
Metamodeling Editor as a Front End Tool for a CASE
Shell

Matti Rossi*l

Mats Gustafsson 2

Karl Smolander *1

Lars-Ake Johansson 2

Kalle Lyyfinen I

Abstract. Custom,able Computer Aided Software Engineering (CASE) tools,

often called CASE shells, are penetrating in the market. CASE shells provide a

flexible environment to support a variety of information systems development

methods. CASE shells axe often cumbersome to use and in practice few people can

model and implement methods in them. To overcome these problems we have

developed a graphical metamodeling environment called MetaEdit and a method

modeling interface to the CASE shell RAMATIC. Using this interface the
methodology engineer can develop graphical models in RAMATIC's model

definition language and then easily generate the resource files that control the

operations of RAMATIC. MetaEdit is used as a graphical front end tool to

develop, fast and in user-friendly manner, method models that can then be

supported using RAMATIC. In this paper we shortly present the MetaEdit tool

and then describe how the interface operates by illustrating how a new method for

RAMATIC is defined using MetaEdit's interface tool. The deemed method is

called TEMPORA-ER.

* This research was in part funded by the Technology Development Center of Finland and

Academy of Finland

1 Department of Computer Science and Information Systems, University of Jyv/iskyl/i P.O. Box
35, SF-40351 Jyviisk-ylii, Finland.

2 Swedish Institute for Systems Development, Box 14225, SW-40020 Gi~teborg, Sweden

547

1. Introduction

Computer Aided Systems/Software Engineering (CASE) has been taken into extensive

use in several companies. Most companies do not choose, however, a strategy to

incorporate existing methods into tools, more likely the methods are determined by the

chosen tool. This is the most obvious, but not in all situations, the most successful tool

adaptation strategy. Therefore, one important research area is to examine how to

develop CASE environments which can cover a variety of methods, and thus can satisfy

the differing needs of various organizations. One solution is to use CASE shells - tools,

by which one can tailor new functionality (ie. new method support) into a CASE

environment. With a CASE shell, an organization can more easily build computer

supported methods for a given task or project. A method engineer (an expert that defines

the new methods) is usually needed to do this work, however.

One problem in this method adaptation process is that most CASE shells are quite

cumbersome to use for method definition because they provide only low level and

primitive mechanisms for this task. Therefore a limited number of people can actually

model methods using CASE shells. To overcome this problem, one solution as proposed

by Smolander et al. [10] is to use graphical tools for methodology modeling, i.e.

graphical front-end tools for metamodeling, which we call metamodeling editors. These

tools can be interfaced with different CASE shells and provide higher level mechanisms

to accomplish the metamodeling task. The motivation to use a graphical model of

method is to provide an abstraction layer that hides the peculiarities of a textual

specification of the method.

We have developed a prototype metamodeling editor called MetaEdit [10]. In this study

we discuss the general principles and architectures of metamodeling tools and

demonstrate how we applied MetaEdit to specify methods into the CASE shell

RAMATIC using its own specification language CML [1]. Our goal was to build an

interface - a '"oridge" - between MetaEdit and RAMATIC. This "bridge2 provides the

sufficient functionality that allows a method engineer to graphically model a method in

MetaEdit and then to create a text file which can be loaded into RAMATIC. The

method engineer can concentrate on the critical tasks of method development such as

method structure and content and let the tool handle the cumbersome production of a

formal method specification that RAMATIC requires.

The paper is organized in six sections. The next section gives an overview of research

that attempts to combine the CASE tools and provides motivation for our work. In the

third section we shortly describe RAMATIC's architecture. In the fourth section an

overview of MetaEdit is presented with a more detailed description of the

ReportGenerator that was used to implement the transformation system. The fifth

section describes the functionality and structure of the bridge developed between

548

MetaEdit and RAMATIC. We also demonstrate how the modeling method TEMPORA-

ER can be defined using this bridge. The final section suggests some future research

issues and summarizes our results.

2. Connecting a Metamodeling Editor and a CASE Shell

2.1. Basic Preliminaries

Our interest in developing a metamodeling editor lies in our aim to model the methods

used by the IS development groups to describe IS and it's environment. IS modelling is

carried out by using a certain language, often referred to as a "description language". By

a method we mean a set of steps and a set of rules that define how a representation of an

IS is derived/transformed using a description language [9]. The "users" that define new

description languages (method engineers) need corresponding languages (meta
languages) to derive representations of the methods under development. These

representations form a (IS) metamodel and the process of creating the meta model is

called metamodeling.

The most obvious benefits of metamodeling are achieved I if we have a platform or a

tool where the modeled method can be implemented. Such tools are called CASE shells
and they offer mechanisms to specify a CASE tool for an arbitrary method or a chain of

methods [4]. The concept of a CASE shell means that the shell can "learn" about

methods which it did not "know" before. This learning will result in a tool that gives

support for the use of the specified new method. To achieve this, one has to describe the

method to the tool by defining the "method concepts" or design the object types of a

specific description language (metalanguage). Meta concepts of a specific method may,

for example, be objects, attributes, relationships, business functions, organizational

units, information flows or whatever the methodology assumes to be useful in modeling

the IS.

