
A Tool to Support Formal Reasoning about
Computer Languages*

Richard J. Boulton~

University of Cambridge Computer Laboratory

Abs t rac t . A tool to support formal reasoning about computer lan-
guages and specific language texts is described. The intention is to provide
a tool that can build a formal reasoning system in a mechanical theorem
prover from two specifications, one for the syntax of the language and
one for the semantics. A parser, pretty-printer and internal representa-
tions are generated from the former. Logical representations of syntax
and semantics, and associated theorem proving tools, are generated from
the combination of the two specifications. The main aim is to eliminate
tedious work from the task of prototyping a reasoning tool for a com-
puter language, but the abstract specifications of the language also assist
the automation of proof.

1 I n t r o d u c t i o n

For several decades theorem proving systems have been used to reason about
computer languages. A common approach has been to define the semantics of a
language in the logic of the theorem prover. This may be done by defining new
constants in the logic for each language construct, e.g. the assignment statement
x : =e of an imperative programming language might be defined as:

ASSIGN (x : s t r ing) e s = .ky. i f (y = x) then e s else s y

ASSIGN is a higher-order function that takes the logical representations of x and
e as its first and second arguments, and a state as its third argument. The state
is itself a function from type s t r i n g to the type of expression values. ASSIGN
returns a new state in which x is bound to the value of e but all other variables
are bound as in the original state. This technique is known as shallow embedding.

The use of constants for each language construct makes parsing a text into
the logic straightforward and properties of the text can then be proved. However,
this approach makes it difficult to express the static semantics in the logic and
does not allow general properties about the language itself to be proved. These
limitations are overcome by an alternative approach, known as deep embedding,
in which the abstract syntax of the language is defined as a type in the logic

t Author's address from 1st January 1997: Department of Artificial Intelligence, Uni-
versity of Edinburgh, 80 South Bridge, Edinburgh EH1 1HN, United Kingdom.

* Research supported by the Engineering and Physical Sciences Research Council of
Great Britain under grant GR/J42236.

82

and the semantics is defined over this type. The semantics may be defined as
recursive functions or by making inductive definitions (e.g. structural operational
semantics) or in other ways.

Examples of embedding include an early compiler correctness proof for a
simple ALGOL-like language [19] mechanised in Stanford LCF, Gordon's axio-
matic semantics for a simple imperative language [9] in the HOL system, embed-
dings of various hardware description languages (e.g. [4]), and reasoning about
the Standard ML module system [12].

Increasingly the embedding technique is being applied to industrial-strength
computer languages. This creates problems akin to those arising when trying
to write a large program in an assembly language - - the level of description
is too low. Generating an embedding is tedious and error-prone. Furthermore,
changes to the syntax of the language (or more likely the subset of the language
being considered) may require changes to the abstract syntax representation,
the parser, the pretty-printer, the definition of semantics, and the associated
theorem proving tools. Keeping all these entities consistent is difficult and time-
consuming. However, the real information content of the parser, etc., is simply
the syntax and semantics of the language. It should be possible, therefore, to
generate an embedding from high-level specifications of syntax and semantics.
This would not only reduce development and maintenance times but would also
allow the embedding to be retargeted to a different theorem prover much as
compilers allow a program in a high-level language to be retargeted to different
architectures and operating systems.

This paper is an overview of a suite of tools for generating embeddings from
high-level specifications of syntax and semantics. The tools for syntax are fairly
mature and have been used in formal reasoning projects for the C programming
language and the hardware description languages VHDL, Veri!og, and ELLA. The
language for specifying syntax is unusual in allowing the form of the abstract
syntax trees (ASTs), the lexical analysis, the parsing, and pretty-printing inform-
ation, all to be given in a single non-redundant formalism. Details of the language
can be found in a separate paper [5]. The tools for semantics are still under de-
velopment. Collectively the tools are called "CLaReT" which is an abbreviation
for "Computer Language Reasoning Tool". CLaReT has been developed within
the framework of a wider project. This project aims to provide formal methods
support for the design of application-specific integrated circuits (ASICs) using
multiple hardware description languages at various levels of abstraction.

2 How CLaReT Might Be Used

CLaReT is designed to generate code for a theorem proving system that has
both an object logic and a recta-language, ML t. From high-level specifications

1 In this section 'ML' refers to any meta-language but, as described later, the current
implementation uses the programming language of the same name. This is not a
coincidence; the ML programming language evolved from the meta-language of the
LCF theorem prover,

83

of the syntax and semantics of a language s the following can be generated:

- representations of the abstract syntax in ML and in logic;
- functions to map between these two representations;
- a parser and a pretty-printer;
- logical definitions for the semantics;
- ML functions and logical inference rules to animate the semantics.

