
A Tool to Support Formal Reasoning about 
Computer Languages* 

Richard J. Boulton~ 

University of Cambridge Computer Laboratory 

Abs t rac t .  A tool to support formal reasoning about computer lan- 
guages and specific language texts is described. The intention is to provide 
a tool that can build a formal reasoning system in a mechanical theorem 
prover from two specifications, one for the syntax of the language and 
one for the semantics. A parser, pretty-printer and internal representa- 
tions are generated from the former. Logical representations of syntax 
and semantics, and associated theorem proving tools, are generated from 
the combination of the two specifications. The main aim is to eliminate 
tedious work from the task of prototyping a reasoning tool for a com- 
puter language, but the abstract specifications of the language also assist 
the automation of proof. 

1 I n t r o d u c t i o n  

For several decades theorem proving systems have been used to reason about 
computer languages. A common approach has been to define the semantics of a 
language in the logic of the theorem prover. This may be done by defining new 
constants in the logic for each language construct, e.g. the assignment statement 
x : =e of an imperative programming language might be defined as: 

ASSIGN (x : s t r ing )  e s = .ky. i f  (y = x) then e s else s y 

ASSIGN is a higher-order function that takes the logical representations of x and 
e as its first and second arguments, and a state as its third argument.  The state 
is itself a function from type s t r i n g  to the type of expression values. ASSIGN 
returns a new state in which x is bound to the value of e but all other variables 
are bound as in the original state. This technique is known as shallow embedding. 

The use of constants for each language construct makes parsing a text into 
the logic straightforward and properties of the text can then be proved. However, 
this approach makes it difficult to express the static semantics in the logic and 
does not allow general properties about the language itself to be proved. These 
limitations are overcome by an alternative approach, known as deep embedding, 
in which the abstract syntax of the language is defined as a type in the logic 
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and the semantics is defined over this type. The semantics may be defined as 
recursive functions or by making inductive definitions (e.g. structural operational 
semantics) or in other ways. 

Examples of embedding include an early compiler correctness proof for a 
simple ALGOL-like language [19] mechanised in Stanford LCF, Gordon's axio- 
matic semantics for a simple imperative language [9] in the HOL system, embed- 
dings of various hardware description languages (e.g. [4]), and reasoning about 
the Standard ML module system [12]. 

Increasingly the embedding technique is being applied to industrial-strength 
computer languages. This creates problems akin to those arising when trying 
to write a large program in an assembly language - -  the level of description 
is too low. Generating an embedding is tedious and error-prone. Furthermore, 
changes to the syntax of the language (or more likely the subset of the language 
being considered) may require changes to the abstract syntax representation, 
the parser, the pretty-printer, the definition of semantics, and the associated 
theorem proving tools. Keeping all these entities consistent is difficult and time- 
consuming. However, the real information content of the parser, etc., is simply 
the syntax and semantics of the language. It should be possible, therefore, to 
generate an embedding from high-level specifications of syntax and semantics. 
This would not only reduce development and maintenance times but would also 
allow the embedding to be retargeted to a different theorem prover much as 
compilers allow a program in a high-level language to be retargeted to different 
architectures and operating systems. 

This paper is an overview of a suite of tools for generating embeddings from 
high-level specifications of syntax and semantics. The tools for syntax are fairly 
mature and have been used in formal reasoning projects for the C programming 
language and the hardware description languages VHDL, Veri!og, and ELLA. The 
language for specifying syntax is unusual in allowing the form of the abstract 
syntax trees (ASTs), the lexical analysis, the parsing, and pretty-printing inform- 
ation, all to be given in a single non-redundant formalism. Details of the language 
can be found in a separate paper [5]. The tools for semantics are still under de- 
velopment. Collectively the tools are called "CLaReT" which is an abbreviation 
for "Computer Language Reasoning Tool". CLaReT has been developed within 
the framework of a wider project. This project aims to provide formal methods 
support for the design of application-specific integrated circuits (ASICs) using 
multiple hardware description languages at various levels of abstraction. 

