of the set of atomic objects constituting the molecular object E : 

RARM1 : If X ~ Y Then fd(E,X,Y) 
RARM2 : If fd(E,X,Y) Then fd(E, X u Z, Y ~ Z) 
RARM3 : If fd(E,X,Y) and fd(E,Y,Z) Then fd(E,X,Z) 

Another set of rules contribute to define the notfd and notkey predicates �9 
RNP1 : If not(fd(E,X,Y)) Then notfd(E,X,Y) 
RNP2 : If not(key(E,X)) Then notkey(E,X) 

A third set of rules formalize the interactions between all types of constraints. For 
example, let A and B be atomic constituents of E, RICC1 and RICC2 are two examples 
of interactions between keys and cardinality constraints �9 

RICCI: If key(E,A) Then p(E,A,[I,I]) 
RICC2: If key(E,A)Then a(A,E,[1,1]) 

The following RICD1 to RICD4 rules formalize part of the interaction between 
functional dependencies arid cardinality constraints" 

RICDI: If p(E,A,[_,I]) and fd(E,A,B) Then p(E,B,[__,I]) 
RICD2: If p(E,A,[_,I]) and X _ A and fd(E,X,B) Then p(E,B,[_,I]) 
RICD3: If p(E,B,[1,n]) and fd(E,A,B) Then p(E,A,[_,n]) 
RICD4: If fd(E,B,A) and a(A,E,[1,1]) Then a(B,E,[1,1]). 

Others can be found in [Bouzeghoub 86]. Note that '_' is used to denote the 'unknown' 
value. 

The inference mechanism uses a forward chaining technique. Before introducing the 
constraint C, the inference mechanism is applied to the set of consistent constraints. If C 
is deduced, then C is redundant and must not be inserted. If -~C is deduced, then C is 
contradictory. Otherwise C can be added. The process ends when all the constraints have 
been considered. 

3.3 The Resolution Strategies 

The resolution of conflicts depends on the strategy chosen by the designer. We have 
defined four different strategies. In this section, we describe each one, giving in each case 
the possible use. Then the next sections will give an example and define the meta-rule 
which governs the use of those strategies. 
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The first three strategies have been found in the literature. The references and the 
suggested domains of application are given. The fourth one is original and can be seen as 
a step forward in the integration by generalization as defined by Dayal [Dayal & Hwang 
84] and used in [Larson & al 89] to integrate attributes. 

3.3.1 Predominant View Strategy 

The first strategy consists in defining a preferred view. In case of conflicts, the 
preferred view is chosen. This strategy was suggested in [Navathe & Gadgil 82, Batini & 
Lenzerini 84]. In that case, the resolution process is made automatic by assigning 
preferences to views. Practically, the initial base fact contains the constraints associated 
to the preferred view. The other constraints are added one by one. If a contradiction or 
redundancy occurs, the constraint is not inserted. 

This strategy has two main advantages : it makes the resolution an automatic process 
and it is very easy to implement. Such a strategy is applicable if both following 
conditions are valid. First, the preferred view is consistent. Secondly, the other views 
come as suggestions for improvement and thus can be partially rejected. Our opinion is 
that an incremental methodology database design meets these two conditions. 

3.3.2 Interaction with the Designer 

This strategy is completely opposite. It is based upon the idea that such a tool can be 
used to help the designer in the database schema generation. This help implies the 
detection of inconsistencies between the different designer declarations. These 
inconsistencies can be explained by the big size of the application or by the long lapse 
separating the beginning and the end of the process. 

This strategy considers that contradictions are the results of wrong specifications. In 
case of such contradictions, the designer must be asked. So the conflict resolution is an 
interactive process in which the set of facts (including C) leading to a contradiction is 
presented to the designer who points at the wrong fact. If C is the wrong fact, C is 
rejected. If the wrong fact is already in the fact base, it is retracted and C is inserted. 