To see how these might be used, suppose that we want to verify a program 7)
written in s We first parse it to obtain an internal representation in ML. The
program can then be tested on various data by applying the fast ML animation
functions. This testing is with respect to the formal semantics and could equally
well be used to test the semantics. After one or more cycles of modification and
animation, we are happy with the results. We might then wish to formally verify
7). To achieve this the ML representation is converted to logic and the property
8 we wish to prove is specified in the logic. The theorem prover is used (to
at tempt) to prove that 7) satisfies S with respect to the semantics. The proof
may require that the semantics be 'executed', which can be achieved using the
animation inference rules. These are not used for the initial testing because they
are much slower than the ML functions.

3 A n O v e r v i e w o f C L a R e T

CLaReT is implemented in Standard ML [18], a functional programming lan-
guage, and currently also has ML as its target language. The Standard ML of
New Jersey implementation is used because it provides the lexer and parser gen-
erating tools ML-Lex and ML-Yacc. These tools generate Standard ML code in
much the same way as the Lex and Yacc tools do for the C programming lan-
guage. A somewhat simplified view of the architecture of CLaReT is shown in
Fig. 1. The software around which CLaReT has been built is indicated by dotted
lines.

The first component to be built was a pretty-printer for the abstract syntax
of ML. This provided a code generator for all the tools that have ML as their
target language. Each such tool generates an ML AST and passes it to the pretty-
printer to produce an output file. So, the tools do not have to be concerned with
the concrete syntax of ML, and because pretty-printing is used the output can
easily be read by the user.

The second component is the ML-Pretty program. This is a pretty-printer
generator. It takes a specification language as input and produces ML as output.
It is a self-contained program that should be of general use to people developing
systems in ML. The pretty-printers generated by ML-Pretty can maintain a link
between positions in the generated text and the AST being printed. This allows
them to be used in a graphical user interface.

The next level of the system is called ML-Syn. It takes a single specification
for syntax (an extended BNF grammar) and produces input for ML-Lex, ML-
Yacc, and ML-Pretty. The specification language, called Syn [5], is at a higher

84

CLaReT

ML-Syn I

,~ ML Pretty-Printer
I I Lex i, Yacc for ML ASTs
. ', 1
~ - . , - i

! !

m, Standard ML of New Jersey I I
I i
L . . . o

Fig. 1. Simplified architecture of CLaReT

level than the languages used by ML-Lex, etc., and other syntax-specification
languages could be generated from it. ML-Syn overcomes the problem of main-
taining consistency between the abstract syntax representations used by the
parser, pretty-printer and other tools by generating them from one specification.

Like ML-Pretty, ML-Syn is self-contained, so it can be used by people who
have no interest in semantics or formal reasoning. ML-Syn generates its output
as ASTs which can either be pretty-printed to files or, in the case of ML-Pretty,
be fed directly into the ML-Pretty compiler, bypassing its parser. Pretty-printing
the files allows them to be read easily by the user and, if necessary, to be modified.
Thus, ML-Syn can be used to rapidly generate a parser and pretty-printer which
can then be fine-tuned manually, the original Syn specification being discarded.

Finally, CLaReT uses ML-Syn to handle concrete syntax and to obtain the
form of the abstract syntax. CLaReT produces additional code for use with a
version of the HOL theorem proving system [10]. This version of HOL is imple-
mented on top of Standard ML, so the code for concrete syntax can be used with
it. The abstract syntax information is used to generate definitions of types in
the HOL logic (higher-order logic), and ML functions to map between the ML
representation of ASTs and the representation in logic.

CLaReT also takes a specification of semantics as input. Currently, it has to
be in a denotational style or as attributation and translation rules. Structural
operational semantics may be supported in the future.

From a denotational specification CLaReT generates definitions of logical
functions over the abstract syntax and, if required, analogous ML functions. The
latter allow rapid 'execution' of the semantics. For rigorous execution a symbolic
evaluator [7] is also generated. This uses logical inference rules to ensure the
correctness of the evaluation. Such symbolic evaluators can be implemented as
a brute-force application of the semantic functions as rewrite rules. However,
evaluators written in this fashion are notoriously slow. It is better to make use

85

of the abstract syntax specification to selectively apply the semantic functions
at only the points at which they are applicable.

The remainder of this paper goes into more detail about the various features
of CLaReT. A fragment of a simple imperative programming language is used
as an example.