The meta languages vary from one CASE shell to another which makes their use

difficult. Another problem is that often they use rigid and complicated textual languages

which can be difficult to learn and apply. Therefore there is a need for more advanced

method specification languages and associated support environments, which we call

metamodeling tools or editors. A metamodeling editor is a special kind of CASE shell

(meta tool), with which a method engineer can define methods for other (target) CASE

shells graphically. In other words it can be "populated" by a set of meta languages used

in different CASE shells.

IWhat are benefits if such an enviromnent is not available are discussed in [3]. They are for
example the concise description of methods, assesment of techniques and comparison of

methods

549

The three main motivations in carrying out this study were: 1) there is a growing need

for graphical (meta) modeling environments, 2) the best use of the graphical

metamodels could be achieved if they can be transformed into the textual metalanguage

of a given CASE shell by the metamodeling editor, and 3) the "programmability" of the

metamodeling editor (meta CASE tool) gives us a chance to develop bridges into a

number of CASE shells. The first item is obvious (see [10]) and also supported by the

growing number of CASE shells in the market. The other two issues form the topic of

the research reported in this paper.

2.2. The Motivation for Using Metamodeling Editors

The rationale behind using metamodeling editors is to provide a graphical environment

for the methodology modeling. They are aimed to be general metamodeling

environments which can be interfaced to different types of CASE shells with the

appropriate "bridges".

One advantage of using graphical editors in metamodeling is that most of the meta

models are easier to understand and maintain in a graphical form. Complex relationships

between the concepts are easier to understand in pictorial form, than as lines of a textual

definition. The maintenance, manipulation and modification of methods will also

become easier when the meta models are kept in a graphical form. This allows for rapid

modification of versions of meta models for different development situations and helps

to improve their consistency and integrity. The possibility for versioning is essential in

developing new methods, because method development tends to be cyclical and driven

by method of trial and error [9,11]. This can be more easily achieved in computer

environment where supported mechanisms are readily available (cf. version control

systems). Finally, a benefit of graphical metamodeling is that it enhances the visibility

of method development and gives the tool users a better understanding of the methods

they use.

2.3. The Motivation for Using RAMATIC as a Target CASE Shell

The tool RAMATIC was chosen to act as the pilot CASE shell for interfacing because it

has a large set of modeling constructs which form a "representative" example of those

applied in other CASE shells. Hence, if we can "construct a bridge" for RAMATIC, we

can probably implement it for other CASE shells as well.

In another study we have made a comparison between three CASE shells [7]. Results of

the comparison of CASE shells show that RAMATIC has a powerful metamodeling

language, but the method definition is rather difficult when compared to for example

Excelerator's Customizer [7]. The difficulties arise from CML's rich set of concepts and

their complex interdependencies. By using MetaEdit as a graphical interface we hope to

achieve the best of both worlds: a powerful modeling language and the ease of using the

550

graphical modeling. The functionality of bridge is also needed as there is not much
sense in modeling the methods in RAMATIC's graphical language without being able to

automatically transform them for the RAMATIC's native schema language.

2.4. Modeling the Connection Between Metamodeling Editors and CASE
Shells

In order to model methods in a metamodeling editor for a given CASE shell the

metamodeling editor has to provide support for the native description language
contained in the CASE shell. This requires that the definition of the CASE shell's

language (called the meta-metamodel of the CASE shell) has to be defined in the

description language of the metamodeling editor (it's metalanguage). To make the

bridge operational, the method engineer also has to define an output specification of
how the metamodeling editor's graphical model will be translated into the CASE shell's

native textual language. This output (report) specification and the metamodel
specification together form the "bridge" between the two tools. The benefit of a two
sided connection between tools is that it allows for both the use of a graphical

specification method in the metamodeling tool and the seamless transportation of the

resulting specification into the CASE shell. The mappings between the tools are

illustrated in figure 1.

On the fight hand side of the figure we represent the three levels of languages that are

needed in delivering the functionality of a CASE shell. The IS specification level is the

end user level where methods are used to develop IS representations. The syntax and the

"semantics" of these models are defined on the metamodel level.

These metamodels limit and guide the usage of the tool. The metamodels themselves
are in turn based on a modeling language and its presentation form (syntax and
semantics). This language level is called the meta-metamodel of the CASE shell. This
level is important as it is instrumental in offering the flexibility of the CASE shell

environment. Therefore the expressive power and usability are important goals in

developing these meta-meta languages. One example of a language developed for this

level is RAMATIC's CML language which will be discussed in section 3.

The same three levels are also present in the metamodefing editor and they form the left

hand side of figure 1. Analogously, in a metamodeling editor we have the meta-
metamodel, the metamodel and the model. These operate, however, on one abstraction

lever higher than in the CASE shell. Thus, the model level in a metamodeling editor

defines the structure and the functionality of the IS modeling language i.e. the
metamodel of the CASE shell. The metamodel in a metamodeling editor is the model

that is used for specifying the methods in CASE shell i.e. the meta-metamodel of the

CASE shell.

