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Abstract. There has been a recent explosion of interest concerning the construction
of computer-aided software engineering environments assisting users during the
software development process. Such environments, called process-centred, are
characterised by their ability to provide some assistance or automatisation of the
software process being carried out. This paper describes the ALF Meta-CASE
environment developed in the framework of the ALF ESPRIT project. It consists of a
formalism for modelling computer-assisted software processes and mechanisms for
supporting the generation of process-centred CASE environments. These
environments are able to enact formal software processes models and to assist
developers during their enaction.

1 Introduction

The software crisis has been with us for some time and will continue to worsen, at least for
the next few years. Two important reasons for this are that there is an ever increasing
demand for software, and there are demographic problems, i.e. there are fewer and fewer
people available to write this software. This latter reason will be alleviated to some extent
as the third world enters the market; but this still leaves us with a severe productivity
problem.

The field of software process modelling is one of several that have developed to address
the software crisis. Examples of other important areas are in programming technology,
design methods, and to some extent in hardware. The last of these has allowed the software
community to free itself to a large degree from the shackles of hardware related
constraints.

Much has been writien elsewhere on the importance of software process modelling
{Dowson 1991, Osterweil 1987, Stenning 1987]. But software process modelling also has
the great advantage that it brings the other advances in software technology together in a
way that allows them to complement each other.
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We call software process the total set of software engineering activities needed to
transform user’s requirements into software. A software process model is a software
process definition that can be instantiated for a specific project or organisation. Different
software processes can be driven by the same software process model. The formal notation
for describing software process models is called the software process formalism. Software
process enaction is the action of enacting software process models. Enacting means
executing by an agent that may be a human or a machine.

In the ALF! project [Benali et al. 1989, Griffiths et al. 1989], our approach to support
software process modelling has been to develop a meta computer-aided software
engineering environment: a meta-CASE environment for generating software process-
centred CASE environments. A process-centred CASE environment is a knowledge based
CASE environment that is able to take initiatives and assist software developers according
to the knowledge it has of sofiware process models to be carried out. An important aspect
is that the meta-CASE environment will be able to generate environments to support many
software life-cycle models, e.g. the “waterfall model” [Royce 1970] or “the spiral model”
[Bochm 1986], and many design and development methods, e.g. HOOD or SADT. More
information on how our approach compares to related work can be found in [Arbaoui and
Oquendo 1991].

The main objectives of ALF generated CASE environments are:

* to support process modelling and enaction,

* 1o provide user assistance.

Other aims are:

* to support the whole software production process,

* to support process decomposition to the level of tools,

* to model the whole organisation to the level of roles,

* to be multi-project, multi-team, and multi-user,

* (o support user communication and cooperation.

The technique for software process modelling that has been developed in ALF is generic.
Furthermore the approach taken is not restricted to one paradigm; there is enough
functional richness to be object oriented, to be rule based or to be constructive. Genericity
is achieved by instantiation, that is where an object or operation is described in a model,
the object instance or actual tool to be used does not have to be identified, i.c. instantiated,

until it is needed. The *“tool” might not be an actual tool but another sub-process, which, of
course, can be modelled.

1. The ALF “Accueil de Logiciel Futur” project is partially funded by the Commission of
the European Communities under the ESPRIT programme, Project Ref. No. 1520.



570

The following section of this paper looks at the formalism for describing software
processes that has been developed in ALF. Later on the instantiation and enaction of
process models are discussed. There follows a brief description of the ALF meta-
environment architecture. Finally the ALF System is presented from the user’s point of
view, with its main contributions to increase productivity and software quality.

2 The MASP Process Modelling Formalism

An important thread of the work in the ALF project has been to design a formalism for
software process modelling [Oquendo 1990]. The formalism we have developed, called the
MASP (meta-Model for Assisted Software Processes), provides the means to describe
rigorously computer-assisted software process models. These descriptions are enactable
and can be used to provide better understanding of software processes and communicating
software process models to people such as developers and managers involved in their
enaction.

The MASP concept provides mechanisms that support the description of generic software
process models which can be incrementally and repeatedly instantiated in order to produce
particular software process models specific to projects or organisations. In this way
software process models can be easily reused.

