
The Reference Component of P E P

Bernd Grahlmann*
ABSTRACT The P E P tool is a Programming Environment based on
Petri Nets. Sophisticated programming and verification components are
embedded in a user-friendly graphical interface. The basic idea is that the
programming component allows the user to design concurrent algorithms
in an easy-to-use imperative language, and that the P E P system then
generates Petri nets from such programs in order to use Petri net theory
for simulation and verification purposes.
The main focus of this paper is the reference component which represents
the bridge between these two worlds. We integrate references in the formal
semantics and present some of the provided features. Among others the
simulation of a parallel program can be triggered through the simulation of
a Petri net. Program formulae can be transformed automatically into net
formulae which can then be an input for the verification component.
P E P has been implemented on Solaris 2.x, SunOS 4.1.x and Linux. Ftp-
able versions are available via www. informatik, uni-hildesheim, de/~pep.

KEYWORDS B(PN) 2, Model checking, Parallel finite automata, PEP ,
Petri nets, Reference component, Simulation, Temporal logic, Tool.

Fig. 1. Development phases.

1 Introduction
The P E P 1 tool is a Programming Environment based on Petr i Nets [6].
In order to support the main phases of the development of parallel systems
(shown in Fig. 1) it is not sufficient to provide editors for parallel systems,
compilers into Petri nets (PN) and simulators as well as analysis and verifi-
cation algorithms for PN. Only an integrated reference component exploits
the full functionality in an adequate way. Users do not have to leave the
model they have chosen for the modelling of parallel systems. This paper
describes how simulation of a parallel program is triggered through the

*Institut fiir Informatik, Universit~t Hildesheim, Marienburger Platz 22, D-31141
Hildesheim, bernd@informatik.uni-hildesheim.de

1The PEP project is financed by the DFG (German Research Foundation). This work
has been partially supported by the HCM Cooperation Network EXPRESS (Express-
iveness of Languages for Concurrency)

66

simulation of the corresponding PN and how program formulae are trans-
formed automatically into net formulae which are in turn used as an input
for the integrated efficient model checker.

This paper is structured as follows. Section 2 describes the P E P frame-
work dealing with different types of objects. Parallel finite au tomata (PFA)
and the programming language B(PN) 2 (Basic Pet r i Net Programming
Notat ion) are briefly introduced in sections 3 and 4. The M-net model is
presented in more detail in section 5. The most interesting part of the con-
struction of references is presented in section 6 where the M-net semantics
for B(PN) 2 covering references is given. After presenting an example in sec-
tion 7, a temporal logic for B(PN) 2 is introduced in section 8. The usage of
references in the P E P tool is depicted in section 9 where new simulation
and program verification facilities are explained. Finally, a conclusion and
pointers to relevant literature are given.

2 Modelling parallel systems with PEP

Fig. 2. Objects used by the P E P system.

Users can choose between five types of objects in order to model parallel
systems (see Fig. 2):

1. Parallel finite automata (PFA) with B(PN) 2 actions as arc annota-
tions can be edited and compiled into B(PN) 2 programs [11].

2. Parallel algorithms can be expressed in B(PN) 2 [7], which is an im-
perative / predicative programming language.

3. Terms of a process algebra called PBC (Petr i Box Calculus) [2],
which is an extension / modification of CCS, can be used. In P E P ,
PBC terms can either be derived automatically from a B(PN) 2 pro-
gram or be designed independently.

4. High-level (HL) PN, called M-nets [5], on which an alternative net
semantics of B(PN) 2 programs is based [4] can be edited.

5. Arbitrary labelled P /T-ne t s can be edited. Petri boxes are a special
case of low-level (LL) PN, which may arise out of a translation from
B(PN) 2 programs.

67

Furthermore, the following objects are used in the P E P system:

1. P E P allows the definition of a set of temporal logic formulae to allow
the user to (model) check a custom designed system property.

2. During verification it may become necessary to calculate the finite
prefix of a branching process [8] of an existing LL net. This prefix
contains information for model checking [9, 13] a net.