551

Metaedit

Meta-meta
model

:~i~-i;:

I Meta
model

[model

,.-x I ~;;!!1 I
I i~i~i~ill
I i!~!~:~ I.I

Ramatic

model /

Meta I
model

Actual
model

Fig 1. Mappings between MetaEdit and the target CASE shell

The third level defines the syntax and semantics of the metamodels used in the editor.

The metamodels are used m specifying the method specifications for CASE shells. This
highest level data model leverages the flexibility for the metamodeling editor. It allows

users to define the CASE shell's metamodels in its "own metalanguage". This is

achieved by defining the meta-metamodel of the CASE shell using the meta-metamodel
of the metamodeling editor.

The connections between the tools are depicted by the two arrows in the figure 1. The

upper arrow pointing from a CASE shell to the metamodeling editor represents a

mapping of a CASE shell's meta-metalanguage into the metamodeling editor's

language. The upper arrow from the viewpoint of the metamodeling editor represents a
mapping of the metamodeling editor's language into the CASE shell's language. It

involves functions defining the transformation between representation forms. The lower
arrow represents the functional part of the bridge and it shows how the models derived

using the metamodeling editor are then transformed into a CASE shell's metamodel. To

demonstrate the viability of this approach, we will demonstrate how the metamodeling

editor MetaEdit is used to translate graphical specifications into RAMATIC's textual

metamodels. This is discussed in the section 5. Before this we shall shortly describe the
functions and architecture of both MetaEdit and the CASE shell RAMATIC. This is

done in sections 3 and 4, respectively.

552

3. The Architecture of the Ramatic CASE Shell

3.1. An Overview of RAMATIC

RAMATIC is a CASE shell - a "meta-toor' developed by the Swedish Institute for

Systems Development (SISU). The development of RAMATIC started in 1985 with the

objective to create a flexible environment for prototyping CASE tools for a large
number of different methods employed by the different organizations supporting SISU.

3.2. The Architecture of RAMATIC

The architecture and functions of RAMATIC are shown in figure 2. The core of
RAMATIC is the design object database (DODB). DODB consists of two parts: the

conceptual database (CDB) and the spatial database (SDB). CDB stores information

about the developed methods for example their objects, the relationships between the

objects and their attributes. SDB contains information of how and where on the screen

the conceptual objects are graphically represented.

CASE-shell - -

primitives

S p b o l I lbrar~l-- - -

I Messages

~ousekeepi .n~__
Backup I

User modelled parts

RA]gATIC description base

Design
object base

Spat ia l
data base

Database-

Interface

~ u

Syntax d~cker

Gr~pblc~a editor

Forms maoag~

l ~ a g e edltor
Trl~formm~

Graphics segment
manager Database management

Window manager Operating system
(0 S / 2)

Fig 2. Architecture of RAMATIC

3.3. The Meta-metalevel of RAMATIC

RAMATIC uses a small set of meta-meta objects. These objects can have attributes

which can be given values. The defined meta concepts and other definitions are stored in
the "method knowledge base". As noticed above this base controls the uses of the tool in

creating and manipulating design objects, according to the followed method.

553

In RAMATIC also graphical symbols can be defined on the metalevel by means of a

symbol description language. This can be thought of as modifying the attributes of a

"meta-meta symbol object". Design object types having graphical representation are

then associated to one, or several symbol types.

3.4. Representation of Design Objects in RAMATIC

In RAMATIC certain design objects can exist independently of other objects, such as an

entity type can exist as a "free" node in the ER-modeling. Other design objects, binary

"relationships", can only exist if they are "connected" to two other object types. Such a

relationship is defined as a "connection" design object. Accordingly, in a metamodel

describing a business modeling technique we can recognize an information flow

between two functions. This will be defined as a connection design object in

RAMATIC. Attribute types for design object types can be defined as free nodes in

RAMATIC. Alternatively they can be defined also as "subnodes" to the FREE object

node. If we define these as FREE nodes, we can add more (meta)attributes to the

attribute types.

The graphical representation of the objects is specified by a symbol definition. The

symbols can be defined in terms of their form, size, color, line width and so on in

RAMATIC. This is done through a separate symbol definition language. Notice,

however, that we can define a meta concept that has no graphical representation.

After this short introduction we can examine the metalanguage of RAMATIC in more

detail. As noticed above RAMATIC's design objects are classified into:

- free meta concepts (FREE), and

- connecting meta concepts (r

FREE- and CONN objects have attributes TYPE, ID, NAME and TEXT. The TYPE

attribute indicates the type of the meta concept, the ID, NAME and TEXT attributes are

used for names of concepts. TEXT is used exclusively for meta concepts having

graphical representation.

CONN concepts connect pairs of FREE design objects by means of associations FROM

and TO. CONN objects can, but need not, to have a graphical representation. The types

of every valid pair of FREE objects must be defined for any CONN object type. The

existence of any CONN object is dependent on the existence of those objects it connects.