2 How CLaReT Might Be Used 

CLaReT is designed to generate code for a theorem proving system that has 
both an object logic and a recta-language, ML t. From high-level specifications 

1 In this section 'ML' refers to any meta-language but, as described later, the current 
implementation uses the programming language of the same name. This is not a 
coincidence; the ML programming language evolved from the meta-language of the 
LCF theorem prover, 
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of the syntax and semantics of a language s the following can be generated: 

- representations of the abstract syntax in ML and in logic; 
- functions to map between these two representations; 
- a parser and a pretty-printer; 
- logical definitions for the semantics; 
- ML functions and logical inference rules to animate the semantics. 

To see how these might be used, suppose that  we want to verify a program 7) 
written in s We first parse it to obtain an internal representation in ML. The 
program can then be tested on various data  by applying the fast ML animation 
functions. This testing is with respect to the formal semantics and could equally 
well be used to test the semantics. After one or more cycles of modification and 
animation, we are happy with the results. We might then wish to formally verify 
7 ). To achieve this the ML representation is converted to logic and the property 
8 we wish to prove is specified in the logic. The theorem prover is used (to 
at tempt)  to prove that  7 ) satisfies S with respect to the semantics. The proof 
may require that the semantics be 'executed', which can be achieved using the 
animation inference rules. These are not used for the initial testing because they 
are much slower than the ML functions. 

3 A n  O v e r v i e w  o f  C L a R e T  

CLaReT is implemented in Standard ML [18], a functional programming lan- 
guage, and currently also has ML as its target language. The Standard ML of 
New Jersey implementation is used because it provides the lexer and parser gen- 
erating tools ML-Lex and ML-Yacc. These tools generate Standard ML code in 
much the same way as the Lex and Yacc tools do for the C programming lan- 
guage. A somewhat simplified view of the architecture of CLaReT is shown in 
Fig. 1. The software around which CLaReT has been built is indicated by dotted 
lines. 

The first component to be built was a pretty-printer for the abstract syntax 
of ML. This provided a code generator for all the tools that  have ML as their 
target language. Each such tool generates an ML AST and passes it to the pretty- 
printer to produce an output  file. So, the tools do not have to be concerned with 
the concrete syntax of ML, and because pretty-printing is used the output  can 
easily be read by the user. 

The second component is the ML-Pretty program. This is a pretty-printer 
generator. It takes a specification language as input and produces ML as output.  
It is a self-contained program that  should be of general use to people developing 
systems in ML. The pretty-printers generated by ML-Pretty can maintain a link 
between positions in the generated text and the AST being printed. This allows 
them to be used in a graphical user interface. 

The next level of the system is called ML-Syn. It takes a single specification 
for syntax (an extended BNF grammar) and produces input for ML-Lex, ML- 
Yacc, and ML-Pretty. The specification language, called Syn [5], is at a higher 
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Fig. 1. Simplified architecture of CLaReT 

level than the languages used by ML-Lex, etc., and other syntax-specification 
languages could be generated from it. ML-Syn overcomes the problem of main- 
taining consistency between the abstract syntax representations used by the 
parser, pretty-printer and other tools by generating them from one specification. 

Like ML-Pretty, ML-Syn is self-contained, so it can be used by people who 
have no interest in semantics or formal reasoning. ML-Syn generates its output 
as ASTs which can either be pretty-printed to files or, in the case of ML-Pretty, 
be fed directly into the ML-Pretty compiler, bypassing its parser. Pretty-printing 
the files allows them to be read easily by the user and, if necessary, to be modified. 
Thus, ML-Syn can be used to rapidly generate a parser and pretty-printer which 
can then be fine-tuned manually, the original Syn specification being discarded. 