The evolution of software process models is supported by the MASP concept through
mechanisms for interléaving instantiation and enaction. This allows changes to be made
“on the fly”, to software process models. These may be a consequence of changes in the
organisation structure, project policies, changing deadlines, and so on; also these may be as
a consequence of the feedback mechanisms provided by the underlying environment in
order to tune the software process models being enacted.

The facilitating of the management of software processes is supported in the MASP
concept by means of mechanisms for scheduling the software process activities,
controlling their enaction, and monitoring their progress.

An assisted software process model is described by a MASP in terms of object types,
semantic constraints to be enforced on the objects of these types, operator types defined on
these object types, and control on the execution of the operators of these types.

A MASP description [Derniame et al. 1991] is composed of six models (see figure 1):
« an object model,

« an operator model,

« an expression model,

» an ordering model,

« arule model,

« acharacteristic model.
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masp = domain_and_range =
MASP specification ‘C (parameter { ;' parameter } )
description y
END MASP %’ parameter =

specification = par_access par_list ;' par_type

identifier HAS TYPE operator_type || par_access =
‘' (domain_and_range ;')
IN [ OUT | INOUT | READ I
READWRITE

description =

object_model_definition *;’ par_list =

( expression_model_definition ;)|  Porameter_name ('
parameter_name})
operator_model_definition *;’

ar_type =
( ordering_model_definition *;’ ) par_typ

object name
( rule_model_definition ;') ject.type.

| relationshi name
( charccteristic_model_definition p-type._

4" | aftribute_type_name

Fig. 1. MASP specification (i.e. operator’s signature) and description

The first two of the MASP components are the object and operator models, the expression
model is only a means of defining conditions to be reused on the other models, the other
three models (i.e. rule, ordering, and characteristic) compose the control model.

The first component of a MASP is the object model (see figure 2). The chosen formalism
for expressing the object model is based on the PCTE+’s OMS [Oquendo et al. 1991].

The MASP object model, which is structurally object-oriented, enhances the PCTE+’s
OMS data model with new mechanisms including structured and multi-valued attributes,
triggers and semantic constraints [Oquendo et al. 1990]. It provides a distributed object
base and includes features for managing single and composite objects and their versions
[Oquendo et al. 1989a, Oquendo et al. 1989b].

A MASP object model defines an object base schema by means of a list of schema
definition sets (SDS) (figure 2). Each SDS gathers a set of related object, relationship and
attribute type definitions and extensions. An important feature of the SDSs is the sharing of
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type definitions amongst SDSs. This is provided by the importation facility. The
importation of a type definition from an SDS into another makes this definition visible in
both SDSs. In this way, type definitions can be shared amongst several SDSs. The view of
the object base defined by the MASP object model is given by the set of type definitions
which is the union of all of the type definitions in the SDSs of the list. A new object type is
always defined as a subtype of (i.e. a specialisation of) one or more other types. In addition
to its applied attribute and relationship types, the new defined type inherits all of the
applied attribute and relationship types of its supertypes. A predefined object type, called
object, is the common ancestor type of all object types. The structure formed by these
subtypes constitute a connected direct acyclic graph having only one root, the type object.
Multiple inheritance is therefore provided.

object_model_definition = type_list = type { '}’ type }
OBJECT MODEL IS type =
list_of_schema_definition_sets *; object_type_definition
END OBJECT MODEL | object_type_extension

| relationship_type_definition
list_of_schema_definition_sets = sds {

F;’ sds} | attribute_type_definition

sds = sds_name | sds_definition | | type_importation
sds_extension

sds_definition = object_type_definition =

NEW SDS sds_name 1S type_list *; ot_name ;" SUBTYPE OF
object_type_names ( WITH
END sds_name

( ATTRIBUTE attribute_type_ d_list
)

( LINK relationship_type_d_list ;")

sds_extension =

EXTEND SDS sds_name WITH
type_list '

ND ot_nom
END sds_name END ot e)

Fig. 2. MASP object model

The second component of a MASP is a set of expressions (see figure 3). They are logical
expressions which describe particular states of software processes. The chosen formalism
for specifying expressions is based on first-order predicate calculus.
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Expressions, like assertions in IPSE 2.5 [Warboys 19891, are only a means of defining a set
of conditions which are then used in many places within a software process model, without
the need to re-define them on each occasion. The basic terms in the description of
expressions are events (on objects or operators) and logical expressions. In MASPs,
expressions are used in pre- and post-conditions of operator types, in rules and
characteristics.