FREE and CONN objects can be defined also to possess attribute associations through an

ASSOC statement.

For both FREE and CONN object types a SYMBOL TYPE can be attached. Moreover

FREE- and CONN type objects can be grouped together by means of group (SET)

objects.

554

Finally the metaconcepts of a specific modeling technique (these are usually handled in

a separate session of the tool) are grouped together in one MOD~'.LTYP~.. Meta concepts

that appear in more than one model type are declared by "rNT~.R concepts. FREv. and

corrN objects of the same type may have TD~.NT associations. Furthermore, it is

possible to define a set of integrity constraints for the design objects within one model
type group. These constraints specify mostly the minimum and/or maximum

cardinalities for the TO- and FROM associations. The constraints are formulated as

FAULT expressions.

As an example of RAMATIC specification consider the following part of a definition of

the meta concepts in an ER modeling technique developed by the ESPRIT project
Tempora [12]. The Tempora ER model type constitutes an extended entity-relationship

modeling technique with composite objects and time modeling.

MODELTYPE TEMPORA-ER

FREE ET TPETRC

FREE ETT TPETTRC

FREE DET TPDETRC

FREE AVT TPAVTRC

FREE RS TPRSSQ

ID=NA NAME=MANDATORY NAME=UPPER

ID=MANDATORY NAME=MANDATORY NAME=UPPER

ID=NA NAME=MANDATORY NAME=UPPER

ID=NA NAME=MANDATORY NAME=UPPER

ID=NA NAME=NA

Examples of FREE design object types are here: Entity Type (ET), Timestamped Entity

Type (ETI"), Derived Entity Type (DET), Aggregate Value Type (AVT)Aelationship

(RS).

IDENT AVT

IDENT SVT

INTER ET

Aggregate value types and simple value types may have IDENT associations, which
suggests a way of making multiple instances within one diagram possible. The INTER

permits the connection of entities in one model type with for example data stores in

another model type.

CONN BA TPBAA

CONN BA TPBAA

CONN BA TPBAA

CONN BA TPBAA

ET RS ID=OPTIONAL NAME=MANDATORY NAME=LOWER

ET RST ID=OPTIONAL NAME=MANDATORY NAME=LOWER

ET DRS ID=OPTIONALNAME=MANDATORY NAME=LOWER

ET DRST ID=OPTIONALNAME=MANDATORY NAME=LOWER

The Binary Association (BA) CONN object type can connect an entity type to a
relationship, to a timestamped relationship, to a derived relationship or to a timestamped

derived relationship, etc. The line symbol (symbol type TPBAA) must, according to this

example definition, be drawn from the entity type symbol to the relationship symbol i.e

in the direction that the name attached to it suggests.

555

ASSOC ET DEFDATE

ASSOC ET CARDLTY

In addition to the TYPE, ID, NAME and TEXT attributes, an entity type may have

additional attributes, such as definition date (DEFDATE) and cardinality (CARDLTY).

3.5. Specification of Methods Symbols, Menus and Forms in RAMATIC

The symbol types connected to the metaconcepts are defined in a separate part of the

method specification base. This is accomplished through the symbol definition

language. As a part of RAMATIC, a symbol library is available.

Any menu in RAMATIC is made up of several menu items, which can be texts or

symbols. For each menu item, the following is defined:

- the text (TEXT) to appear in the menu, or if it is a symbol

- the symbol type (SYMBOL) and
- the shell function to be executed (MENUNR)

For the manipulation of non-graphical expressions RAMATIC provides forms in which

one can modify and manipulate specific values of design objects. On the form definition
level of RAMATIC one can define forms, how they should look like, how the field

values are derived (from design objects), and how the tool should check the entered data

values, etc.

4. The Architecture and Functions of MetaEdit

MetaEdit is a graphical metamodeling editor, a flexible methodology modeling
environment. It can be interfaced with several CASE shells and thereby it can be
populated with several metamodeling approaches. Moreover, it offers a graphical
interface to carry out methodology modeling, and thereby it offers some advantages over
the earlier environments. [10]

4 . 1 . F u n c t i o n s

MetaEdit consists of three major functional components (see fig. 3):

1. Main Window offers the file and specification management functions. The selection

of the modeling methodology and the maintenance of specifications in the methodology

specification base (MSB) are done here. Other utilities of MetaEdit are also controlled
from here.

2. Draw Window provides drawing functions to draw and edit specifications. It is
generic and its behavior varies depending on the metamodel it uses.

3. Output Generator provides a programmable utility that helps to create reports,

generate code or retrieve data from the methodology specification base. The tool

556

manager specifies the output specifications in the output specification base. The output
specification base is a set of text files containing output generator code.

Melhodology Tool CASE tool
Eng~eer I~11 Manager implemento~- i

Fig 3. The Functional structure of MetaEdit

4.2. Da tamode l

In MetaEdit the meta level datamodel is a fixed data StlUCmre based on the OPRR 2 data

model [13]. The following defines the basic OPRR model :

Object is a "thing" which exists on its own. It is represented by its associated properties.