Finally, CLaReT uses ML-Syn to handle concrete syntax and to obtain the 
form of the abstract syntax. CLaReT produces additional code for use with a 
version of the HOL theorem proving system [10]. This version of HOL is imple- 
mented on top of Standard ML, so the code for concrete syntax can be used with 
it. The abstract syntax information is used to generate definitions of types in 
the HOL logic (higher-order logic), and ML functions to map between the ML 
representation of ASTs and the representation in logic. 

CLaReT also takes a specification of semantics as input. Currently, it has to 
be in a denotational style or as attributation and translation rules. Structural 
operational semantics may be supported in the future. 

From a denotational specification CLaReT generates definitions of logical 
functions over the abstract syntax and, if required, analogous ML functions. The 
latter allow rapid 'execution' of the semantics. For rigorous execution a symbolic 
evaluator [7] is also generated. This uses logical inference rules to ensure the 
correctness of the evaluation. Such symbolic evaluators can be implemented as 
a brute-force application of the semantic functions as rewrite rules. However, 
evaluators written in this fashion are notoriously slow. It is better to make use 
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of the abstract syntax specification to selectively apply the semantic functions 
at only the points at which they are applicable. 

The remainder of this paper goes into more detail about the various features 
of CLaReT. A fragment of a simple imperative programming language is used 
as an example. 

4 S p e c i f i c a t i o n  o f  S y n t a x  

Here is a Syn specification for the syntactic category of commands in a simple 
imperative programming language: 

corn ::= (Skip) "skip" 
(Assign) [<hv 1,3,0> [<h I> name ":="] iexp] 
(If) [<hov 1,0,0> [<h I> "if" bexp] 

[<h I> "then" com] 
[<h I> "else" com]. 7] 

(While) [<boy 1,3,0> [<h I> "while" bexp "do"] com] 
(Block) [<hov 1,3,0> 

"begin" ([<h 0> corn ";"]* corn) <I,0,0> "end"]; 

Some features to note are: 

- Optional and repeated syntactic elements can be specified directly using the 
notation [ . . .  ] ? and [ . . .  ] * respectively. 

- O n e  notation acts as both a means of specifying options and repetitions, 
and as a specification of layout for pretty-printing. The < . . .  > notation is 
formatting information. 

- The names of the nodes to be used in the ASTs are given in parentheses 
at the start of each line. The number and type of the subtrees are deduced 
from the non-terminals. 

- The precedence (binding strength) of terminals is specified implicitly by 
textual ordering with the aid of dependency analysis on the non-terminals. 

In addition, but not illustrated here, high-level constructs are available to specify 
lexical features such as character strings and comments which cannot always be 
adequately expressed as regular expressions. 

The ML datatype generated to represent the abstract syntax is: 

dat atype com 
= Skip 
I Assign of name * iexp 
I If of bexp * tom *com option 
While of bexp * corn 

I Block of com~list 

Notice the use of an option type and lists for the optional and repeated non- 

terminals. The option type is defined in ML by: 

datatype 'a option = NONE i SOME of 'a 

The logical types have much the same form as the ML types and are generated 

using one of the automatic type definition packages [13] in HOL. 
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5 D e n o t a t i o n a l  S e m a n t i c s  

It is the author's intention that the denotational semantics specification lan- 
guage should look similar to the non-mechanised semantics one encounters in 
research papers, though the ASCII character set is obviously a constraint. Thus, 
[ I . . .  I] is used for semantic bracketing and < < . . .  >> denotes a meta-variable 
which ranges over a syntactic category. The specification for commands given 
below is written over the abstract syntax: 

[i Skip I] == ( ) ; ;  
[] Assign(<<na~e>>,<<iexp>>) I] == !<<name>> <- [J<<iexp>>l];; 
[I If(<<bexp>>,<<com. l>>,{})I] == 

if [l<<bexp>>]] then [l<<r else ();; 

[i If(<<bexp>>,<<com. l>>,{<<com.2>>}) ]] == 
if []<<bexp>>]] then [l<<r else []<<r 