It is up to the user with what kind of object (s)he would like to start
the modelling phase. Normally several different objects are created in a
modelling cycle. Typically a B(PN) 2 program is written, the corresponding
M-net and the Petri box are compiled automatically, the prefix is calculated
and interesting properties are expressed by formulae. For the purposes of
this paper the following five different classes of components are relevant
(see Fig. 3):

1. Editors for PFA, B(PN) 2 programs, M-nets (HL nets), Petri boxes
(LL nets) and formulae.

2. Compilers as follows: PFA ~ B(PN) 2, B(PN) 2 ~ M-net, M-net
Petri box and Petri box ~ Prefix.

3. Simulators for PFA, B(PN) 2 programs, M-nets and Petri boxes.

4. A model checking algorithm [9, 13] for safe PN to determine if a PN
satisfies a property given in terms of a temporal logic formula.

5. A reference component, which is a kind of a database server, admin-
isters the references between the different objects which are related
to one modelling approach. For instance, the compiler B(PN) 2
M-net outputs the relationship between parts of the program (such
as actions) and parts of the net (such as transitions) to the reference
component. Later on, during the simulation, the M-net simulator may
communicate with the reference component in order to request that
the B(PN) ~ simulator highlights (or executes) an action which cor-
responds to the currently executed transition.

The interaction between the reference component and the other compo-
nents is an essential feature of the P E P system.

3 PFA
In P E P B(PN) 2 specific PFA are considered. A PFA is a collection of finite
au tomata (FA) [14] acting in parallel, where one FA corresponds to one
process in a program. An FA consists of a start node, a set of local nodes, a
set of exit nodes, a set of arcs between these nodes and a labelling function
that annotates each arc with a B(PN) 2 action. A start node (such as node 1
in Fig. 4) represents the initial state of one process and an exit node (such
as node 5) represents a state in which the process has terminated. Thus no
outgoing arcs are accepted for exit nodes. In Fig. 4 a PFA consisting of two
FA modelling the Peterson algorithm for mutual exclusion of two processes
is shown.

68

Fig. 3. Interplay between P E P system components. The arrows represent in-
put/output (- -~) or answer/request (- ~) relations between compoflents.

<false> ~ .~Sa ise>
~ < i l ' =0> < i 2 ' = 0 > = " ~

. . . . ~ Critical ~ ' k ~ c o , , u
Process ~ _ J S e c t i o n k ~ P r o . =

//<,2=0 or t=l>~. /

Fig. 4. Peterson algorithm as an PFA.

4 B(PN) 2

B(PN) 2 [7] is an imperative / predicative style parallel programming lan-
guage whose atomic actions may contain predicates involving the pre- and
post-values of variables. Basic command connectives of B(PN) 2 are: sequen-
tial composition (;), nondeterministic choice (~), parallel composition (/),
and iteration (do . . . od) . Programs are structured into blocks consisting
of a declaration part and an instruction part. Processes can share common
memory or use channel communication (c! denotes writing on a channel
and c? reading from a channel) or both. The implementation of a proce-
dure concept [10, 15] and abstract data types extend B(PN) 2 to a complete
programming language. B(PN) 2 is called Basic Pe t r i Net Programming
Nota t ion because it first has been given a compositional semantics in terms
of LL PN called Petri boxes [2].

The syntax of B(PN) 2 is depicted in Tab. 1. Not every detail of the
language can be explained in this paper. Most features should be self-

69

explanatory. We may perhaps mention that: k denotes the capacity of the
channel or stack; (expr / denotes an atomic action; and 'v and v ' denote
pre- and post-values of the variable v; v implies 'v = 'v (e.g. (x:=x+y /
would be written as (x ' = ' x + y)) .

prog ::=
block ::=
scope ::=
decl ::=
type ::=
com ::=

alt-set ::=
expr ::=
op ::=
const ::=

block
b e g i n scope end
corn] decl; scope
va t vat-name : type
set I c h a n k o f set I s t ack k o f set (k E [~ 0 U {c~})
(expr) [corn [I corn [corn ; com [
do corn e n t e r alt-set od [block
com; r e p e a t I corn; ex i t [alt-set D alt-set
v I 'v [v ' I c! [c? [const [expr op expr [op expr [(expr)
+ l - l* I d iv I m~ I =I #1 < [> I-< I > I AI v I -~
false] t r u e I z (z E ~1)

Tab. 1. Syntax of B(PN) 2

5 M-nets
In this section the HL PN model of M-nets (for modular multilabelled nets;
cf. [5]) is introduced. We have chosen the M-net model because it allows
unfolding (as do most other HL net models) but also composition.