The third component of a MASP is the operator model (see figure 4). It is defined by a set
of operator type definitions and importations. An operator type describes a class of
operators. The chosen formalism for expressing operator types is similar to, but an
extension of, the ones adopted by Marvel [Kaiser and Feiler 1987] and Inscape [Perry
1987]. In these, pre- and post-conditions are only used for describing the semantics of the
software process activities that are performed by software tools. We extend this approach
by relaxing that restriction of applying pre- and post-conditions only to activities
performed by tools, and thus allowing also to describe the semantics of complex activities
described by MASPs. As in Marvel, pre- and post-conditions are the basis for backward
and forward reasoning.

expression_model_definition = event_d = event_name |
EXPRESSION MODEL IS eveni_description
list_of_expressions *;’
END EXPRESSION MODEL

event_definition =

event_name ‘' EVENT
event_description

list_of_expressions = expression { *;'| | event_description =
expression } user_defined_event_situation

. | read _event_situation
expression =

event_definition
| logical_exp_definition
| expression_definition | delete_event_situation

| update_event_situation
| crecate_event_situation

| move_event_situation

| convert_event_situation

expression_definition = ! o
| expression_event_situation

ex_name “’ VoK L
ON event_d { %' event d} | invoke_operator_event_situation|
EVALUATE IOgiCOI_eXpI'eSSion_d I exit_operator_event_situation

| time_event_situation

Fig. 3. MASP expression model
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A software process model is described by a hierarchy of MASPs. Indeed, a MASP has a
specification (i.e. an operator’s signature) and contains a set of operator types which in turn
can be described by MASPs, and so on (see figure 5). So each MASP describes a part of
the software process model at an appropriate level of abstraction. The binding between an
operator type and a MASP or a software tool and the MASP instantiation are done at
enaction time. New MASPs can also be created.

The fourth component of a MASP is a set of orderings (see figure 6). Orderings express
restrictions on the execution of operators. They are used to describe whether two specified
operators must be executed sequentially, alternatively or concurrently. They are also used
to describe whether an operator can be executed repeatedly, arbitrarily often, or if it can be
executed simultaneously with other occurrences of itself.

operator_model_definition = logical_expression_d =
OPERATOR MODEL IS log_exp_name |
list_of_operator_types ‘;’ log_exp_description
END OPERATOR MODEL

logical_exp_definition =

list_of_operator_types = log_exp_name
operator_type { ;' operator_type } log_exp_description

operator_type =
operator_type_definition log_exp_description = ...
| operator_type_importation “It is a logical expression builf
. using the logical connector
operator_type_definition = AND, OR, NEGATION, an
s . IMPLICATION, where variabl
op_name % (domain_and_fange) may be typed and universally of
PRECONDITION ' existentially quantified...”
logical_expression_d
POSTCONDITION *’
logical_expression_d
KIND “’ ‘<" | INTERACTIVE | NON
INTERACTIVE

Fig. 4. MASP operator model



575

Y

Dynamic binding and
st ati

Fig. 5. Binding of operator types and MASP instantiation are done at enaction time

ordering_model_definition =
ORDERING MODEL IS
list_of_orderings *;’

END ORDERING MODEL

list_of_orderings =

ordering { ;' ordering }

ordering =

(or_name ') path_expression

connection =

FOR ALL variable “*
object_type_naome

( IN ( variable | constant) ‘.’
object_type_name )

path_expression =

( connection DO ) operator_exp

I (connection DO ) br_path_exp

I (connection DO ) bi_path_exp
br_path_exp =

‘' path_expression ‘)’

| ‘¢ path_expression )’

I (" path_expression ‘%)’

1 ‘( path_expression )’

| ‘¢ path_expression ‘)’ counter
bi_path_exp =

path_expression ‘I |’
path_expression

| path_expression ‘1’
path_expression

| path_expression *;’
path_expression

Fig. 6. MASP ordering model
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The chosen formalism for expressing orderings is based on indexed path expressions
[Campbell and Habermann 1974]. In a path expression (figure 6) ;' means sequential
execution, ‘{" ‘}’ simultaneous execution, ‘I’ concurrent execution, ‘1’ alternative
execution, ‘(** **)’ optional execution, ‘" ‘)’ repeated execution, and ‘(’ *)* grouping of
operators. An ordering does not define a unique sequence of operator executions. It does
define the set of all possible sequences of operator executions. In other approaches such as
in Marvel and HFSP [Katayama 1989] the scheduling of operator executions is deduced
implicitly from the data dependencies amongst operators.