4 S p e c i f i c a t i o n o f S y n t a x

Here is a Syn specification for the syntactic category of commands in a simple
imperative programming language:

corn ::= (Skip) "skip"
(Assign) [<hv 1,3,0> [<h I> name ":="] iexp]
(If) [<hov 1,0,0> [<h I> "if" bexp]

[<h I> "then" com]
[<h I> "else" com]. 7]

(While) [<boy 1,3,0> [<h I> "while" bexp "do"] com]
(Block) [<hov 1,3,0>

"begin" ([<h 0> corn ";"]* corn) <I,0,0> "end"];

Some features to note are:

- Optional and repeated syntactic elements can be specified directly using the
notation [. . .] ? and [. . .] * respectively.

- O n e notation acts as both a means of specifying options and repetitions,
and as a specification of layout for pretty-printing. The < . . . > notation is
formatting information.

- The names of the nodes to be used in the ASTs are given in parentheses
at the start of each line. The number and type of the subtrees are deduced
from the non-terminals.

- The precedence (binding strength) of terminals is specified implicitly by
textual ordering with the aid of dependency analysis on the non-terminals.

In addition, but not illustrated here, high-level constructs are available to specify
lexical features such as character strings and comments which cannot always be
adequately expressed as regular expressions.

The ML datatype generated to represent the abstract syntax is:

dat atype com
= Skip
I Assign of name * iexp
I If of bexp * tom *com option
While of bexp * corn

I Block of com~list

Notice the use of an option type and lists for the optional and repeated non-

terminals. The option type is defined in ML by:

datatype 'a option = NONE i SOME of 'a

The logical types have much the same form as the ML types and are generated

using one of the automatic type definition packages [13] in HOL.

86

5 D e n o t a t i o n a l S e m a n t i c s

It is the author's intention that the denotational semantics specification lan-
guage should look similar to the non-mechanised semantics one encounters in
research papers, though the ASCII character set is obviously a constraint. Thus,
[I . . . I] is used for semantic bracketing and < < . . . >> denotes a meta-variable
which ranges over a syntactic category. The specification for commands given
below is written over the abstract syntax:

[i Skip I] == () ; ;
[] Assign(<<na~e>>,<<iexp>>) I] == !<<name>> <- [J<<iexp>>l];;
[I If(<<bexp>>,<<com. l>>,{})I] ==

if [l<<bexp>>]] then [l<<r else ();;

[i If(<<bexp>>,<<com. l>>,{<<com.2>>})]] ==
if []<<bexp>>]] then [l<<r else []<<r

[] While(<<bexp>>,<<com>>)]] ==

if [I <<bexp>> I]
th~n ([l<<com>>1]; [] While(<<bexp>>,<<aom>>) J])
else () ; ;

[i Block(<<[coms]>>)]] == ([i<<coms>>]]; ());;

The right-hand sides of the definitions are written in a simple ML-like language.
The intention is that it should be compilable to both ML and logical function
definitions. The similarity between ML and the HOL logic makes this requirement
easier to achieve than if a much less ML-like logic were being used. Nevertheless,
there are some difficulties:

- ML has a call-by-value semantics whereas the logic of HOL is inherently lazy
- - evaluation has to be forced by applying inference rules. The term-traversal
strategy for rule application determines the 'evaluation' order.

- Properties can be specified abstractly in the HOL logic whereas everything
must be ' implemented' in ML, e.g. the existential quantifier '3' is directly
admissible in HOL but needs to be implemented as a function in ML. It is
not clear that this can be done in general (at least not efficiently). Practical
experience is required to determine the extent to which quantifiers, etc.,
should be allowed in the specification language.

5.1 Denota t ion Language Features

The specification language has built-in support for environments (or states, as
appropriate). The intention is that these be implicit wherever possible to avoid
verbosity. Thus it is assumed that the first denotation ([I . . .]]) on the right-
hand side is 'evaluated' in the incoming environment, the second in the environ-
ment resulting from the first evaluation, and so on. Mechanisms are included to
override this default behaviour.

When the value of the first denotation is to be discarded the sequencing
notation (. . . ; . . .) may be used, as illustrated in the semantics for While and
Block. The components of a sequence are processed from left to right for their

87

effects on the environment and the value of the last component becomes the
value of the entire sequence expression. For the Block construct the denotation
of a list of commands is a list of null values plus a side effect on the state. For
the semantics to be correctly typed a single null value must be returned in place
of the list.

The conditional i f . . . t h e n . . . e l s e . . . expression has a lazy semantics
(as in ML); only one of the branches is 'evaluated ' .