Annotations of places (sets of allowed tokens), arcs (multiset of variables
or values or tuples of variables and values), and transitions (occurrence
conditions - called value terms) support unfolding into an elementary LL
PN. Communication capabilities are denoted by labels of transitions (action
terms), while labels of places (called status) denote their interface capabil-
ities. A status can be 'entry', 'exit' or 'internal'. References and data-tags
may give the relation to parts of the corresponding B(PN) 2 program.

We exploit the fact that the M-net composition operations - in particular,
synchronisation - satisfy various algebraic properties.

5.1 Auxi l iary definitions

Let Val be a fixed, nonempty and suitably large set of values. In our ap-
proach it is sufficient to assume that all integers, the Boolean values t r u e
and false and the token �9 are members of Val. Let Var be the set of vari-
ables (which are interpreted by values of Val).

We assume the existence of a fixed but sufficiently large set A of action
symbols. The arity at(A) which is associated with each action symbol A 6
A describes the number of its parameters. The bijection -: A --* A, called
conjugation, satisfying VA 6 A: A # A,A = A, and ar(A) --- at(A)
groups the elements of A into pairwise conjugates.

An action term is, by definition, a construct A0-1,...,Ta~(A)), where
A 6 A and Tj 6 VarOVal for all l<_j<_ar(A). Action terms provide the

70

communication facilities of M-nets. In the definition of the formal semantics
we will see that action terms are used to synchronise accesses to variables;
and that the resulting nets do not contain action terms.

In addition to the well-known standard definitions given so far, we need
some new auxiliary definitions.

We have chosen to base nearly all references (even those of places) on
atomic actions and blocks of a program, because these are easier to define
than points in the control flow. Therefore, we introduce the function f
which maps each atomic action and each block of a B(PN) 2 program to a
unique cardinal. A very simple enumeration is sufficient.

Refp = Con-Points U Var U Val-Assert is the set containing all possible
references which can be related to places. Con-Points = {~ i~ E IN } is the
set of control points. Intuitively, ~ and f ((expr)) ~ denote 'at begin
of' block and 'after ' (expr), respectively. A place of the HL net containing
the value of a variable x has a reference 'x'; and Val-Assert = {~x = i ~]x E
Vat A i E Val} is the set of possible value assertions which can be related
(as a reference) to places of the LL net.

RefT = E is the set containing all the possible values of f(block) and
f((expr))

The dement of the set Data-Tag = (v} is used to mark the places indicat-
ing that a variable has a certain value. This data-tag influences for instance
the positioning of transitions during synchronisation, and the generation
of value assertions during unfolding into an LL net.

5.2 D e f i n i t i o n o f M - n e t s

To cover references and data-tags as well, we have to extend the original
definition. The main extensions concern the definitions of the | operator
and of the basic synchronisation, where the handling of references (but not
of data-tags) is introduced.

D e f i n i t i o n 5.1 M-nets

An M-net N is a triple (P,T,~) such that P is a set of places, T is
a set of transitions with P M T = 0, and L is a function with domain
P U (P x T) U (T x P) U T (called inscription) such that:

�9 For every place p E P , t(p) is a tuple (Ap [ap I Op I CP), where Ap
is an element of the set {e, i, x} called the (place-)label or status;
ap C Val k (for some k E N) is a nonempty set called the place-
annotation or the type o f p (k is called arity at(p) of p); yp C_ Rcfp
is a set of references, and Cp C_ Data-Tag is a set of data-tags.

�9 For every arc (p, t) E (P)<T), e(p, t) E f l 4 / ({ (a l , - . - , a k) l a l , ' " , ak E
VarUVal}) with k = at(p) (idem for arcs (t ,p) E (T x P)) , i.e.,
its inscription is a finite multiset of tuples of variables and values
respecting the type of adjacent place p. The meaning of ~(p, t) = 0
is that there is no arc leading from p to t.