The fifth component of a MASP is a set of rules (see figure 7). The chosen formalism for
expressing rules is based on production rules. They define explicitly the possible antomatic
reactions to specific situations arising during the software process. In approaches such as in
Marvel a user request may produce a chain of reactions which dies down eventually. In
these approaches only a user request can cause this chain of reactions. This differs from our
approach where this chain of reactions can be caused by a user request or by a specific
situation that triggers rules (i.e. system initiative).

rule_model_definition =
RULE MODEL IS
list_of_rules *;’

END RULE MODEL

expression_d =
event_d
| logical_expression_d

| expression_name

. | expression_description
list_of_rules = P - P

rule { ;" rule } parameter_list =
rile = par {*," par}
(ru_name ') par =

IF expression_d variable | constant

THEN operator_name ‘C (
parameter_list) ‘)’

Fig. 7. MASP rule model

The sixth, and last, component of a MASP is a set of characteristics (see figure 8). The
chosen formalism for expressing characteristics are MASP expressions. They describe
constraints on the software processes’ states that should be enforced during their enaction.
In other approaches these are generally limited to constraints on the software product
states. Backward and forward reasoning on the pre- and post-condition of operator types
can be used in order to deduce a sequence of operator executions to react to characteristic
violations. Another possible reaction is to abort the operator execution.
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characteristic_model_definition = characteristic =

CHARACTERISTIC MODEL IS (ch_name ')
list_of_characteristics *;’ logical_expression_d
END CHARACTERISTIC MODEL | expression_name

list_of_characterisfics = | expression_definition

characteristic { *;’ characteristic }

Fig. 8. MASP characteristic model

A very simple example of a MASP description is presented in figure Y. This MASP
describes a process model for editing, compiling, and linking C programmes.

MASP c_prog_pm HAS TYPE PRECONDITION : FOR ALL_m:
c_prog_develop: c_module SUCHTHATc (p, _m, )
(IN _program : c_program ; AND compiled (_m, TRUE)
OUT _exec : exec_module ) ; POSTCONDITION : exec (_p, _e)

KIND : NON INTERACTIVE ;
OBJECT MODEL IS c_prog ;

END OBJECT MODEL ; END OPERATOR MODEL ;
OPERATOR MODEL IS RULE MODEL IS
edit : module_linked : IF CREATE LINK exec

(INOUT _m : c_module ); (_p, _e) THEN set (linked, _p, TRUE) ;

] END RULE MODEL ;
compile :

(IN _m:c_module ; OUT _o: || ORDERING MODEL
object_module )

PRECONDITION: edited (_m,
TRUE)

POSTCONDITION : 0 (_m, _0) || END ORDERING MODEL ;
KIND : NON INTERACTIVE ;

order : DO ( link(_program, _exec) ) ;
exit(_exec)

CHARACTERISTIC MODEL IS

fink : exec(_program, _exec) ;

(IN _p: c_program ; OUT _e:

exec. module ) END CHARACTERISTIC MODEL ;
END MASP ;

Fig. 9. A very simple example of a MASP description
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3 The Software Process Instantiation Mechanism

A MASP description defines a generic process model that can be incrementally instantiated
in order to produce project-specific software process models. When a MASP has been
designed there is usually not only one MASP, but a hierarchy of MASPs (figure 10). A
MASP describing a complex development method or a complex software process model
usually includes a lot of complex operator types which are again described by using the
concept of MASP.

Fig. 10. A complex software process model is described by a MASP hierarchy

An approach one can think of for instantiation of MASPs is that the complete MASP
hierarchy is instantiated and then the enaction of the resulting instantiated MASP hierarchy
can begin. [L.ehman 1987] points out that such a way of working (i.e. “static” instantiation)
is not flexible enough. A software process may last for a long time (weeks, months, and
even years) so it is not reasonable to demand that a complete instantiation must be done
before the start of the.enaction. Another disadvantage of static instantiation is that there is
no chance to tune the behaviour of the software process to special situations; everything is
fixed at the beginning and it is impossible to react to deviations of the current software
process model from what was expected. Since the aim is to be able to evolve the software
process model “on the fly”, static instantiation is unacceptable, “dynamic” instantiation is
therefore needed.