Special notat ion is provided for obtaining values from the environment and
for updat ing it. ' ! <<name>>' denotes the value bound to the name <<name>> in
the current environment, and

!<<name>> <- x

binds the value of x to <<name>>. In more complex examples, the environment
may have to have several components because values of more than one type have
to be bound. Constructs for this and other extensions will be provided in the
future.

5.2 G e n e r a t e d M L Yt*nct ions

To illustrate some of the above points, here is the ML function declaration that
might result f rom compiling the specification:

fun den_of_com Skip = u_nitS ()

den_of_com (Assign (name,iexp)) =

binds (den_of_iexp iexp,fn il => units () o set name il)

den_of_com (If (bexp,coml,NONE)) =

bindS (den_of_bexp bexp,

fn bl => if bl then den_of_com coml else unitS ())

den_of_com (If (bexp,coml,SOME com2)) =

bindS (den_of_bexp bexp,

fn bl => if bl then den_of_com coml else den_of_com com2)

den_of_com (While (bexp,com)) =

bindS (den_of_bexpbexp,

fn bl =>

if bl

then bindS (den_of_com com,

fn cl => den_of_tom (While (bexp,com)))

else units ())

den_of_com (Block coms)=

binds (den_of_list den_of_com coms,fn zl => units ());

The functions u n i t s and b i n d s are used to ' thread ' the environment through
the evaluations. They are based on the monad of state transformers used in the
functional p rogramming communi ty [25]. Their ML definitions are:

fun unitS x sO = (x,sO);

fun binds (m,f) sO = (fn (x,sl) => f x sl) (m sO);

88

Monads are similar to continuation-passing style which was invented for use
with denotational semantics. The use of monads in denotational semantics was
proposed by Moggi [20].

The function s e t binds a key to a value in the environment. The functions for
manipulating bindings and environments are provided as modules implemented
as both Standard ML structures and HOL theories (see Sect. 5.5).

Since environments do not have to be mentioned explicitly in the ML code
that is generated from the specification, one might ask why the ML is not used
directly. The primary reason for not doing so is the desire to generate other
things from the specification including logical inference rules (Sect. 5.4) that
have structures that do not so closely follow that of the specification.

5.3 G e n e r a t e d H O L D e f i n i t i o n s

The HOL definitions generated from the denotational specification are quite sim-
ilar to the ML code. The logical counterparts of u n i t s and b inds are used, and
the specification language is deliberately restricted to constructs that can be
readily represented in higher-order logic. Even so, the functions to be defined
may be mutually recursive. The HOL theorem prover has a tool for making
mutually recursive definitions as do a number of other provers.

The example at the beginning of Sect. 5 involves a recursion that is not
welt-founded: the denotation of the Wh• construct is defined in terms of itself.
This can easily be implemented in ML (possibly resulting in a non-terminating
program) but is problematic in HOL. The use of fixpoints for this is being in-
vestigated. The difficulty is not in defining the recursion but in doing it in a way
that facilitates symbolic evaluation. In any event, other styles of semantics can
be used that avoid the problem.

5.4 G e n e r a t e d In ference R u l e s

The ML version of the denotational semantics can be evaluated by simply apply-
ing the denotation functions to the abstract syntax and the initial environment.
However, this does not allow parts of the syntax or the environment to be 'sym-
boliC, i.e. a meta-variable, as is allowed in the logic of the theorem prover [7].
On the other hand, evaluation in the logic requires the definitions of the denota-
tion functions (and any auxiliary functions used) to be applied as rewrite rules.
Writing such an evaluator by hand is straightforward but time-consuming and
error-prone. CLaReT generates the evaluator automatically. A further advant-
age is that the generator can be programmed to produce an efficient rewriter, a
skill that casual users of the HOL system are unacquainted with.

Another option is to produce a hybrid evaluator. The idea is to perform the
environment manipulations, etc., directly in ML, while the basic values being
manipulated are logical terms. This approach should produce a fast evaluator
that also allows some symbolic entities. Kaufmann and Moore take a different

89

approach in the ACL2 theorem prover [15]; their logic is an applicative sublan-
guage of Common Lisp, so their terms are inherently executable. The drawback
is that this language lacks the expressive power of higher-order logic.

