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Abstract

This article describes an algorithm for detection of obstacles, through the

use of low cost sonar sensors, for the navigation of mobile robots. The use

of a grid representation for the cartesian space, associated to probabilistic

operations on it, allowed the implementation of a fast, simple and robust al-

gorithm for obstacle detection. This algorithm runs always that the mobile

robot navigates, and allows to overcome obstacles that appear unexpect-

edly in the robot's path. The information used to represent the obstacles is

based in the information provided by sonar sensors. A stochastic model for

the sonar sensors and their activity, associated to the platform motion, are

explored by the algorithm. Some experimental results obtained through

the use this algorithm are described at the end of the article.

1. Introduction

The operation of a mobile robot in a unstructured environment is only possible, if

the robot has ability to cope with changes in the environment. These changes, which

include the presence of new obstacles, can be detected using sensorial systems.

In most cases a trajectory planner, using some a priori description of the robot's

workspace, generates feasible paths to execute the desired missions. Using sensorial

information, it is possible to improve the mobile robot capabilities, allowing a real-

time reaction to avoid the collision and/or to re-plan the trajectory as proposed by

Chatila [2].

Normally sonar sensors are chosen to acquire information around the mobile

robot. Although sonar sensors present several problems which are related with the

limited information that can be obtained from raw data. The choice was based

mainly on their low cost, the ease of their use and the relatively low computational

power required.
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Figure 1. Both targets T1 and T2 produce the same range reading.

2. Problem formulation

The aim of this work is to allow the collision free navigation of a mobile robot

in a semi-structured environment through the use of sensorial information. The

inputs available are the range data provided by the ultrasonic range sensors, the

robot's position and orientation, and the direction of motion. Range data and the

localization of the robot are used to detect the presence of obstacles and their possible

localization.

The direction of motion is used to explore the sensors' activity. Robot's activity

serves two purposes: the �rst is to determine which region is of concern, because

we don't need to care about obstacles located in regions where we are not going

through, and using this information we can decide which set of sensors should be

scanned. This has implication on the time processing since scanning more sensors is

time costly both in data acquisition and also in data processing. The second reason

is that, for a given location, multiple readings performed by a static sensor don't

bring any new information about the extent of the obstacle, although they could be

averaged to remove sensor noise.

2.1. Uncertainty in sonar range measures

In the majority of the mobile robots that use sonar sensors, the range information

is obtained from the time-of-
ight (t.o.f.). However from these measures, the only

information that can be obtained is the distance to the closest point of the obstacle

that re
ected the wave, back to the sensor. This is not su�cient to characterize the

obstacle, whose presence was detected. The wide opening angle presented by most

sonar sensors introduces another uncertainty factor: to which direction corresponds

the measure? Figure 1 illustrates a situation where two possible obstacles could

produce the same range reading. From a range value we can only say that there

is a region in which every point is a possible location for the detected obstacle.

Considering the cartesian space and ignoring some errors that appear in range values,

this region takes the form of one arc centered in the sensor, with radius equal to the

range reading and angular value equal to twice the sensor opening.

It is also clear that any target tangent to the arc A1 would produce the same

result. By this reason this arc is commonly referred as a Region of Constant Depth

(RCD)[3], which is nothing more than a set of points equally candidates to be

considered as the one that has produced the echo.

Calibration experiments performed in our lab have shown that sonar sensors can

be approximated as ideal sensors whose outputs are corrupted with gaussian noise

of zero mean and standard deviation given by the following expression



�D(z) = 0:0052� z + 0:002[m] (1)

where z is the distance between the sensor and the target in meters [5].

Using this model we can write the following expression that gives the probability

of obtaining a sonar reading r given a target at a distance z.
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2.2. Representation

As we have shown above, to obtain a description of the obstacles in terms of extents

and orientation, these have to be observed from multiple points of view, due to

the poor information that can be extracted from each observation. Here arises a

problem, since our main goal is navigation we can not move the robot around an

obstacle to obtain its full description. We, as long as possible, have to acquire

information while the robot is moving. But to do so a suitable representation has to

be used, allowing the fusion of information obtained in di�erent robot's positions.

The choice was to use a discretization of the operational space by dividing it into

cells, each one representing a small area. For each cell, a value is assigned that

represents the knowledge level regarding its occupancy. This value is updated, each

time the area it represents, is scanned. In our implementation, a cell size of 10�10cm
was used as a compromise between the smallest detectable object and computational

load. Notice that decreasing these dimensions has direct implications on the amount

of information that must be processed and is represented by this grid structure.

Algorithms operating on these type of structures have a general trend for O(n2)

computational complexity and consequently in the increase of the processing time.

2.3. Obstacle Detection

Using the stochastic sensor model shown in equation (2), and using Bayes' formula

we can obtain an expression for the existence of an obstacle (O), given a range

measure, as suggested by Elfes [4]

p(Ojr) = p(rjo)p(o)
p(rjo)p(o) + p(rju)p(u) (3)

In this equation the letter o means occupied and u means unoccupied and could

be used to estimate each cell state.