[] While(<<bexp>>,<<com>>) ]] == 

if [I <<bexp>> I] 
th~n ([l<<com>>1]; [] While(<<bexp>>,<<aom>>) J]) 
else () ; ; 

[i Block(<<[coms]>>) ]] == ([i<<coms>>]]; ());; 

The right-hand sides of the definitions are written in a simple ML-like language. 
The intention is that  it should be compilable to both ML and logical function 
definitions. The similarity between ML and the HOL logic makes this requirement 
easier to achieve than if a much less ML-like logic were being used. Nevertheless, 
there are some difficulties: 

- ML has a call-by-value semantics whereas the logic of HOL is inherently lazy 
- -  evaluation has to be forced by applying inference rules. The term-traversal 
strategy for rule application determines the 'evaluation' order. 

- Properties can be specified abstractly in the HOL logic whereas everything 
must be ' implemented'  in ML, e.g. the existential quantifier '3'  is directly 
admissible in HOL but needs to be implemented as a function in ML. It is 
not clear that  this can be done in general (at least not efficiently). Practical 
experience is required to determine the extent to which quantifiers, etc., 
should be allowed in the specification language. 

5.1 Denota t ion  Language Features 

The specification language has built-in support for environments (or states, as 
appropriate).  The intention is that these be implicit wherever possible to avoid 
verbosity. Thus it is assumed that the first denotation ( [ I . . .  ]]) on the right- 
hand side is 'evaluated' in the incoming environment, the second in the environ- 
ment resulting from the first evaluation, and so on. Mechanisms are included to 
override this default behaviour. 

When the value of the first denotation is to be discarded the sequencing 
notation ( . . .  ; . . .  ) may be used, as illustrated in the semantics for While and 
Block. The components of a sequence are processed from left to right for their 
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effects on the environment and the value of the last component  becomes the 
value of the entire sequence expression. For the Block construct the denotation 
of a list of commands  is a list of null values plus a side effect on the state. For 
the semantics to be correctly typed a single null value must  be returned in place 
of the list. 

The conditional i f  . . .  t h e n  . . .  e l s e  . . .  expression has a lazy  semantics 
(as in ML); only one of the branches is 'evaluated ' .  

Special notat ion is provided for obtaining values from the environment and 
for updat ing it. ' ! <<name>>' denotes the value bound to the name <<name>> in 
the current environment,  and 

!<<name>> <- x 

binds the value of x to <<name>>. In more complex examples, the environment 
may  have to have several components because values of more than one type have 
to be bound. Constructs for this and other extensions will be provided in the 
future. 

5.2 G e n e r a t e d  M L  Yt*nct ions 

To illustrate some of the above points, here is the ML function declaration that  
might result f rom compiling the specification: 

fun den_of_com Skip = u_nitS () 

den_of_com (Assign (name,iexp)) = 

binds (den_of_iexp iexp,fn il => units () o set name il) 

den_of_com (If (bexp,coml,NONE)) = 

bindS (den_of_bexp bexp, 

fn bl => if bl then den_of_com coml else unitS ()) 

den_of_com (If (bexp,coml,SOME com2)) = 

bindS (den_of_bexp bexp, 

fn bl => if bl then den_of_com coml else den_of_com com2) 

den_of_com (While (bexp,com)) = 

bindS (den_of_bexpbexp, 

fn bl => 

if bl 

then bindS (den_of_com com, 

fn cl => den_of_tom (While (bexp,com))) 

else units ()) 

den_of_com (Block coms)= 

binds (den_of_list den_of_com coms,fn zl => units ()); 

The functions u n i t s  and b i n d s  are used to ' thread '  the environment through 
the evaluations. They are based on the monad of state transformers used in the 
functional p rogramming communi ty  [25]. Their ML definitions are: 

fun unitS x sO = (x,sO); 

fun binds (m,f) sO = (fn (x,sl) => f x sl) (m sO); 
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Monads are similar to continuation-passing style which was invented for use 
with denotational semantics. The use of monads in denotational semantics was 
proposed by Moggi [20]. 