The ML functions to evaluate the semantic definitions in the logic are func-
tions that map a logical term to an equational theorem between that term and a
new term. These conversions are built up from applications of rewrite rules using
combinators for congruence rules, sequencing, etc. This approach was suggested
by Paulson [21] and is heavily used in the HOL system. Part of the conversion
for commands in the example language is illustrated below.

fun den_of_com_CONV key_eq_conv tm =
(case constructor_of_den app (rator tm)
of ...
i "Imp_Block" =>
RATOR_CONV BIock_REWR THENC
TRY_CONY (BIND_S_CDNV (den_of_coms_CONV key_eq_conv)) THENC
TRY_CONV (RATOR_CONV BETA_CONV) THENC
TRY_CONV

(RATOR_CONV
(RAND_CONV

(STRICT_EVAL_CONV
(LIBRARY_OP_CONV key_eq_conv [])))) THENC

TRY_CONV UNIT_S_CONV)

If the term to which the denotation function is applied has Imp_Block 2 at its
head then the definition of the semantic function for that constructor is used as a
rewrite rule. This is implemented by the conversion Block REWR. The combinator
RATOR_CONV applies the conversion to the operator of an application. It is used
because the term will be of the form:

(Imp_den_of_com (Imp_Block coms)) state

The result is an equational theorem with the following term as its right-hand
side:

((BIND_S (Imp_den_of_coms coms)) (Azl. UNIT_S one)) s t a t e

where one is the unique element of the type that has only one element, equival-
ent to () in ML. The infix combinator THENC sequences conversions. It arranges
for the next conversion to be applied to this new term. The next conversion
tries to evaluate the BIND_S function. Evaluation continues by at tempting beta-
reduction, a general strict evaluation using library functions, and finally eval-
uation of the UNIT_S function. The form of the whole conversion is derived
mechanically from the denotational specification.

The state binds keys (e.g. variable names) to values. A means of computing
whether two keys are equal is required in order to symbolically evaluate. The
parameter key_eq_conv is a conversion that does this.

2 The names generated by CLaReT for use with HOL are prefixed by the language
name (Imp) because HOL has a global name space for logical constants. For the ML
version, ML's structures (modules) are used to avoid naming conflicts.

90

5.5 A L i b r a r y o f M o d u l e s

As can be seen from the preceding sections, the ML functions and the HOL in-
ference rules differ in structure. The names used for particular functions also
differ between the targets. For this reason, CLaReT includes a library mech-
anism. Functions are grouped together in modules, e.g. for standard types like
the integers. For each module the library contains a specification file and im-
plementation files. The specification file is used to map names occurring in the
denotation language to names to be used in the generated code. In some cases
the target names will be built-in functions of ML or HOL. In other cases the
definitions are stored in the implementation files. The denotational semantics
specification language includes a construct that allows users to specify which
modules they wish to use.

With the library mechanism it would be easy to add implementation files
for theorem provers other than HOL. It is also possible for a specialist user
to implement modules for a particular application area, such as semantics of
structural hardware description languages, which can then be used by someone
unfamiliar with the intricacies of the theorem prover in order to specify the
semantics of a language. Since the libraries include proof procedures for the
functions, it may be possible in this way to provide a high degree O f proof
automation without the language specifier needing to know how to implement
proof procedures.

6 P r o o f s

The denotational specifications for semantics and the generator of logical defin-
itions from them are designed to produce definitions close to those that would
be written by hand. Thus, proofs about these definitions should not be signific-
antly less tractable than the numerous significant proofs that have already been
done in the HOL system and other theorem provers. The syntactic specification
language, Syn, of CLaReT does impose some constraints on the abstract syn-
tax, so the semantic definitions may not be as optimal as hand-written ones,
but Syn includes features, such as repetitions, that enable a reasonable abstract
syntax to be produced. Where this is not sufficient, one possible approach would
be to give two specifications, C and .4, of the language's syntax, g includes the
concrete syntax while .4 specifies abstract syntax only. Specification .4 is then
not constrained by the requirements of the concrete syntax and so an abstract
syntax that is optimal for proof can be produced. It is then simply a mat ter of
writing ML functions that map between the data types for abstract syntax that
CLaReT generates from g and .4. This technique also allows static and dynamic
semantics to be given separately: the static semantics maps a C tree to an .4 tree
provided the C tree is well-formed, while the dynamic semantics is given over
the .4 tree.