An example of such dialog is given now. Suppose that the set of controlled 
constraint is defined by the four following constraints : 

(1) p(E,A,[1,1]) (A is a monovalued constituent of E) 
(2) fd(E,A,B) (functional dependency from A to B inside E) 
(3) fd(E,BC,D) (functional dependency from BC to D inside E) 
(4) p(E,C,[1,n]) (C is a multivalued constituent of E). 

The constraint C now introduced is p(E,D,[1,n]). The forward chaining inference engine 
permits to deduce : 

(5) p(E,B,L,1]) (deduced from 1 and 2 and RICD1) 
(6) p(E,D,L,1]) (deduced from 3 and 5 andRICD2). 

And C and (6) are inconsistent. 

Practically, our tool paraphrases each constraint including C and proposes this list of 
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sentences to the designer. The screen is displayed Figure 2. The designer points at the 
wrong sentence. The corresponding constraint is retracted from the fact base. 

( rYou told me that : 

(1) each E has one and only one A 

(2) for each A of E, there is a unique B 

(3) for each pair (B,C) of E, there is a unique D 

(4) at least some E have several D. 

This set of assertions is inconsistent, 

which one is erroneous ? 

Fig. 2. Interaction with the designer 

This solution can be used for database design to help the designer in exhibiting the 
conflicts between views. The tool is responsible for the consistency of the result, but the 
choices are made by the designer. It can be very useful when all the initial specifications 
are available but have been generated without control of an expert. Such a tool can also 
be used for computer assisted instruction. 

3.3.3 Loose Constraining 

Another strategy was suggested in several papers [Motro 87, Spaccapietra & Parent 
90]. These authors propose to build a global schema meeting all the initial 
specifications. So, in each case of conflict, the less restrictive solution is chosen. Then, 
to take into account each initial view, the mappings between the global schema and the 
initial view express the possible restrictions. A few situations and the less restrictive 
choice in each situation are presented Figure 3. 

Two main advantages can be presented to defend such a strategy. First, it makes an 
automatic resolution. Secondly, it does not alter the initial views. So it can be used in 
database integration where data already exist and where the global schema must reflect as 
best as possible the different local representations of data. 
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VIEW 1 VIEW 2 GLOBAL SCHEMA 

Domain D1 

Minimal cardinality 0 

Maximal cardinality 1 

Key(E,A) 

Functional dependency 
A -> B 

Key(E,A) 

Domain D2 

Minimal cardinality 1 

Maximal cardinality N 

Notkey(E,A) 

Wrong functional 
dependency A -> B 

Wrong functional 
dependency A -> B 

Domain D1 u D2 

Minimal cardinality 0 

Maximal cardinality N 

Notkey(E,A) 

Wrong functional 
dependency A-> B 

Wrong functional 
dependency A -> B 

Fig. 3. Contradictory specifications and resolution 

3.3.4 Resolution by Specialization 

The last strategy presented here is in keeping with the semantic modelling using 
generalizations and specializations [Smith & Smith 77]. The principle is to resolve the 
constraint conflict by specializing the object on which the contradiction takes place. This 
approach consists in declaring the contradictions between constraints as revealing 
overlapping class problems. In such a situation, the integration step must lead to a 
global schema where the different sub-classes with their own constraint sets coexist. 
Thus the resolution contributes to increase the automatic processing of class definition. 

Practically, suppose that, for example, the object O1 in the first view, denoted 
Viewl(O1) and the object 02 in the second view, View2(O2) have been integrated in one 
unique object O in the resulting view. Suppose that two constraints C1 and C2 are 
respectively associated to O1 and 02 in the initial views. Four cases have to be 
considered : 

1st case : the constraints C1 and C2 are identical or equivalent 
formally C1=C2 

In this case, C1 is added to the resulting view and associated to the object O. 

2nd case : the constraints C1 and C2 are contradictory 
formally C1 = ~C2 

The object O in the resulting view is specialized into two sub-classes O1 and 02. The 
constraints C1 and C2 are added to the resulting view and respectively associated to O1 
and 02. 