The function s e t  binds a key to a value in the environment. The functions for 
manipulating bindings and environments are provided as modules implemented 
as both Standard ML structures and HOL theories (see Sect. 5.5). 

Since environments do not have to be mentioned explicitly in the ML code 
that  is generated from the specification, one might ask why the ML is not used 
directly. The primary reason for not doing so is the desire to generate other 
things from the specification including logical inference rules (Sect. 5.4) that 
have structures that  do not so closely follow that  of the specification. 

5.3 G e n e r a t e d  H O L  D e f i n i t i o n s  

The HOL definitions generated from the denotational specification are quite sim- 
ilar to the ML code. The logical counterparts of u n i t s  and b inds  are used, and 
the specification language is deliberately restricted to constructs that can be 
readily represented in higher-order logic. Even so, the functions to be defined 
may be mutually recursive. The HOL theorem prover has a tool for making 
mutually recursive definitions as do a number of other provers. 

The example at the beginning of Sect. 5 involves a recursion that is not 
welt-founded: the denotation of the Wh• construct is defined in terms of itself. 
This can easily be implemented in ML (possibly resulting in a non-terminating 
program) but is problematic in HOL. The use of fixpoints for this is being in- 
vestigated. The difficulty is not in defining the recursion but in doing it in a way 
that  facilitates symbolic evaluation. In any event, other styles of semantics can 
be used that avoid the problem. 

5.4 G e n e r a t e d  In ference  R u l e s  

The ML version of the denotational semantics can be evaluated by simply apply- 
ing the denotation functions to the abstract syntax and the initial environment. 
However, this does not allow parts of the syntax or the environment to be 'sym- 
boliC, i.e. a meta-variable, as is allowed in the logic of the theorem prover [7]. 
On the other hand, evaluation in the logic requires the definitions of the denota- 
tion functions (and any auxiliary functions used) to be applied as rewrite rules. 
Writing such an evaluator by hand is straightforward but time-consuming and 
error-prone. CLaReT generates the evaluator automatically. A further advant- 
age is that  the generator can be programmed to produce an efficient rewriter, a 
skill that  casual users of the HOL system are unacquainted with. 

Another option is to produce a hybrid evaluator. The idea is to perform the 
environment manipulations, etc., directly in ML, while the basic values being 
manipulated are logical terms. This approach should produce a fast evaluator 
that also allows some symbolic entities. Kaufmann and Moore take a different 
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approach in the ACL2 theorem prover [15]; their logic is an applicative sublan- 
guage of Common Lisp, so their terms are inherently executable. The drawback 
is that  this language lacks the expressive power of higher-order logic. 

The ML functions to evaluate the semantic definitions in the logic are func- 
tions that  map a logical term to an equational theorem between that  term and a 
new term. These conversions are built up from applications of rewrite rules using 
combinators for congruence rules, sequencing, etc. This approach was suggested 
by Paulson [21] and is heavily used in the HOL system. Part  of the conversion 
for commands in the example language is illustrated below. 

fun den_of_com_CONV key_eq_conv tm = 
(case constructor_of_den app (rator tm) 
of ... 
i "Imp_Block" => 
RATOR_CONV BIock_REWR THENC 
TRY_CONY (BIND_S_CDNV (den_of_coms_CONV key_eq_conv)) THENC 
TRY_CONV (RATOR_CONV BETA_CONV) THENC 
TRY_CONV 

(RATOR_CONV 
(RAND_CONV 

(STRICT_EVAL_CONV 
(LIBRARY_OP_CONV key_eq_conv [] ) ) ) ) THENC 

TRY_CONV UNIT_S_CONV) 

If the term to which the denotation function is applied has Imp_Block 2 at its 
head then the definition of the semantic function for that  constructor is used as a 
rewrite rule. This is implemented by the conversion Block REWR. The combinator 
RATOR_CONV applies the conversion to the operator of an application. It is used 
because the term will be of the form: 