A simple proof involving our example language follows as an illustration. The
theorem states that a conditional statement with the null statement skip as its
branch is equivalent to skip, i.e.:

91

if <<bexp>> then skip <-> skip

In HOL, the theorem is3:

Vbexp sta~e.
den_of_com (If bexp Skip NONE) state = den_of_com Skip state

The proof proceeds as follows:

den_of_com (I f bexp Skip NONE) s t a t e =
BINDS (den_of_bexpbexp)

(Ab. COND b (den of com Skip) (UNIT S one)) s t a t e =
BINDS (den_of_bexp bexp)

(Ab. COND b (UNIT_S one) (UNIT S one)) s t a t e =
BIND S (den_of_bexpbexp) (~b. UNIT_S one) s t a t e =
(A(x , s l) . (Ab. UNIT S one) x s l) (den of bexp bexp s t a t e) =
(A(x , s l) . UNIT_S one s l) (den of_bexp bexp s t a t e) =
(A(x , s l) . UNIT S one s l) (. . . . s t a t e) =
UNIT_S one s t a t e

The penul t imate step requires a l emma stat ing that evaluating boolean expres-
sions has no effect on the state.

7 Comparison with Other Systems

7.1 The R e e t z / K r o p f E m b e d d i n g G e n e r a t o r

The idea of au tomat ica l ly generating embeddings is not new. Reetz and Kropf
[23] have produced a system that generates an embedding in the HOL theorem
prover from specifications of the g r a m m a r of the language and a t t r ibuta t ion
and translation rules for a t t r ibuted abstract syntax trees (derivation trees). The
semantic information is stored in the at tr ibutes rather than in the environment
argument used in the denotational style (Sect. 5).

The Ree tz /Kropf embedding generator does not deal with concrete syntax,
i.e. it does not generate parsers or pretty-printers. For realistically-sized language
texts these are important ; entering an abstract syntax tree for such a text is
tedious and error-prone. CLaReT has been interfaced to their system to provide
support for concrete syntax. Since CLaReT also supports a different style of
semantics it is complementary to the work of Reetz and Kropf.

7.2 Too l s f o r Operational Semantics

For many languages one style of semantics is more appropriate than others but
the choice may also be a ma t t e r of personal taste. A number of systems have
been developed to support reasoning with operational semantics rather than

3 The abstract syntax (type) constructors in HOL's logic are curried. Also, the 'Imp_'
prefix has been omitted from names for brevity.

92

denotational semantics. These include the SMG system [11] and the Process Al-
gebra Compiler (PAC) [8]. SMG supports temporal logic model checking for lan-
guages by transforming programs to suitable finite state models. PAC, as its name
suggests, is dedicated to reasoning about process algebras, and is essentially a
front-end generator for existing process algebra tools. It produces a parser and
functions for computing the semantics of programs.

PAC uses separate specifications of abstract and concrete syntax, plus an
additional grammar for specifying the extension of the syntax with structural
operational semantics rules. There is no specification of pretty-printing. The
specifications of concrete syntax are similar to Yacc, but, as in CLaReT, there is
special support for repetitive syntax. On the whole, though, the PAC's syntactic
specifications are not as sophisticated as CLaReT's.

7.3 Software Deve lopment Environments

There are a number of language-independent software development environments
that provide similar features to CLaReT, e.g. CENTAUR [3], the Ergo Support
System (ESS) [16], and the programming system generator PSG [1]. These sys-
tems have not been used by researchers who embed computer languages in inter-
active theorem provers. This suggests that the effort involved in integrating such
systems to theorem provers for one-off embeddings is prohibitive. An alternative
to developing CLaReT would have been to provide a generic interface between
such a system and HOL. However, CLaReT has the advantage that it produces
code in a general purpose programming language with all the flexibility that
provides. A more detailed comparison follows.

CENTAUR. has two collections of specification languages: ASF+SDF [2] (a com-
bination of ASF and SDF) and Metal/PPML/Typol. SDF and Metal are spe-
cification languages for concrete and abstract syntax. Neither of these specify
formatting but PPML (a pretty-printing specification language) may be used
with Metal, and recently van den Brand and Visser [24] have shown how de-
fault pretty-printers can be generated from SDF. Both the latter work and the
formatting in CLaReT's Syn language are based on PPML. For a discussion of
how Syn compares with the syntactic specification languages of CENTAUR. and
the other software development environments, see the paper on Syn [5].

ASF is an algebraic specification language and Typol implements Kahn's
natural semantics. ASF specifies semantics by means of conditional equations.
The equations can be written over a concrete syntax specified in SDF. Currently,
CLaReT is limited to specifications over the abstract syntax. The use of SDF also
allows the syntax of (meta-)variables to be specified so that the ASF specifica-
tions are not restricted to a fixed syntax such as the <<. . . >> used in CLaReT.
Typol is particularly suited to static semantics~ e.g. type checking, and there
exists a means of translating natural semantics in Typol to inductive definitions
in the Coq theorem prover.