Property is a describing/qualifying characteristic associated with other object types

(object, relationship, or role).

Role is a link between an object and a relationship. A role may have properties that
clarify the way in which "things" participate in a certain part of a relationship. The role

defines what "part" an object Plays in a relationship.

Relationship is an association between two or more objects. It cannot exist without its
associated objects. Relationships can also have properties.

The objects are always presented by graphical symbols in MetaEdit. The objects

participate in relationships in certain roles. The roles are represented by symbols too.

These symbols form the ends of relationship lines (for example arrow heads).

2OPRR stands for Object, Property, Role, Relationship model

557

Relationships are always represented by lines between two objects. Properties are

represented by data fields. A field and it's acceptable values are defined by a data type.

4.3. Model Definition

The meta-metalevel is used as a basis for all metamodel specification in MetaEdit.
Depending on its instantiation, MetaEdit can be applied to different types of modeling

approaches. Target level instances and their possible associations are fully determined
by the definitions in the metamodel that can be changed on a user's request at any time.

Section 5 gives an example how we used the OPRR model to model the concepts of

RAMATIC and thereby to instantiate the RAMATIC's metamodeliog approach. The
detailed syntax of the metalanguage is described in [11].

4.4. Report Generation

To produce various types of output from MetaEdit's models we have developed a

general purpose report generator. It consists of two parts: ReportDesigner (a tool for
building report specifications) and ReportGenerator, the actual machine to produce

reports based on the stored definitions. The ReportDesigner is primarily intended for

defining bridges from MetaEdit, but it can also be used to create integrity checking
mechanisms for method specifications and to produce human readable documents.

The concept of a programmable transformation generator is similar to ideas in some

other CASE shells. For example the Metaview environment has a transformation system
for modelling transformations between model types [2] and Chen [4 pp. 130-136] has

proposed a very similar environment to the ReportDesigner for a transformation
language definition.

The ReportDesigner features an object-oriented query language, based on the syntax of

Actor 3 language. The language has predefined functions for selecting objects from

MetaEdit's methodology specification base and for retrieving properties, roles and
relationships of selected objects. The queries are constructed from these predefmed

functions by combining them into query methods. Each report specification contains one
or more query methods that are joined together within a main function.

The ReportDesigner offers a Smalltalk tm style query browser. The user interface of the
ReportDesigner is shown in Figure 4. It consists of four window portions within a main

window. A report class window offers a list of defined reports. It is located in the upper

left corner of the main window. When one of the report names is selected, the queries

defined for that report are shown in the upper fight-hand window, the query window.

Again, when one of the queries is selected from the query window, its code is shown in

3 Actor is a trademark of the Whitewater group

558

the edit window below. Between the report and query windows there is a model window
where the constructs of the current metamodel are presented.

_Accept~ Edit Search D_oil! Generator Selector _Utility' Templates Iqepod Method

~operlty IBoolea. i
Property [Identifier]
Properly [Integer]

/ * Hain report For Ilamatic HadelFi le-tran~lat ion * /
l)ef eain (se l f , tCo111 tex t)
{ genClasses(self) ;

re latedObj ("objHame","roleTgpe") ;

Fig. 4. The Interface of ReportDesigner

When the report specification is defined and compiled, it can be run in the

ReportGenerator against the methodology specification base. The report generator can
direct the generated reports to requested output devices while performing the requested

query. The user can modify the behavior of the ReportGenerator by changing the report
generator primitives in the ReportDesigner.

5. The Bridge Between MetaEdit and RAMATIC

This section presents the implementation of a graphical metamodeling editor for

RAMATIC using MetaEdit. As the first step we defined RAMATIC's meta-metamodel

within MetaF_Mit using it's OPRR metamodel. The mappings of RAMATIC's design

objects to MetaEdit's OPRR constructs is presented in the next subsection. As the

second step we define the report functions that represent the transformations from OPRR
to RAMATIC's CML.

5.1. Implement ing R A M A T I C ' s Model Definition Language Within MetaEdit

We defined RAMATIC's meta-metamodel in terms of MetaEdit's OPRR meta-

metamodel (the upper arrow pointing left in Figure 1). This step was accomplished by
examining the design objects of RAMATIC and their properties and expressing them

559

with OPRR constructs. All the roles and relationships embedded in RAMATIC's CML

had also to be defined. For all object types we defined the representation that specifies

the graphical appearance of the CML object.

Based on the description of RAMATIC's modeling language (see section 3) we can

recognise the following object types in OPRR: FP, E~., COl, IN, ASSOC and SET

(Note that the relationship CONN is also represented as an object). These objects are

connected to one another by the relationship types Connected to, Connected

from, Has assoc, is Member and is Owner. For example, a FREE object

type can be in the roles of Free part in the Connected to and Connected

from relationships. This defines one end of the Connected to/from relationship in

which a CONN object type is always in the role of Conn p a r t . Accordingly the A s s o c

object-types can be connected to CONN and FREE object types in a h a s a s s o c

relationship type.