(Imp_den_of_com (Imp_Block coms)) state 

The result is an equational theorem with the following term as its right-hand 
side: 

((BIND_S (Imp_den_of_coms coms)) (Azl. UNIT_S one)) s t a t e  

where one is the unique element of the type that  has only one element, equival- 
ent to () in ML. The infix combinator THENC sequences conversions. It arranges 
for the next conversion to be applied to this new term. The next conversion 
tries to evaluate the BIND_S function. Evaluation continues by at tempting beta- 
reduction, a general strict evaluation using library functions, and finally eval- 
uation of the UNIT_S function. The form of the whole conversion is derived 
mechanically from the denotational specification. 

The state binds keys (e.g. variable names) to values. A means of computing 
whether two keys are equal is required in order to symbolically evaluate. The 
parameter  key_eq_conv is a conversion that  does this. 

2 The names generated by CLaReT for use with HOL are prefixed by the language 
name (Imp) because HOL has a global name space for logical constants. For the ML 
version, ML's structures (modules) are used to avoid naming conflicts. 



90 

5.5 A L i b r a r y  o f  M o d u l e s  

As can be seen from the preceding sections, the ML functions and the HOL in- 
ference rules differ in structure. The names used for particular functions also 
differ between the targets. For this reason, CLaReT includes a library mech- 
anism. Functions are grouped together in modules, e.g. for standard types like 
the integers. For each module the library contains a specification file and im- 
plementation files. The specification file is used to map names occurring in the 
denotation language to names to be used in the generated code. In some cases 
the target names will be built-in functions of ML or HOL. In other cases the 
definitions are stored in the implementation files. The denotational semantics 
specification language includes a construct that  allows users to specify which 
modules they wish to use. 

With the library mechanism it would be easy to add implementation files 
for theorem provers other than HOL. It is also possible for a specialist user 
to implement modules for a particular application area, such as semantics of 
structural hardware description languages, which can then be used by someone 
unfamiliar with the intricacies of the theorem prover in order to specify the 
semantics of a language. Since the libraries include proof procedures for the 
functions, it may be possible in this way to provide a high degree O f proof 
automation without the language specifier needing to know how to implement 
proof procedures. 

6 P r o o f s  

The denotational specifications for semantics and the generator of logical defin- 
itions from them are designed to produce definitions close to those that  would 
be written by hand. Thus, proofs about these definitions should not be signific- 
antly less tractable than the numerous significant proofs that  have already been 
done in the HOL system and other theorem provers. The syntactic specification 
language, Syn, of CLaReT does impose some constraints on the abstract syn- 
tax, so the semantic definitions may not be as optimal as hand-written ones, 
but Syn includes features, such as repetitions, that  enable a reasonable abstract 
syntax to be produced. Where this is not sufficient, one possible approach would 
be to give two specifications, C and .4, of the language's syntax, g includes the 
concrete syntax while .4 specifies abstract syntax only. Specification .4 is then 
not constrained by the requirements of the concrete syntax and so an abstract 
syntax that  is optimal for proof can be produced. It is then simply a mat ter  of 
writing ML functions that  map between the data  types for abstract syntax that  
CLaReT generates from g and .4. This technique also allows static and dynamic 
semantics to be given separately: the static semantics maps a C tree to an .4 tree 
provided the C tree is well-formed, while the dynamic semantics is given over 
the .4 tree. 

A simple proof involving our example language follows as an illustration. The 
theorem states that a conditional statement with the null statement skip as its 
branch is equivalent to skip, i.e.: 
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if <<bexp>> then skip <-> skip 

In HOL, the theorem is3: 

Vbexp sta~e. 
den_of_com (If bexp Skip NONE) state = den_of_com Skip state 

The proof  proceeds as follows: 

den_of_com ( I f  bexp Skip NONE) s t a t e  = 
BINDS (den_of_bexpbexp) 

(Ab. COND b (den of com Skip) (UNIT S one)) s t a t e  = 
BINDS (den_of_bexp bexp) 