The overall approach for MASP instantiation and enaction is depicted in figure 11. Our
approach is to interleave instantiation and enaction. This approach provides the possibility
to consider the part of the development that has been executed before instantiating a further
part. It takes into account the dynamism of process models. An instantiated MASP is calied
an IMASP.

The instantiation mechanism consists of instantiating the object and operator models by
defining object instances and actual operators. The instantiation process is supported by a
dialogue between the instantiation environment service and the MASP instantiator. There
is the possibility of re-using an instantiated MASP to instantiate an operator type. The
flexibility of this approach lies in the fact that a given MASP can be instantiated many
times and that different instantiated MASPs can share objects.
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-:;_ dynamic instantiation

L instantiation

Process Models

Process Enaction enaction

Fig. 11. MASP approach for instantiation and enaction

Associated to each IMASP there is an object set [Oquendo 1991]. An object set is a logical
object base having as schema the MASP object model associated with the IMASP. It can be
defined in such a way that some objects in the set are shared with some other object sets.
Each software process enacting an IMASP accesses these shared objects through its MASP
object model view point. A shared object then becomes the synthesis of several different
software process activities, where each one contributes to build the object in function of the
software process model view point it enacts. Concurrent access to shared objects is
controlled by a nested transaction mechanism [Oquendo et al. 1991].

We distinguish two cases for instantiating object types:

» Object sharing. If an object exists in the object set of an existing IMASP and if its
object type is compatible with the object type to be instantiated, then the object can be
inserted in the object set of the MASP under instantiation. Cooperation between
IMASPs is achieved by means of object sharing.

» Creation of new objects. Object sharing is not the only way of instantiating an object
type. The other way is to insert new objects of that type explicitly during the
instantiation dialogue.

During the instantiation of the operator model of a MASP it is necessary eithér to identify
CASE wols (or any other kind of executable software) that can be linked to operator types
or to identify MASPs that are of the corresponding types. Here we face the problem that
instantiation is based on assumptions about tools and MASPs. Each available too! and each
MASP is typed. A tool is typed by the person who brings that tool into the ALF meta-
environment. For instance, let us take the operator type compile in the MASP
c_prog_pm (figure 9). All tools that can potentially be used for instantiating that operator
type are classified as of type compile. During instantiation the process relies on the
specifications given by the typing of tools and MASPs,



580

We distinguish three cases for instantiating operator types:

» To link an operator type to a tool. In general it is necessary to build an envelope around
that tool [Gisi and Kaiser 1991].

« To share an operator type’s instantiation. This is analogous to the sharing of objects. A
prerequisite for sharing the instantiation of an operator type is that the operator types
used in the different MASPs are compatible. This is the case if operator type
descriptions are exactly the same, or if the operator type is defined in one MASP and
imported by the other. To share an instantiation can either mean linking the operator
type to a tool (if the operator type, whose instantiation is shared, is instantiated by a
tool) or linking the operator type to an already existing IMASP (if the operator type,
whose instantiation is shared, is instantiated by an IMASP),

« To link an operator type to a MASP of the corresponding type. This possibility for
instantiating an operator type is the most sophisticated one. It consists of linking an
operator type to a MASP of that type. If the linked MASP is not instantiated the
instantiation is continued by instantiating the linked MASP.

4 Software Process Enaction and the MASP Interpreter

When a MASP is instantiated, which gives an instantiated MASP (IMASP), enough
information has been gathered to enact software processes. The information related to the
control is already present at the level of the MASP, the information about the context of
execution is given by the IMASP. In the MASP approach, enaction is an interpretation of
the MASP using the IMASP as a knowledge base in a context local to an assisted software
process (ASP). The interpreter of a MASP is a process that can be thought of as an “expert
server”:

= expert because this process will perform some forward and backward reasoning upon
the activity of other processes being under its control,

« server because it will interpret many assisted software processes (ASPs) that are con-
nected to the IMASP.

The overall architecture of MASP interpretation is depicted in figure 12.

The ASPs, where the real work is done, are “clients” to these servers, i.e the MASP
interpreters. Each different ASP which is a client of a particular MASP interpreter will be a
different dynamic context of execution from the same static context defined by the
instantiated MASP. As a client, an ASP will hence have a list of possible actions to
execute. Its actions will be controlled by pre- and post-conditions of operators, orderings,
rules, and characteristics. Some of its actions might also trigger system initiatives.