All object types have the identifying property Type name. FREE and CONN objects

have also the properties Symbol identifier, Set auto, Ident, Inter

model name and ID and Name options. The fault options of RA/VIATIC are

properties of the Connected to/from relationship ~r

To be able to present the method graphically we also defined the symbols for object
types and line types for relationships (see fig. 5). The properties are handled in a

property dialog which is generated automatically to fit with the properties of an object-,
role- or relationship type (see fig. 6).

Note that this is only a partial definition of the whole metamodel. A more thorough
definition can be found in [8] and a part of it is in Appendix 1. The resulting meta model

was tested and verified and used as a basis to specify the graphical interface with which
all modeling information associated with RAMATIC's modeling language could be fed

during the' specification session. This formed the basis for the subsequent step to

implement the transformation component of the bridge. In [10] we provide a more
detailed description of the model definition in MetaEdit

5.2. Mapping the MetaEdit's Design Objects to RAMATIC Model Definition
Language

After specifying the modeling language and its representation forms in MetaEdit's

OPRR constructs, the transformation problem could be expressed in MetaEdit's query

language (The upper arrow in Figure 1 pointing to RAMATIC). The transformation task
(method in object oriented vocabulary) could now be written as a series of query

language commands by which the fixed expressions (reserved words used in
RAMATIC's method specification) could be attached to the object instances derived

560

from a query to the specification base MSB. Hence this step produces the actual output

for RAMATIC (bridge arrow in Figure 1).

In implementing this problem we had to define a translation method for each object type

defined in the metamodel of MetaEdit. The principle of a translation method is as

follows: first select the object instances for each object type and then specify how their
properties (and relationships) are translated into the target language sentences. For
example a method for transforming all FREE objects in MetaEdit into the corresponding

FREE -lines in RAMATIC's specification does roughly the followIng:

For all FREE-objs

do

getproperties (Type name, Symbol identifier, Set auto, ID options,

Name options)

get relatedob ject {Assoc)

print ("FREE")

print(Type name, Symbol identifier, Set auto)

print (Assoc name)

print (ID options, Name options)

enddo

The method first retrieves all FREE objects (first line) from the specification base, and
then a set of named properties (third line) and relatiomhips (fourth line) for each FREE

object ale retrieved. Next a fixed expression (fifth line) is printed to the output stream

and the retrieved properties (sixth and eight line), and finally names of the related

objects (seventh line) are added in a specific order.

The I d e n t , I n t e r and F a u l t command lines are derived from properties of the

FREE- and CONN object types and therefore the methods for producing them are of a

shghtiy different form:

For all FREE-objs or CONN-objs with property(Ident)=TRUE

do

getproperty (Type name)

print ("TDENT")

print (Type name)

enddo

The difference is that now only a subset of FREE- and CONN objects with a certain

value of a certain property are retrieved.

As most of the transformations are very straightforward the method engineer needs only

to define the appropriate properties of the objects types and add some "syntactic sugar"

to build a model definition clause in RAMATIC.

These examples shed some light on the main characterictics and the current status of the
metamodeling editor and how it's query definition facilities can be used to build

561

effective bridges between MetaEdit and different CASE shells. The query formulation

for producing FREE clauses in the CML language is shown in appendix 2. It points out

that the current version of the query language uses rather complex syntax (if you do not

like Smalhalk) and suits mostly for an experienced user. We believe, however, that the

learning threshold is not a serious problem as long as MetaEdit is used mainly as a

metamodeling editor, because on this level there are no "non-professional" users. The

transformation task is for the first time quite tedious, but it has to be done only once and

after that the query methods need only to be altered when the metamodel is restructured.

Also the available query methods can be reused in creating new report specifications.

5.3. Using the Interface to Define the Tempora-ER Model

To demonstrate the usefulness of the metamodeling editor we used the editor to build a

graphical model of the Tempora-ER model in RAMATIC's modeling language. Note
that now the model of the Tempora-ER method is build graphically in RAMATIC's

modeling language using the functionality of MetaEdit.

Iqefrcsh _Edit Draw Relationship

DEFDATE

C~IDLTY

I ETT AVT I

E T

DET 1

Fig 5. Tempora-ER in RAMATIC's graphical modeling language using the metamodeling editor

The DrawWindow of MetaEdit with the Tempora-ER model is presented in figure 5.

The FREE design objects of Tempora-ER are ETT,AVT, ET and DET (See subsection

3.3 for details) and are represented by rectangles in Figure 5. There is one CONN object

(the circle in the picture), BA, which has relationships with all the FREE objects. The ET

object has two ~ssociations CARDLTY and DEFDATE (labels in Figure 5).

562

Figure 6 presents a property dialog for the ~.T -free object which is generated by using

the OPRR specification of the FRE~. object. It represents properties of object types using

different data fields. For example a FP~. t y p e has a text field, whereas a boolean

type I d e n t property is represented by a check box, and the ID o p t i o n s by a list

with predefined values (see appendix 1 for property definitions).