Since the RCD length grows with distance and, with it the uncertainty about

the target location, only range measures below 3 meters are used. This has the

advantage of reducing the errors produced by multiple re
ections and also reduce

processing time, because the number of cells that have to be updated is smaller.

Substituting these values in expression (1), we can see that the standard devia-

tion of range errors are � 6 times smaller than the cell size we chose. From this it

can be seen that the sensor model can be substituted by a step model like the one

shown in �gure 2 in order to reduce computation time.

So, for a range value r, there is a set of cells that enclose all possible target

locations that could produce this value. This set also contains the arc above referred

to as RCD (�gure 3 ) and can be viewed as its discretization.

For short range values, the RCD is contained on a single cell, the meaning being

that it contains surely the point that produced the echo. In these cases it is assigned
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Figure 2. Approximation of the sonar measures by a step model

Figure 3. A discrete RCD

a probability of 100% of occupancy. For larger range values the RCD spans over

several cells, and then this certainty must be shared by all of them. So each one is

updated by 1=n, where n is the number of cells that contain the RCD.

2.4. Updating the grid

Once a sensor measurement is obtained, several steps are needed; obtaining the

robot's position and orientation at the point where the measurement was taken, the

determination of the sensor world coordinates is given by:

W~x =W TSi
�Si ~x (4)

where W~x are the sensor world coordinates, T the transformation matrix, and Si~x

the sensor coordinates related with the robot frame.

For a sensor with an opening angle � and a measurement r, the cells that must

be updated are those that fall inside the cone de�ned by the two line segments and

the arc, as shown in �gure 4. The cells that contain the RCD will get their value

increased, and the ones between the sensor and the RCD get it decreased because

if there exists an obstacle the range value would be smaller. The letter E signi�es

that the probability of occupancy in that cell will be decreased and the opposite will

be made for the letter O.

2.5. Exploring Sensor Activity

The information about the localization and/or dimensions of an obstacle using sonar

sensors can not be obtained from a single observation. Even when using multiple
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Figure 4. Cells whose probabilities are a�ected. The letter E signi�es that the prob-

ability of occupancy in that cell will be decreased. For the letter O the probability

will be increased.

Figure 5. Using two sensors it is not possible to di�erentiate the kind of target that

produced the range values

sensor con�gurations, the characterization of one obstacle is not possible due to the

low spatial sensor resolution.

From �gure 5 we can conclude that even using two sensors it is not possible

to di�erentiate between two types of targets because in both situations the range

measurements would give the same the values. In fact, although in each scan the grid

values are usually slightly changed, after performing a certain number of readings

from the same position, all the cells that contain the RCD will reach the maximum

level. To overcome this problem, measures are taken only when the robot's position

changes.

The information about the direction of motion is also important because, even

though the robot has a belt of 24 sensors, only the sensors directed to the regions

of interest are scanned allowing once again to reduce the processing time.

2.6. Potential Grid

A trajectory �nder module was implemented to generate an alternative path after

the detection of an obstacle. This module is based in the potential �eld proposed by

Khatib [6]. Potential �eld based methods have been used to overcome the detected

obstacles with success, the only drawback is being that the repulsive forces have

to be calculated at every instant. Using the above described approach to detect

the obstacles it becomes a time consuming process to calculate the overall repulsive

force from the contribution each of the occupied cells.



Figure 6. Results obtained in a small room having a vacuum cleaner in the middle

Figure 7. Potential grid generated from simulated sonar scans

However using the measure of the potential �eld along the path and for each

crossed cell, the task for trajectory �nder module will be much simpler. This po-

tential grid is constructed from the occupancy grid, by adding to the cell structure

another �eld representing the potential value. This potential grid is calculated from

the occupancy grid using the method proposed by Plumer [8], where for each grid

cell the corresponding local potential value �ij is calculated based on the value of �

of the 8 neighbor cells.

Figure 8. Potential Field obtained for di�erent obstacle con�gurations



3. Results

Tests have shown good results using the approach described above. Given an a

priori map of the laboratory whith some boxes randomly placed in the room, the

robot was able to detect their presence and, using the arti�cial potential �eld, avoid

the collision and reach the goal position. Success was also obtained when using

obstacles without planar faces, like baskets and even people.

Figure 6 shows the results of the obstacle detection module after performing

some movements in our laboratory, with a vacuum cleaner in the center.

Currently, we are integrating the above described methods to generate the poten-

tial grid simultaneously with obstacle detection, in order to allow a faster operation

of the robot in the presence of new obstacles. In �gure 7 are shown the results

obtained simulating the robot and the environment. Figure 8 shows the potential

�eld obtained in a room with three di�erent con�gurations of the obstacles where

dark areas represent low potential values and conversely white areas high potential

values. It can be seen that there are marked areas outside the walls, this is due to

the occurence of spurious re
ections.

4. Final Remark

The implemented methods cope with changes in the environment, allowing the op-

eration of a mobile platform in a human environment where the existent objects are

subject to change. For example, if an object has been moved, the corresponding cells

that were marked as occupied, will be marked as empty and those that correspond

to the new position of the box will be marked as occupied. The online generation

of a potential grid, allows the faster operation of the obstacle avoidance system.
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