ESS has very similar aims and facilities to CLaReT. Like CLaReT, ESS has
a deduction (theorem proving) aspect, though this is perhaps more the focus of
attention in CLaReT. Syntax is specified in ESS using a single language that

93

like CLaReT has iterators, unparsing annotations, and high-level lexical spe-
cification. However, CLaReT's Syn language has more implicit features such as
inferring precedence and the form of the ASTs. ESS makes use of attributes and
higher-order abstract syntax which CLaReT currently does not. In terms of se-
mantic specification the difference between the two systems is more significant:
CLaReT has declarative specifications for semantics while in ESS the semantic
aspects of-a language have to be implemented as programs.

PSG generates interactive programming environments from specifications of
syntax, context conditions, and dynamic semantics. The various aspects of syn-
tax are specified separately, so there is a lot of redundancy, which is something
CLaReT tries to avoid. In contrast to ESS but like ASF and CLaReT, PSG al-
lows semantics to be specified non-procedurally. The dynamic semantics of a
language is defined in a denotational style using a functional language based
on the lambda calculus. This is very similar to CLaReT but whereas CLaReT's
primary concern is to support formal proof using the semantics, in PSG the se-
mantics is used only to execute program fragments. Execution, if the semantics
permits it, is a secondary concern in CLaReT. Another difference is that, in PSG,
states and environments used in the semantics apparently have to be mentioned
explicitly.

7.4 Semantics-Directed Compiler Generators

There have been a number of attempts to generate compilers from denotational
semantic specifications including early work by Mosses, and later by Paulson,
Wand and Lee. More recently, Pettersson and Fritzson [22] have used a superset
of Standard ML to specify denotational semantics with the aim of producing effi-
cient compilers. The extensions include allowing concrete syntax within semantic
brackets in place of ML pattern matching. All these systems use denotational
specifications similar to those of CLaReT, but their aim is compiler generation
not formal reasoning.

A related tool, Actress [6], is a semantics-directed compiler generator for
Mosses' action semantics. This uses ML-Lex and ML-Yacc to generate a parser,
so its syntactic specification is at a lower level than in CLaReT. We are not
aware of any language embeddings in theorem provers that are based on action
semantics, possibly because the theoretical underpinnings required for action
semantics are not yet present in current provers.

8 S u m m a r y

This research gathers together a number of technologies that have previously
been used manually or in isolation and makes them readily available to anyohe
interested in formal reasoning about computer languages. By targeting a com-
monly used theorem proving system, users who wish to prove properties about
their languages and programs have the tools to do so at their disposal, and the
support of a substantial user community. Some key points of the research are:

94

- There is only one specification for syntax and one for semantics.
- CLaReT a t t empts to hide logic and theorem proving to make the tools more

accessible to software engineers, hardware designers, etc.
- Limiting the expressive power of the specification languages allows greater

automat ion. Modules of functions are provided so that the system may know
how to reason about them without user intervention.

- The similarity between ML and higher-order logic makes it easier to exploit
both the meta- language and the logic of the theorem proving system.

Acknowledgements

Thanks to Matthias Mutz (Kid), Ralf Reetz (Karlsruhe), Michael Norrish (Cam-
bridge) and especially Daryl Stewart (Cambridge) for feedback on CLaReT.
Discussions with Juani to Camilleri (Malta) inspired part of this research. Mike
Gordon (Cambridge) and anonymous referees gave helpful comments on a draft
of this paper, and Peter Homeier (UCLA) provided pointers to the literature.

References

1. R. Bahlke and G. Snelting. The PSG system: From formal language definitions
to interactive programming environments. A CM Transactions on Programming
Languages and Systems, 8(4):547-576, October 1986.

2. J. A. Bergstra, J. Heering, and P. Klint, editors. Algebraic Specification. ACM
Press in co-operation with Addison-Wesley, 1989.

3. P. Borras, D. Cl@ment, T. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and
V. Pascual. CENTAUR: the system. In Henderson [14], pages 14-24.

4. R. Boulton, A. Gordon, M. Gordon, J. Harrison, J. Herbert, and J. Van Tas-
sel. Experience with embedding hardware description languages in HOL. In
V. Stavridou, T. F. Melham, and R. T. Boute, editors, Proceedings of the IFIP
TCIO/WG 10.2 International Conference on Theorem Provers in Circuit Design:
Theory, Practice and Experience, volume A-10 of IFIP Transactions, pages 129-
156, Nijmegen, The Netherlands, June 1992. North-Holland/Elsevier.