71

�9 For every transition t C T, L(t) is a tuple (At] at I g*), where At is a
finite multiset of action terms called its label; at is a finite multiset
of terms called its annotation or vi~lue term; and ~, C_ RefT is a set
of references.

Further, we require that there exists at least one entry and one exit place;
that entry places have no incoming arcs and exit places no outgoing arcs;
and that all entry and exit places have the type {�9 �9 5.1

status type

e I { e } i l { / 2 }

"*'- reference

action term value te rm ,,a~,-,ag

Fig. 5. Simple part of an M-net.

Fig. 52 shows part of an M-net with one entry place Pa, one internal place
Pb (which holds the value of variable X), one transition Ta and two arcs.
The transition rule for M-nets is explained informally with the example: tf
place Pa is marked, transition Ta can occur in two different ways: variable
id is bound to �9 and X ~ can be bound either to 1 or to 2. Thus, the �9 is
removed from Pa and either 1 or 2 is put on Pb.

5.3 Composition operations

To define the composition operations, we extend the auxiliary net manip-
ulation operators defined in [5]:

�9 ~ and (N)" denote the set of entry and, resp. exit places of N;

�9 | Pn} multiplies n sets of places. It is essential that the set
of references of a created place is the union of the sets of references
of the original places.

(e.g., | {P2,P3}} = {P12,p13} with O(Pl2) -- ~o(pl)i.J 0(P2)); and

�9 N | Pn} adds | P,,} to N and removes P1U.. .OPn.

Parallel composition (see left part of Fig. 6) is defined as independent

juxtaposition: N1 [IN2 = 1N1 U 2N2.

Sequential composition (see middle part of Fig. 6) merges the exit places
of the first net with the entry places of the second. References are handled

by the | operator. N1;N2 = (1N1 U 2N2) @ |

2The following figures are simplified: brackets around arc annotations, action terms
and references, variables on arcs (like id) which can only be bound to o, empty sets ,
primes around value assertions, and labels of internal places are omitted to improve
readability.

72

Choice (see right part of Fig. 6) merges the entry places of the nets and
the exit places of the nets. References are handled by the | operator.

N1 [~ N2 = (1N1 U 2N2) �9 | �9 | (2N2)'}.

The iteration construct is IN1 * N2 * N3] (see Fig. 7) which produces the
effect of one execution of N1, followed by zero or more executions of N2,
followed by one execution of N3. Once more, references are handled by the

| operator. IN1 * N2 * N3] = (1N1 U 2N2 U 3N3 t_J Nsilent)
| {(IAT1) . , ' (2N2), gsilent'," (3N3)}

| | {(2N2) ' , 'Nsi lent }

with Nsilent = (~ ~ .

e Ol,O 2 ~ 2 2 ~ ~ X
1 '=,

2 X'=I

Fig. 6. Example NIlIN2, N1;N2 and N1 •N2.

| 2 x:1 ,I

+ + %
()

Fig. 7. Iteration schema.

5.4 Synchronisation and restriction

Communication is performed by transition synchronisation. The intuition is
that synchronisation of a net w.r.t, an action symbol (NsyA) is performed
through a series of basic synchronisations. During a basic synchronisation
two corresponding action terms (A(-..) and A(-..)) are considered. The
communication is performed by a most general unifier which renames the
variables in the action terms appropriately. It is important that references
and data-tags of places are not effected, whereas the set of references of
the resulting transition summarises the sets of references of the involved
transitions.

Synchronisation is often followed by restriction. The restriction N rs A
removes all transitions whose annotations contain action terms A(--.) or
A(. . .) together with adjacent arcs.

Fig. 8 shows a typical example of synchronisation followed by restriction.
This mechanism is used for block structuring. In this example, variable
access is depicted. The first subnet shows a place (which may contain a

73

value of a variable X) and a transition for the different access possibilities.
The second subnet shows one access to X, decreasing the value by 1.

~

~('x,x') 1o~
Fig. 8. Example for synchronisation and restriction.

6 Formal semantics

Now, we associate an M-net ((prog) with every program prog of the syntax
in such a way, that references and data-tags are created automatically as
needed. We proceed top-down through the syntax. First, we will consider
programs and blocks. The nets for the declarations of variables are then
given directly. After presenting the semantics of the different command con-
nectives for parallel, sequence, choice and iteration, we give the semantics
of an atomic action. The definition of the semantics is fully compositional.