(Ab. COND b (UNIT_S one) (UNIT S one)) s t a t e  = 
BIND S (den_of_bexpbexp) (~b. UNIT_S one) s t a t e  = 
(A(x , s l ) .  (Ab. UNIT S one) x s l )  (den of bexp bexp s t a t e )  = 
(A(x , s l ) .  UNIT_S one s l )  (den of_bexp bexp s t a t e )  = 
(A(x , s l ) .  UNIT S one s l )  ( . . . .  s t a t e )  = 
UNIT_S one s t a t e  

The penul t imate  step requires a l emma stat ing that  evaluating boolean expres- 
sions has no effect on the state. 

7 Comparison with Other Systems 

7.1 The R e e t z / K r o p f  E m b e d d i n g  G e n e r a t o r  

The idea of au tomat ica l ly  generating embeddings is not new. Reetz and Kropf  
[23] have produced a system that  generates an embedding in the HOL theorem 
prover from specifications of the g r a m m a r  of the language and a t t r ibuta t ion 
and translation rules for a t t r ibuted abstract  syntax trees (derivation trees). The 
semantic information is stored in the at tr ibutes rather than in the environment 
argument  used in the denotational  style (Sect. 5). 

The Ree tz /Kropf  embedding generator does not deal with concrete syntax, 
i.e. it does not generate parsers or pretty-printers.  For realistically-sized language 
texts these are important ;  entering an abstract  syntax tree for such a text is 
tedious and error-prone. CLaReT has been interfaced to their system to provide 
support  for concrete syntax. Since CLaReT also supports  a different style of 
semantics it is complementary  to the work of Reetz and Kropf. 

7.2 Too l s  f o r  Operational Semantics 

For many  languages one style of semantics is more appropriate  than others but 
the choice may  also be a ma t t e r  of personal taste. A number  of systems have 
been developed to support  reasoning with operational semantics rather than 

3 The abstract syntax (type) constructors in HOL's logic are curried. Also, the 'Imp_' 
prefix has been omitted from names for brevity. 
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denotational semantics. These include the SMG system [11] and the Process Al- 
gebra Compiler (PAC) [8]. SMG supports temporal logic model checking for lan- 
guages by transforming programs to suitable finite state models. PAC, as its name 
suggests, is dedicated to reasoning about process algebras, and is essentially a 
front-end generator for existing process algebra tools. It produces a parser and 
functions for computing the semantics of programs. 

PAC uses separate specifications of abstract and concrete syntax, plus an 
additional grammar for specifying the extension of the syntax with structural 
operational semantics rules. There is no specification of pretty-printing. The 
specifications of concrete syntax are similar to Yacc, but, as in CLaReT, there is 
special support for repetitive syntax. On the whole, though, the PAC's syntactic 
specifications are not as sophisticated as CLaReT's. 

7.3 Software Deve lopment  Environments  

There are a number of language-independent software development environments 
that provide similar features to CLaReT, e.g. CENTAUR [3], the Ergo Support 
System (ESS) [16], and the programming system generator PSG [1]. These sys- 
tems have not been used by researchers who embed computer languages in inter- 
active theorem provers. This suggests that the effort involved in integrating such 
systems to theorem provers for one-off embeddings is prohibitive. An alternative 
to developing CLaReT would have been to provide a generic interface between 
such a system and HOL. However, CLaReT has the advantage that it produces 
code in a general purpose programming language with all the flexibility that 
provides. A more detailed comparison follows. 

CENTAUR. has two collections of specification languages: ASF+SDF [2] (a com- 
bination of ASF and SDF) and Metal/PPML/Typol. SDF and Metal are spe- 
cification languages for concrete and abstract syntax. Neither of these specify 
formatting but PPML (a pretty-printing specification language) may be used 
with Metal, and recently van den Brand and Visser [24] have shown how de- 
fault pretty-printers can be generated from SDF. Both the latter work and the 
formatting in CLaReT's Syn language are based on PPML. For a discussion of 
how Syn compares with the syntactic specification languages of CENTAUR. and 
the other software development environments, see the paper on Syn [5]. 