Free type

Symbol identifier

Set auto

Ident

Inter model name

ID exist option

ID within parentheses ?

ID check option

IO case option

Name exist option

Name within parentheses ?

Name cheek option

Name case option

F= _ _] ID

[]
[]

none
DERIVEMANDATORY
DERIVE_OPTIONAL
AANDATORY
)PTIONAL

MANDATORY

[]

E
PLy_. w

Fig 6. Property dialog for ET -object

Notice that tiffs interface is generated automatically after we have specified the

RAMATIC's modeling language in the OPRR notation and loaded it as metamodeling

method into MetaEdit.

When the method engineer decides to produce a prototype of a report, in this example
the TEMPORA-ER definition, s/he can run the report generator with the report

specification for generating RAMATIC's modeling language constructs. For the user the
ReportGenerator appears as a dialog that presents the user with a list of available reports
and output devices. After selecting the RAMATIC report the user gets a method

definition like that shown in Figure 7. This output is produced from the TEMPORA-ER
model. The figure shows that all properties of the ER method have been successfully

translated into the report output.

563

Edit Search

HODELTYPE TEI4PORfl-ER
FREE DET TPOETRC ID =HA Name =(HflHDATDRY,UPPER)
FREE gUT TPAUFRC [D =NA Name =(MflHDATORV,UPPER)
FREE ET TPETRC [D =FIR Name =(MAHDflTORY,UPPER)
FREE ETT TPETTRC ID =(PIRI'II)flTORY) Hame ~=(HflNDflTORY,UPPER)
CONH BA TPBflfl EI EFT Ig =OPTIOHAL Name =(HflFWflTORY,UPPER)
CONH Rfl TPRflfl ET DET [D =OPTIOHflL Hame =(HflI'DflTORY,UPPER)
CONH Bfl TPBflfl ET flUT ID =OPIIOHflL Name =(HflFIDfllORY,UPPER)
IDEHT AUT
flSSOC ET CflRDLTY
gSSOC ET DEFDgTE

Fig 7. The generated report output of Tempora-ER

The example shows some of the strengths of the approach. A method engineer familiar

with the basic concepts of RAMAT/C's modeling approach can specify methods

graphically, and then generate RAMATIC's textual method specifications. This relieves

him/her from worrying about the syntactic details of RAMATIC's CML model

defirdtion language. The use of a metamodeling editor could lead into a situation where

the method engineer builds the methods with method users, and technical RAMATIC

specialists build the interfaces (symbols and forms) for them. Thereafter new versions of

the method could be developed by changing pans of the method specification in
MetaEdit, and producing then the output for RAMATIC.

6. CONCLUSIONS

In this paper we have presented how an interface between a graphical meta modeling

editor and a CASE shell can be developed. Currently, the bridge is a research prototype

and cannot produce all the files needed to define a method for the RAMATIC CASE

shell. The bridge is, however, capable of producing complete conceptual base model

definitions of RAMATIC. These can be used as a basis for defining other necessary

parts of the CASE environment. This part of the method definition forms also the most

crucial part in the specification of the method. The menu and symbol definition parts of

RAMATIC are currently being redefined by SISU, and for that reason they were not

included into the prototype. When they have been frozen we intend to cover them in a
future version of the '"oridge".

A full method development for RAMATIC using the metamodeling editor needs also the

ability to model the interdependencies between models. These interdependencies can be

handed by the transformation system or using links between models.

564

The most urgent research task in the future is to define a full-scale metamodeling editor
that covers the remaining parts of the RAMATIC method definition. The benefit of such

an extension will be that the time to build a CASE tool to support a particular method
using RAMATIC will be a matter of days, as opposed to the approximation that it takes

a few weeks to develop a tool by hand [1]. Another benefit from this is that the method

developer needs only to know the concepts of RAMATIC's modeling language and s/he
does not have to worry about the "syntactic sugar" and the specific technical aspects of

the language. Thus, a less experienced user can define methods for his/her own purposes

and the learning curve will be steeper. In an optimal situation, one could make a model

of a method with MetaEdit, produce some reports, load the new method definition into

RAMATIC and try it out on the fly.

This graphical method modeling approach could be as well used for other CASE shell

environments and in fact we have developed a similar bridge to develop graphically

methods for MetaEdit itself. We claim that this approach would be desirable for

commercial CASE shells as well.

MetaEdit's current report generation facility is still a prototype environment. In the

future we hope to develop a less awkward language for the query formulation. One

promising possibility is to use the developed graphical model (such as RAMATIC's
graphical modeling language) in formulating queries. Despite its current limitations, the

"bridge" demonstrates that graphical methodology specifications can be developed and

automatically translated for use in a CASE shell. Hence, the modifiability of the
metamodefing environment and its report generation facility gives method developers

the possibility to deliver methods for specific CASE shell environments fast and

effectively.

Acknowledgments
We would like to th~nk the referees and co-workers whose valuable comments greatly

helped to improve the paper.