6.1 Programs and blocks

The begin-end program brackets are semantically nearly transparent. The
renaming function Ff(block) adds the references ~ and f(block) ~
to the entry and exit places of ((scope), respectively.

Defini t ion 6.1

((begin scope end) = rf(block)(((scope)) �9 6.1

A scope may consist of a sequence of variable declarations decl followed
by a command com. The nets for the declarations are juxtaposed with the
net for the command (followed by termination actions for variables). The
resulting net is first synchronised and then restricted w.r.t, certain action
symbols. This ensures that always the correct variable is accessed.

Defini t ion 6.2

((decl;scope) = (((decl)ll((scope);vT(decl))sy 5(decl) rs 5(decl

with vT(decl) = (~) and ~(deci) = {X, Xterm} (for X). �9 6.2

6.2 Data variables

The semantics of variables is extended by the introduction of the data-tag
v and a reference for the variable.

74

D e f i n i t i o n 6.3 Data nets

~(var X : set) = Mdata(X , set),

i.e. the parameterised net shown in Fig. 9. "6 .3

I1• e

r

[O~X('X,X')r'X ~set

Xterm ~ X f'X
~ Xterm

Fig. 9. The data net Mdata(X , set).

T10 and T12 may both synchronise with the variable accesses from within
the control flow. Note that T10, which provides the initialisation of the vari-
able, is not annotated by a special initialisation action term. This reduces
the size of the nets and (what may be more important) the size of the finite
prefix of the branching process, because a variable is initialised at the first
access and not (perhaps uselessly) at declaration time. T l l and T13 both
synchronise with the corresponding termination transition from within the
control flow. We will not consider channels and stacks here.

6.3 A t o m i c ac t ions

The semantics of an atomic action (expr) is an M-net r with only
one transition. The inscription of this transition is constructed recursively
from the action terms of the used variables and equations to force the
intended equalities at a later synchronisation. In A S the set of action terms
is collected; E is used to compose the expression and SC is necessary to
allow the usage of unprimed variables assuming that pre- and post-values
are equal. The following rules are applied:

Zns('X) = ({x (' x , x ') } / ' x / r

I ~ (~ ') = ({ x (% x ') } / x ' / r

fn~(x) : ({ x (% x ') } / x ' / { (% : x')})

Ins(const) = (r162

Ins(op el) = (AS1/op E1/SC1) with In~(ei) = (AS i /E i /SC i)

Ins(e l op e~) = (AS1 U AS2/E1 op E2/SC1 U SC2)

E.g. Ins(x ' = y + 1) = ({x (' x , x ') , y (' y , y ') } / {x ' = y' + 1}/{'y = y'}).

75

Defini t ion 6.4 Atomic action
e AS I {E} v SC x

r = (o ~ o), where (A S / E / S C) = I n s (e x p r) . . . 6.4
f(<expr>) rl<expr>} f(<expr>l

This is the point where (during the compilation) the references for the
actions and for the points in the control flow first appear in the semantics.

6.3 Control connectives

Sequential and parallel composition, iteration and choice are directly trans-
lated into the corresponding M-net operations. References are handled cor-
rectly due to the correct definition of the | operator:

Defini t ion 6.5 Paralld and SequentiM Composition

C(comllleom2) = C(coma)llC(com2)

coml; corn2) = (coml); com2) �9 6.5

Defini t ion 6.6 Choice and Iteration

r (coml • corn 2)

~(do com enter alt-set od)

and R(alt-seh [J alt-set2)

E(alt-setl 0 alt-set2)

R(com; exit)

R(com; repeat)

7 E x a m p l e

= ~ (c o r n l) [7 ~ (c o m 2)

= [r * n(alt-set) * E(alt-set)],

= R(alt-seh) • R(alt-seta)

= E(alt-setl) [3 E(alt-set2)
e

= E(com; repeat) = Nstop = (� 9

= E(com;exit) = ~(com)

x �9
,.6.6

In this section we continue considering the Peterson algorithm already mod-
elled as a PFA. Fig. 10 shows the automatically generated B(PN) 2 program.
The values of f(block) and f((expr)) are given in brackets.