The MASP interpreter also coordinates the flow of dynamic information between the ASPs
so that one ASP can take an action as a result of a different ASP activity. For example, if
some objects are shared between different MASP interpreters, they all will be informed of
a change in the status of these objects.
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MASP Process Model

Software Tools

IMASP Object Set

ASP Object Set

Fig. 12. Interpretation of an IMASP (static context) by ASPs (dynamic contexts)

Obviously, in the lite of a MASP interpretation, the interpreter might need to instantiate an
operator type by a MASP that was not nceded and therefore not defined at the beginning of
the interpretation. Therefore a cascade of MASP instantiations may occur.

At a given time, there are several ASPs being enacted. Each ASP carries out a software

process step. Some of these are sub-processes created by expansion (i.e. binding and
instantiation of an operator by a MASP) from a higher level software process (figure 13).

( 3 Process Step

i Sub-Process Expansion

Process Steps

Sub-Process Expansion

C ) C )
Sub-Process Em Process Steps Arooess Expansion

C ) )

Fig. 13. ASP hierarchy of software process steps under enaction

Process Steps
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5 The ALF Meta-Environment Architecture

In the previous sections we have described the formalism and the conceptual approach for
defining, instantiating and enacting software process models in the ALF meta-CASE
environment. This meta-environment, called the ALF System, provides the set of tools and
services for generating process-centred software environments that can support the
enaction of software process models in live projects. In this section the architecture of the
ALF System is outlined.

Figure 14 sketches the architecture of the ALF System. Its main architectural component,
the MASP Interpreter, will be briefly described hereafter.

ALF User Interface

MASPs and Instantiated MASPs

s1 éect &Vers1ons
t- rigger Mechanism

Tool Instantiation Envelope Ob_]ect Base
CASE Tool or Service Tool I

Fig. 14. The ALF System architecture

e
- PPIIIIIIIV 5 2

’ IIIIIILIIIIII’II

yrrrrrr

The MASP interpreter operates as a system that monitors the work done by the software
developers and that takes initiatives whenever necessary. It provides assistance and
guidance to software developers. The MASP Interpreter provides the most characteristic
functionalities of the ALF System. These functionalities are obtained, amongst other
thinks, through interpretation of software process models described by MASPs.

The MASP Interpreter has been implemented using the ALF-Rete Expert System
Generator, a production system based on the Rete matching algorithm. It supports the
integration of knowledge represented by rules with existing applications algorithmicly
programmed, providing data sharing between the procedural and the heuristic parts of an
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application. ALF-Rete works together with the PCTE Object Management System using
an integration mechanism that has been designed to fulfil this function and that is based on
the PCTE trigger mechanism [Oquendo et al. 1990]. ALF-Rete supports production rules
in the form of if condition then action with forward chaining. These rules can be grouped
into packets. Enhancements such as backward chaining, composite structures, quantifiers,
and a mechanism for dynamic activation of rule packets with shared memory have also
been introduced in order to support the MASP interpretation features. All these features
together with the PCTE concurrence, synchronization and communication mechanisms
have been used extensively.

The conjunction of the MASP Interpreter together with guidance and explanation,
observation, history generation and feedback provides the basis for piloting the software
process according to the MASP concept.

From an operational point of view, the MASP Interpreter communicates with the User
Interface and the PCTE Object Management System (OMS). The MASP Interpreter
receives messages from the User Interface containing user requests and sends messages to
the User Interface with display requests. Both the User Interface and the MASP Interpreter
are PCTE processes and, therefore, the PCTE interprocess communication facilities are
used for message passing. The MASP Interpreter invokes PCTE OMS operations in order
to request services from PCTE and to invoke CASE tools (that are stored as objects in the
PCTE OMS’ object base).

The foundation layer of the ALF System is PCTE! [Campbell 1988, Minot et al. 1988].
PCTE has emerged over the last few years as an Open Repository to serve as the basis for
project support environments. The ALF System is based on the Emeraude implementation
of PCTE 1.5 enhanced with new features such as composite objects, versions and triggers.
The ALF System is currently running on a network of SUN workstations.