3rd case : the constraints C1 and C2 are independant 
formally C1 ~ C2 and C1 ~: --,C2 

They are neither redundant (that is neither identical nor equivalent) nor contradictory. In 



517 

this case, the constraints C1 and C2 are added to the resulting view and both associated to 
O. 

4th ease : the constraints C1 and C2 are compatible 
By compatible, we mean that one constraint is stronger than the other. For example in 
one view, one constituent of O is mandatory, in the other view it is optional. To express 
this compatibility, we have defined an order. This order is total inside a set of compatible 
constraints. It is defined as follows : 

C1 > C2 if C1 is stronger than C2. 
In this case, the object O in the resulting view is specialized in one sub-class O1. The 
constraints C1 and C2 are added to the resulting view. The stronger constraint, say C1, is 
associated to the sub-class O1. The other constraint, say C2, is associated to O. To 
illustrate our definition of order, Figure 4 enumerates a few cases of what we call 
constraint compatibility. 

CONSTRAINT C1 CONSTRAINT C2 

The domain of A is D2 D D 1 The domain of A is D1 

The set of attributes E1 is a key 

The set of attributes E is a key 

There is a functional dependency 
from A to B 

The set of attributes E is a key 

The attribute A is monovalued 

The attribute A is mandatory 

The minimum cardinality of entity E 
in relationship R is 1 

The maximum cardinality of entity E 
in relationship R is 1 

The set of attributes E2 z E1 is a key 

The set of attributes E is not a key 

There is no functional dependency 
from A to B 

There is no functional dependency 
from E to any other constituent F 

The attribute A is multivalued 

The attribute A is optional 

The minimum cardinality of entity E 
in relationship R is 0 

The maximum cardinality of entity E 
in relationship R is n 

Fig. 4. Compatible constraints where C1 > C2 

The previous discussion was about the comparison of two constraints. But the 
integration process consist in adding one by one the constraints to a controlled set. So 
we give now the algorithm used for the introduction of a constraint C coming from the 
initial view Viewi and associated to the object which led to the integrated object O. The 
algorithm called CONSTRAINTINTEGRATION(Viewi, C, O) looks for possible 
constraints already inserted and contradictory or compatible with C. If such a constraint 
exists, the constraint C is associated to the object O or to one of its sub-classes. Figure 
5 gives the algorithm. Figure 6 describes the subroutine BIND(C, O, Viewi) which 
associates the constraint C to the sub-class of O corresponding to the view Viewi. 
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CONSTRAINTINTEGRATION(Viewi, C, O) 
BEGIN 

IF Resultingview(O,C',Viewj) and C=C' 
/* in the resulting view, a constraint C' identical or 

equivalent to C is associated to 0 */ 
THEN 

REJECT C 
ELSE 

IF Resultingview(O,C',Viewj) and C'<C 
/* in the resulting view, a constraint C' compatible with C 
but less strong than C is associated to 0 */ 

THEN 
BIND(C,O,Viewi) 

ELSE 
IF Resultingview(O,C',Viewj) and C'>C 
/* in the resulting view, a constraint C' compatible with C 
but stronger than C is associated to 0 */ 

THEN 
/* associate C' to the sub-class of O corresponding the view Viewj */ 

BIND(C',O,Viewj); 
RETRACT Resultingview(O,C',Viewj); 

/* associate C to 0 in the resulting view */ 
INSERT Resultingview(O,C,Viewi) 

ELSE 
IF Resultingview(O,C',Viewj) and C' 9= C 

I* in the resulting view, a constraint C' inconsistent 
with C is associated to 0 */ 
THEN 

BIND(C,O,Viewi); 
BIND(C',O,Viewj); 
RETRACT Resultingview(O,C',Viewj) 

ELSE 
I* all the constraints already associated to 0 

are independent of C */ 
INSERT Resultingview(O,C,Viewi) 

ENDIF 
ENDIF 

ENDIF 
ENDIF 
END 

Fig. 5. The algorithm 
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BIND(C, O, Viewi) 

/* associates the constraint C to the sub-class of O 
coming from the view Viewi 

and creates this sub-class if not done */ 

BEGIN 
IF Resultingview(s(O,Viewi,Oi)) 