Fig. 11 was generated with the help of the Export to PostScript function
of the net editor of the P E P tool. It shows the automatically generated
M-net semantics with references 3.

Fig. 12 shows the corresponding Petri box. Petri boxes can be considered
as a special case of M-nets where, e.g., all places have singleton type {.}.
In comparison with the HL net it is interesting to see the value assertions
(like ' i l=0 ' for place P25) which are easy to generate and very useful for
program verification.

3Two fea tures of P E P are used to enhance readabil i ty. Trans i t ions which can never
occur and isolated places are removed (au tomat ica l ly) , and arcs connec t ing the var iable
access t r an s i t i ons wi th in the control flow par t to t he d a t a ne t s are h idden. Fu r the rmore ,
ano the r var iable in i t ia l i sa t ion is chosen and t he references (such as o 1) which are used
in te rna l ly are m a d e visible.

76

(1) b e g i n
var il, i2: {0..1} ini t 0;
var t: {1..2} ini t 1;

(2) b e g i n
(3) do (t rue) e n t e r
(4) <i1'=1);
(5) <t'=2>;
(6) (i2=0 or t=l); F ~ [i
(7) <i1'=0>;

r e p e a t
od

e n d
e n d

b e g i n (8)
do (t rue) e n t e r (9)

{iT=l); (10)
<t'----1); (11)
<i1=0 or t=2); ~ (12)
<i2'=0); (13)
r e p e a t

od
e n d

Fig. 10. Peterson algorithm as a B(PN) 2 program.

~ p:=4 ~1 p=1 ~ pls=1,~176 5~176 ~176176 s 11~176

~ll "T ~ ~'t T " - 5 . ~ L ~ <i2=0~ "I ~ " ~ Critical
~v{Ol"'l}~v{Ol2"1}~v t'l''2}| ~.:~ ^" ~-~tlt' I j,~...J ' ,-5 6"w" 7 ~l:ieCll'Gaoonl,_ __~._' " I: ' I ' 12",'13 "~.~_|,orl

repeat repeat
Fig. 11. Peterson algorithm as an HL net.

I ~ ~ ~176176 oo ~163176
P2"/ (~P23 (~Ft9 ~)P14 ~ 11~176

TL~ ~ T~ 3 ~ / \ ~ Critical ~L~J 9 ~ / \ L ~ Critical
| | | ~ S_~ " ~ ~.~S~.tion / .J 11/ \12 ~_Section

,o

repeat repeat

Fig. 12. Peterson algorithm as an LL net.

77

8 A temporal logic for B(PN) 2 programs
The model checker for safe PN integrated in P E P has been developed
by Esparza [9] and implemented by Graves [13]. This algorithm uses an
optimised version of the finite prefix of the branching process of a safe PN
[8] and a temporal logic formula as inputs, and then checks whether or
not the formula holds for the corresponding net. The original definition of
syntax and semantics of these formulae can be extended in a way similar
to [16] in order to cover program properties as follows.

Definit ion 8.1 Syntax of a branching time lo~c

For a safe marked net N = (P, T, L) the set of branching time formulae
r is defined by the following syntax:

r ::= t r u e] p] c] v l - ~ r 1 6 2 1 6 9 1 6 2
with (p C P, c C Con-Points, v E Val-Assert), where Or represents the
operator ' there exists a reachable marking such that r Other operators
such as V or [] can be derived.
E.g., r V r = -"(7r h -,r and De = -"07r respectively. �9 8.1

The semantics of formulae r is defined in the standard way in terms of
(reachable) markings. The only extension is the introduction of a transfor-
mation for value assertions and subsets of control points which is essential
for case studies like in [12].

Definit ion 8.2 Transformations

A subset c of control points is replaced with the subformula Pl V..-Vp,,)
where { P l , " " ,Pn} = {P~ C PIc C_ Qp(p~)}.