6 Conclusion and Future Work

In this paper, we have presented a representation formalism for describing computer-
assisted software process models. A description of a generic software process model
written in this formalism is called a MASP (Model for Assisted Software Process). Then
we have presented the instantiation of MASPs and the enaction of assisted software
processes. Finally we have sketched the architecture of the ALF meta-CASE environment
that has been implemented to support the MASP concept.

In summary, a MASP (i.e. a generic process model) describes a class of IMASPs (i.e.
project-specific software process models derived by instantiation) and each IMASP
represents a class of run-time behaviours of software processes (ASPs). The ALF System
provides a set of tools and services for editing, analysing, instantiating and enacting
MASPs. The generation of process-centred CASE environments is supported by the
instantiation of MASPs by MASPs or CASE tools in the ALF System.

1. European Computer Manufacturers Association (ECMA) Standard 149,



584

oftware
veloper
? Boft are
eveloper
oftware
Assisted S/W Process \ Fmegrator
? Ho'ect
\ ager

Assisted S/W Process \
Assisted S/W Process

Object Set . ~
Object Set
Object Set

Object Set

Object Base

Assisted S/W Process

Object & Event
Communication

Fig. 15. The ALF System from the user’s point of view

Using the ALF System, software house or large organisation’s methods group can generate
its specific project support environments in an Open CASE Environment Framework basis.

Figure 15 shows how does the ALF System look like to software engineers. What ALF
means to software developers is a much more helpful development environment. Some of
this help comes from the application of rules that constrain the developer to follow the
procedures and methods of his organisation and to use the techniques chosen by that
organisation for the different tasks he has to carry out. Although this may seem to some
people like too much control, it will ease the developer’s work by helping him to avoid
forgetting the right way to do certain things and ignoring which technique (tool) to use for
a particular stage of the development.

Yet more help comes from being able to get guidance on how best t0 proceed, explanation
on what has been happening and why, and access to the ever-increasing historical
information that can be used to make improved forecasts of what is likely to occur in the
future. Just being able to use those tools which are appropriate to his work will be a great
help to the normal software developer who is becoming snowed under by the variety of
tools he can find on his workstation.
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Formal descriptions of software processes as opposed to narrative or informal descriptions,
have been adopted in ALF first, to improve quality and productivity through automatic
interpretation of processes and data and second, to raise the level of abstraction in
describing and manipulating such process in order to accommodate as many users as
possible with minimum of training, particularly for new users who have to use a method or
the system for the first time.

In addition, the idea of integrating such formal notations with expert system techniques
whereby knowledge about the software process is stored into a knowledge base, renders
the ALF System an expert advisor on a continuously increasing number of domains and on
such issues as method or data applicability to a particular situation (i.e. optimising usage)
and interpretation of the outcomes of such an activity; the provision of explanations and
guidance on the use of a method or a tool; the use and interpretation of performance data
on the ALF users, the process, or the system itself and on the reuse of components or
systems already available in the system. Thus, intelligent “trainers” are embedded in the
software processes themselves and can be activated by the user or at the system’s initiative
and as required within a particular working session.

Finally, a further contribution to productivity and increased software quality may be
achieved through ALF by allowing the PCTE OMS’ object base to act as a repository of
models of processes or MASPs. Thus MASP designers can capture the characteristics of
processes which are desirable and as these are reflected in an organisation’s experience,
and store them in ALF to be further used by individual users for different purposes. In
other words, ALF provides the means for a possible wider acceptance of the standards,
knowledge or data developed over a number of years. The benefits derived through this are
that end users are the recipients of the same knowledge captured into the MASP but, also,
the same users are guided by the system on the proper use/reuse and interpretation of the
required knowledge or facts. Certainly, this is more advantageous to new users of a method
or tool who not only need to learn how to apply it but also be aware of the consequences, of
their actions.

Different aspects of existing design and development methods and life-cycle models have
been modelled using MASPs, including technical as well managerial ones. Examples of
models that have been described are VDM, JSD, HOOD, C Programming, and
Configuration Management. Up to now the MASP concept seems to provide a powerful
and flexible formalism for describing a wide range of process models.

Future work is mainly concerned with experimentation of the ALF meta-CASE
environment for generating large-scale process-centred CASE environments for modelling
and enacting real large-scale software processes and with experimentation of these
environments in real work contexts to give feedback on how this novel technology works
in practice. Psychological and sociological aspects are also important issues to be studied
in order to assess the ALF System.
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