References
l. Bergsten, P., Bubenko, J., Dalai, R., Gustafsson, M., Johansson, L.-/~., RAMATIC

- a CASE shell for implementation of specific CASE tools. TEMPORA T6.1,

SISU, Stockholm, 1989. Draft of TEMPORA- report section 4.4.

2. Boloix, G., Sorenson, P., Tremblay, J., On transformations using a metasystem
approach to software development, Dept of Computing Science, The University of

Alberta, November 1991.

565

3. Bfinkkemper, S., Formalization of Information Systems Modelling. PhD thesis,
Thesis Publishers, University of Nijmegen, Nijmegen, Holland, 1990.

4. Bubenko, J., Selecting a strategy for Computer-Aided Software Engineering
(CASE). SYSLAB-report n:o 59, University of Stockholm, Stockholm, Sweden,
1988.

5. Chen, M., The integration of Organization and Information Systems Modeling: A
Metasystem Approach to the Generation of Group Decision Support Systems and
Computer-Aided Software Engineering, University of Arizona, dissertation, 1988.

6. Dahl, R., RAMATIC description language, SISU, Sweden, 1990.

7. Marttiin, P., Rossi, M., Tahvanainen, V-P, Lyytinen, K., A Comparative Review of
CASE shells, in Proceedings of the First Software Engineering Research Forum,
Tampa, Florida, November 7 - 9, 1991, (ed. R. Rodriguez), University of West
Florida, 1991.

8. MetaEdit user's guide, RAMATIC model manual, Rossi, M. Smolander, K.
Marttiin, P., Jyviiskylii, 1991

9. Lyytinen, K., Smolander, K., Tahvanainen, V.-P., Modeling CASE environments
in systems development, in Proceedings of CASE89 The First Nordic Conference
on Advanced Systems Engineering, Stockholm, 1989.

10. Smolander, K., Lyytinen, K., Tahvanainen, V.-P., Marttiin P., MetaEdit - A
flexible graphical environment for methodology modelling, in Advanced
Information Systems Engineering, (eds. R. Andersen, J. Bubenko, A. Sr
Springer'-Veflag, 1991, pp. 168-193.

11. Smolander, K. OPRR - A model for modeling systems development methods~ In
Proceedings of the Second Workshop on The Next Generation of CASE Tools,
Trondheim, Norway, May 11 - 12, 1990, (eds. V-P. Tahvanainen and K. Lyytinen),
University of Jyviiskyl~, Jyviiskyl~i, 1991

12. TEMPORA, Concepts Manual, Tempora ESPRIT project, E2469, September,
1990.

13. Welke, R., Metabase - A Platform for the next generation of meta systems
products. In Proceedings of CASE Studies 1988, Meta Systems, Ann Arbor, May
23-27, 1988, Meta Systems, Meta Ref. #C8824, 1988.

566

Appendix 1. FREE-object Definition in OPRR Metalanguage

shape "Rectangle"

{shape (0@40, 0@160, 200@160, 200@40, 0@40);

line type "Solid";

line width 3;

connection points (i00@160,0@160,0@i00,0@40,i00@40,200@40);}

symbol "FreeNode"

{shapes ("Rectangle");

scale 0.4;

labels { "Free type" at (I0 60 190 140) centered;}}

property type "Free type"

{ datatype String;

values unique; }

property type "ID options"

{ datatype list ("NA", "OPTIONAL", "MANDATORY", "none") ;

number of values i; }

property type "Name options"

{ datatype list ("DUPLICATE", "UNIQUE", "IDENTIFY", "none") ;

number of values i; }

property type "Symbol identifier"

{ datatype String;

number of values i; }

property type "Set auto"

{ datatype Boolean;

number of values i; }

object type "Free"

{ symbol "FreeNode";

duplicates not allowed;

properties ("Free type",

"Ident", "Inter model name",

"Symbol identifier", "Set auto",

"ID options", "Name options") ; }

567

Appendix 2. Code Example of FREE-Definition in MetaEdit's Query
Language

/* This is a report method for RAMATIC FREE-object generation */

Def genFrees (self I freeColl, rol, txt)

{ freeColl : =selObj (mine, "meta", "Free", nil, nil, nil) ;

do (freeColl,

(using (elem)

add (reportFile, "FREE "+getPropVal (elem, "Free type")) ;

add (reportFile, getPropVal (elem, "Symbol identifier")) ;

if getPropVal (elem, "Set auto")

then add (reportFile, "SETAUTO ") ;

endif;

rol : =findRelRoles (elem, "add type", "has Assoc") ;

do (rol,

(using(e)

if getPropVal (theRelationship (e) , "Add on create ?")

then add (reportFile, "ADD"

getPropVal (relatedObj (e) , "Assoc name")) ;

endi f;

));

endif;

if getPropVal(elem, "ID qualifiers")

then add (reportFile, " ID= (", getPropVal (self, elem, "ID")) , ") ") ;

endif;

if getPropVal(elem, "Name qualifiers")

then add (reportFile, "

NAME= ("+getPropVal (self, elem, "Name", ', ') +, ") ") ;

endif;

separator (self) ;

));