5. R. J. Boulton. Syn: A single language for specifying abstract syntax trees, lexical
analysis, parsing and pretty-printing. Technical Report 390, University of Cam-
bridge Computer Laboratory, March 1996.

6. D. F. Brown, H. Moura, and D. A. Watt. Actress: an action semantics directed
compiler generator. In U. Kastens and P. Pfahler, editors, Proceedings of the 4th
International Conference on Compiler Construction (CC'92), volume 641 of Lec-
ture Notes in Computer Science, pages 95-109, Paderborn, FRG, October 1992.
Springer-Verlag.

7. J. Camilleri and V. Zammit. Symbolic animation as a proof tool. In Melham and
Camilleri [17], pages 113-127.

8. R. Cleaveland, E. Madelaine, and S. Sims. A front-end generator for verification
tools. In E. Brinksma, et al., editors, Selected papers from the First International
Workshop on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS'95), volume 1019 of Lecture Notes in Computer Science, pages 153-173,
Aarhus, Denmark, May 1995. Springer.

95

9. M. J. C. Gordon. Mechanizing programming logics in higher order logic." In
G. Birtwistle and P. A. Subrahmanyam, editors, Current Trends in Hardware Veri-
fication and Automated Theorem Proving. Springer-Verlag, 1989.

10. M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A theorem
provin 9 environment for hi9her order lo9ic. Cambridge University Press, 1993.

11. G. D. Cough and H. Barringer. A semantics driven temporal verification system.
In H. Ganzinger, editor, Proceedings of the 2nd European Symposium on Program-
rain9 (ESOP'88), volume 300 of Lecture Notes in Computer Science, pages 21-33,
Nancy, France, March 1988. Springer-Verlag.

12. E. Gunter and S. Maharaj. Studying the ML module system in HOL. The Com-
puter Journal, 38(2):142-151, 1995.

13. E. L. Gunter. A broader class of trees for recursive type definitions for HOL.
In J. J. Joyce and C.-J. H, Seger, editors, Proceedings of the 6th International
Workshop on Higher Order Logic Theorem Provin9 and its Applications (HUG'93),
volume 780 of Lecture Notes in Computer Science, pages 141-154, Vancouver, B.C.,
Canada, August 1993. Springer-Verlag, 1994.

14. P. Henderson, editor. ACM SIGSOFT'88: Third Symposium on Software Devel-
opment Environments (ACM SIGSOFT Software Engineerin9 Notes, 13(5), and,
A C M SIGPLAN Notices, 24(2)), Boston, Massachusetts, November 1988.

15. M. Kaufmann and J S. Moore. Design goals of ACL2. Technical Report 101,
Computational Logic, Inc., 1717 West Sixth St., Suite 290, Austin, Texas 78703-
4776, USA, August 1994.

16. P. Lee, F. Pfenning, G. Rolfins, and W. Scherlis. The Ergo support system: An
integrated set of tools for prototyping integrated environments. In Henderson [14],
pages 25-34.

17. T. F. Melham and J. Camilleri, editors. Proceedings of the 7th International Work-
shop on Higher Order Logic Theorem Provin9 and Its Applications, volume 859 of
Lecture Notes in Computer Science, Valletta, Malta, 1994. Springer-Verlag.

18. R. Milner, M. Torte, and R. Harper. The Definition of Standard ML. MIT Press,
1990.

19. R. Milner and R. Weyhrauch. Proving compiler correctness in a mechanized logic.
In B. Meltzer and D. Michie, editors, Machine Intelligence 7, chapter 3, pages 51-
70. Edinburgh University Press, 1972.

20. E. Moggi. Notions of computation and monads. Information and Computation,
93(1):55-92, July 1991.

21. L. Paulson. A higher-order implementation of rewriting. Science of Computer
Programmin9, 3:119-149, 1983.

22. M. Pettersson and P. Fritzson. DML - - a meta-language and system for the gener-
ation of practical and efficient compilers from denotational specifications. In Pro-
ceedings Of the 4th International Conference on Computer Languages (ICCL '92),
pages 127-136. IEEE, April 1992.

23. R. Reetz and T. Kropf. Simplifying deep embedding: A formalised code generator.
In Melham and Camilleri [17], pages 378-390.

24. M. van den Brand and E. Visser. Generation of formatters for context-free lan-
guages. A CM Trans. on Software Engineerin 9 and Methodolo9y, 5(1):1-41, 1996.

25. P. Wadler. The essence of functional programming. In Conference Record of the
Nineteenth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
9rammin9 Langua9es, pages 1-14, Albuquerque, New Mexico, USA, January 1992.