ASF is an algebraic specification language and Typol implements Kahn's 
natural semantics. ASF specifies semantics by means of conditional equations. 
The equations can be written over a concrete syntax specified in SDF. Currently, 
CLaReT is limited to specifications over the abstract syntax. The use of SDF also 
allows the syntax of (meta-)variables to be specified so that the ASF specifica- 
tions are not restricted to a fixed syntax such as the <<. . .  >> used in CLaReT. 
Typol is particularly suited to static semantics~ e.g. type checking, and there 
exists a means of translating natural semantics in Typol to inductive definitions 
in the Coq theorem prover. 

ESS has very similar aims and facilities to CLaReT. Like CLaReT, ESS has 
a deduction (theorem proving) aspect, though this is perhaps more the focus of 
attention in CLaReT. Syntax is specified in ESS using a single language that 
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like CLaReT has iterators, unparsing annotations, and high-level lexical spe- 
cification. However, CLaReT's Syn language has more implicit features such as 
inferring precedence and the form of the ASTs. ESS makes use of attributes and 
higher-order abstract syntax which CLaReT currently does not. In terms of se- 
mantic specification the difference between the two systems is more significant: 
CLaReT has declarative specifications for semantics while in ESS the semantic 
aspects of-a language have to be implemented as programs. 

PSG generates interactive programming environments from specifications of 
syntax, context conditions, and dynamic semantics. The various aspects of syn- 
tax are specified separately, so there is a lot of redundancy, which is something 
CLaReT tries to avoid. In contrast to ESS but like ASF and CLaReT, PSG al- 
lows semantics to be specified non-procedurally. The dynamic semantics of a 
language is defined in a denotational style using a functional language based 
on the lambda calculus. This is very similar to CLaReT but whereas CLaReT's 
primary concern is to support formal proof using the semantics, in PSG the se- 
mantics is used only to execute program fragments. Execution, if the semantics 
permits it, is a secondary concern in CLaReT. Another difference is that, in PSG, 
states and environments used in the semantics apparently have to be mentioned 
explicitly. 

7.4 Semantics-Directed Compiler Generators 

There have been a number of attempts to generate compilers from denotational 
semantic specifications including early work by Mosses, and later by Paulson, 
Wand and Lee. More recently, Pettersson and Fritzson [22] have used a superset 
of Standard ML to specify denotational semantics with the aim of producing effi- 
cient compilers. The extensions include allowing concrete syntax within semantic 
brackets in place of ML pattern matching. All these systems use denotational 
specifications similar to those of CLaReT, but their aim is compiler generation 
not formal reasoning. 

A related tool, Actress [6], is a semantics-directed compiler generator for 
Mosses' action semantics. This uses ML-Lex and ML-Yacc to generate a parser, 
so its syntactic specification is at a lower level than in CLaReT. We are not 
aware of any language embeddings in theorem provers that are based on action 
semantics, possibly because the theoretical underpinnings required for action 
semantics are not yet present in current provers. 

8 S u m m a r y  

This research gathers together a number of technologies that have previously 
been used manually or in isolation and makes them readily available to anyohe 
interested in formal reasoning about computer languages. By targeting a com- 
monly used theorem proving system, users who wish to prove properties about 
their languages and programs have the tools to do so at their disposal, and the 
support of a substantial user community. Some key points of the research are: 
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- There is only one specification for syntax and one for semantics. 
- CLaReT a t t empts  to hide logic and theorem proving to make the tools more 

accessible to software engineers, hardware designers, etc. 
- Limiting the expressive power of the specification languages allows greater 

automat ion.  Modules of functions are provided so that  the system may know 
how to reason about  them without user intervention. 

- The similarity between ML and higher-order logic makes it easier to exploit 
both  the meta- language and the logic of the theorem proving system. 
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