/* in the resulting view, the object 0 has a sub-class Oi matching 
with the correspondant object in Viewi */ 

THEN 
/* inserts the constraint C in the resulting view, 

associated to the object Oi */ 

INSERT Resultingview(Oi,C,Viewi) 
ELSE 

/* creates the sub-class of O corresponding to Viewi */ 
INSERT Resultingview(s(O,Viewi,Oi)); 
/* inserts the constraint C in the resulting view, 

associated to the object Oi */ 
INSERT Resultingview(Oi,C,Viewi) 

ENDIF 
END 

Fig. 6. A procedure to associate a constraint to an object in the resulting v~ew 

3.4 Example 

This sections gives a very simple example of two views with different constraints. 
We show how each previous strategy applies in this case. The example describes the 
involvement of employees in projects. In the first view, each employee is involved in 
one and only one project. In the second view, an employe may participate in several 
projects. The two views are graphically described Figure 7. Suppose that the first view is 
the preferred view. The integration will lead to forbid employes several involvements. If 
the strategy is loose constraining, the second view is chosen. In case of resolution by 
specialization, the employees are allowed to participate in several projects, except a 
sub-class of them who are bordered on a unique project. By interaction with the designer, 
the two options are suggested. The four possible results of integration are summmed up 
Figure 8. 
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View 1 View 2 

I Employee I Employee ] 

I I 
Fig. 7. The two initial views 

Predominant view 
strategy 

[Employee [ 

Loose constraining 

Interaction with the designer 

You told me that : 
(1) Each employee is involved in one project 
(2) An employee may be involved in several 

project. 
This set of assertions is inconsistent, 
which one is erroneous ? 

Resolution by specialization 

Employee [ 

< 
M 

Employee om loyoe I 
C: each S_employee 
is involved in one 

unique project 

Fig. 8. Application of four strategies 

3.5 Strategy Selection 

For each strategy, we have defined above the different conditions of application and 
the advantages. This analysis allows us to describe now the decision support module 
which helps the designer in the choice of the best strategy. 

The first and most important criterion to take into account is the initial specification 
reliability. Without this condition, no automatic resolution can be considered. The 
detection is made by the tool and the resolution emerges from a dialog with the designer. 
If the initial specifications are reliable, it is important to know if they are modifiable or 
not. In database integration for example, initial specifications represent real local 
databases and thus cannot be altered. Finally, the fourth strategy can be used if the data 
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model allows the expression of specializations. All these considerations are summed up 
in the decision process graphically drafted Figure 9. 

Are initial specifications 
reliable ? 

' Are initial specifications 
modifiable ? 

I Can the data model 
express class 

specialization ? 

Fig. 9. The strategy selection decision tree 

4 Conclusion 

In this paper we have presented the principle of a deductive process for constraint 
integration. Our approach of constraint integration is added at the end of the view 
integration process to complete the resulting view. Wej have developed and implemented 
a view integration technique based on a structural unification of initial views 
[Bouzeghoub & Comyn 90]. Constraint integration comes after that to detect and solve 
the contradictions and redundancies between initial specifications. This constraint 
integration, as the view integration process, is to be considered as a decision support 
system which helps the designer in giving him information about similarities or 
contradictions. The final integration relies on the designer's decision. 

The detection is a deductive process using a set of interaction rules modelling the 
relations between constraints. Key, functional dependencies, cardinalities and domains are 
considered. Some negative information is treated, thus making the technique applicable 
to incremental database design in which the global schema is obtained by successive 
refinements of an initial specification. 

The conflict resolution depends on the strategy chosen by the designer. Four 
strategies have been defined and discussed. The last one, called resolution by 
specialization, is original. In case of conflict, it suggests to specialize the object into 
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sub-classes in which constraints are no more contradictory. 

We feel that this approach could also be enlarged to take into account integration 
problems in an object oriented context. That is an important issue which still remains to 
be investigated. Another interesting extension is to consider general integrity constraints 
and to confront our constraint integration methodology with such constraints. 
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