A value assertion v is replaced with the subformula (Pl V.. Vpn) where
{pl ,"" ,pn} = {Pie Ply e 0p(Pi)}. �9 8.2

Definit ion 8.3 Semantics of a branching time logic formula

A formula <)r holds for a marking M, if there is a marking reachable
from M for which r holds. A <)-free formula can be evaluated directly
in a given marking (using the fact that N is safe). A formula r holds
for N = (P, T, L) if it holds for the initial marking 4 M ~ �9 8.3

9 Profiting from references in the P E P tool
In this section we exploit how users of the P E P tool can profit from refer-
ences and we explain some parts of the implementation.

The whole P E P tool is designed in a very modular way in order to

4Within PEP the user can choose to evaluate a formula w.r.t, the initial marking
(exactly all the entry places are marked) or w.r.t, the current marking (e.g., reached
after some simulation steps).

78

be extendable and regarding the fact that it is developed at universities.
Therefore, also the reference component is modularised as far as possible.
In the current implementation references are stored in individual files (one
for each kind of references, e.g., B(PN) ~ ~ HL net) and most of the func-
tionality is offered by a couple of auxiliary programs which are, for instance,
used by the reference component.

It is crucial, that the validity of references is controlled. In the project
window of the P E P tool the user can see whether or not, e.g., the HL
net is connected to the B(PN) 2 program, i.e., whether or not the refer-
ences between these objects are valid. Editing the program implies that
the references become invalid.

g. 1 Show references modes
The editors integrated in the P E P tool provide different modes to exploit
the references.

In the HL net editor, e.g., the user can select a transition (or a place)
and depending on the mode (chosen by the user) the corresponding parts of
the program (colours are used to distinguish between ~ (expr) and
(expr) ~ or the transition(s) (or place(s)) of the LL net are highlighted.

The B(PN) 2 editor offers a comfortable possibility to select actions or
blocks of a program. After selecting a single atomic action (expr) the user
can ask for:

1. all transitions whose references contain f((expr)), and

2. all places whose references contain ~ or, resp., f((expr)) ~
The same is possible if multiple atomic actions are selected, only that all the
corresponding values of f((exprk)) are considered. In addition, the search
can be narrowed to those transitions (or places) whose references match
exactly the selected action(s) (= instead of C). The user can choose to
which of the other editors the results of the request are forwarded. This
feature can, e.g., be used to edit program formulae in the formula editor.

9.2 Simulation
Users who modelled a parallel system by writing a B(PN) 2 program most
certainly wants to simulate its behaviour. Perhaps, they do not even want
to see the PN. The references constructed by the compiler according to the
semantics defined above enable the reference component to offer (among
others) this simulation possibility.

The first way is to trigger program simulation by PN simulation. A ran-
dom or interactive simulation of the HL or LL net can be started and the
simulator simply passes the reference (i.e. f((expr))) of each firing transi-
tion via the reference component to the program editor/s imulator where
the corresponding action is highlighted.

Second, an interactive simulation of the program is provided as follows.
During each step, the program editor/simulator requests the references of

79

all enabled transitions from the PN simulator. Then it offers an adequate
possibility to choose among the activated actions and the possible variable
bindings which are then forwarded to the PN simulator in order to fire the
corresponding transition.

9.3 Program verification
Formulae can be edited either directly in the formula editor or by use of
the program editor and the reference component. In addition, the reference
component offers macro expansion features. In the Peterson example, (see
Fig. 10 - Fig. 12), e.g., LIVE(6) is expanded via [] <> (PRESET(T2) Y
PRESET(T3)) to [] <> ((P12 A P21) V (P12 A P17)). Thus, it is possible to
verify properties like:

1. 'Does the mutual exclusion property hold?' or 'Is it not possible that
both processes are in their critical sections simultaneously?'

-1 0 ({6~176 A {12~176

2. 'Is it always possible that a process enters its critical section?' can be
expressed in three different ways:

(a) [] ((<> {6~176 A (<> {12~176))

(b) [] ((O ((' i 2 = 0 ' V ' t = l ') A {6~176)) A
(0 ((' i l = 0 ' V 'z=2 ') A {12~176)))

(c) LIVE(6) A LIVE(t2)

The model checker as well as other analysis algorithms (such as deadlock
checkers) returns a sequence of transitions if possible. The tool offers a
possibility to visualise this sequence (using an interactive or automatic
simulation) in one (or more) of the editors.

The integrated INA [17] tool offers, among others, the possibility to cal-
culate invariants of Petri nets which can then be displayed, for instance, in
the corresponding program by use of the reference component.

10 Conclusion
We briefly presented some of the main features of the P E P tool. Further-
more, we tried to point out the usefulness of a sophisticated reference com-
ponent in order to extend PN simulation and PN verification to program
simulation and program verification. We believe that a reference component
of this style can improve many other tools.

We regret that we could not exploit the other parts of the reference com-
ponent (like PFA ~ B(PN) 2 and HL net ~ LL net) in a more detailed way
due to restrictions on the length of this paper. For a more detailed overview
of the P E P system we refer the reader to [6] and the various papers which
are avMlable at http://www, informatik, uni-hildesheim, de/~pep.

Acknowledgement:
I would like to thank Eike Best, Martin Ackermann, Burkhard Bieber,

80

Ulf Fildebrandt, Burkhard Graves, Michael Kater , Lutz Pogrell, Rober t
Riemann, Stefan R6mer and Stefan Schwoon for their help and anonymous
referees for their comments.

11 REFERENCES

[1] E. Best. Partial Order Verification with PEP. Proc. of POMIV'96, Prin-
ceton, 1996.

[2] E. Best, R. Devillers and J. G. Hall. The Box Calculus: a New Causal AI-
gebra with Multi-Label Communication. Advances in Petri Nets 92, LNCS
Vol. 609, 21-69. Springer, 1992.

[3] E. Best and H. Fleischhack, editors. PEP: Programming Environment Based
on Petri Nets. Hildesheimer Informatik-Berichte 14/95. 1995.

[4] E. Best, H. Fleischhack, W. Fr~czak, R. P. Hopkins, H. Klaudel, and E. Pelz.
An M-Net Semantics of B(PN) 2. Proc. of STRICT, Workshops in Comput-
ing, 85-100. Springer, 1995.

[5] E. Best, H. Fleischhack, W. Fr~czak, R. P. Hopkins, H. Klaudel, and E. Pelz.
A Class of Composable High Level Petri Nets. Proc. of ATPN'95, Torino,
LNCS Vol. 935, 103-118. Springer, 1995.

[6] E. Best and B. Grahlmann. PEP: Documentation and User Guide. Uni-
versit~t Hildesheim. ftp.informatik.uni-hildesheim.de/pub/Projekte/PEP/.., or
http: //www.informatik.uni-hildesheim.de/,-~pep/HomePage.html 1995.

[7] E. Best and R. P. Hopkins. B(PN) 2 - a Basic Petri Net Programming
Notation. Proc. of PARLE, LNCS Vol. 694, 379-390. Springer, 1993.

[8] J. Esparza, S. R.6mer, and W. Vogler. An Improvement of McMillan's Un-
folding Algorithm. Proc. of TACAS'96, 1996.

[9] J. Esparza. Model Checking Using Net Unfoldings, 151-195. Number 23 in
Science of Computer Programming. Elsevier, 1994.

[10] H. Fleischhack and B. Grahlmann. A Petri Net Semantics for B(PN) 2 with
Procedures which Allows Verification. Hildesheimer Informatik-Berichte
21/96. 1996.

[ii] B. Grahlmann, M. Moeller, and U. Anhalt. A New Interface for the PEP
Tool - Parallel Finite Automata. Proc. of 2. Workshop AIgorithmen und
Werkzeuge fiir Petrinetze, AIS 22, 21-26. FB Informatik Universit~t Olden-
burg, 1995.

[12] B. Grahlmann. Verifying Telecommunication Protocols with PEP. Proc. of
RELECTRONIC'95, Budapest, 251-256, 1995.

[13] B. Graves. Erl~,uterungen zu Esparza's L1-Model-Checker. In [3].

[14] J. E. Hopcraft and J. D. Ullmann. Introduction to Automata Theory, and
Languages, and Computation. Addison Wesley, 1994.

[15] L. Jenner. A Low-Level Net Semantics for B(PN) 2 with Procedures. In [3].

[16] R. Riemann. A Temporal Logic for B(PN) 2 Programs. In [3].

[17] P. H. Starke. INA: Integrated Net Analyzer. Handbuch, 1992.

