
The Term Processor Generator Kimwitu*

Peter van Eijk 1, Axel Belinfante 2, Henk Eertink 3, Henk Alblas 2

i EDS, P.O. Box 2233, 3500 GE Utrecht, The Netherlands
2 University of Twente, Department of Computer Science,

P.O. Box 217, 7500 AE Enschede, The Netherlands
Telematics Research Centre, P.O. Box 589, 7500 AN Enschede, The Netherlands

A b s t r a c t . The Kimwitu system is a meta-tool that supports the con-
struction of programs (tools) that operate on trees or terms. The system
supports open multi-paradigm programming, in that it allows to ex-
press each part of an implementation in the most appropriate language.
Terms can be implemented in a tool as well as exchanged between tools.
In this way tool integration is facilitated. Experience has demonstrated
that Kimwitu drastically speeds up development time, facilitates tool
integration and generates production quality programs.

1 I n t r o d u c t i o n

Language-based tools, such as compilers, editors, debuggers, simulators, testers
and verifiers, have in common that they operate on terms or trees. Operations of
these tools deal directly or indirectly with trees, so that one may conclude that
trees and algorithms to manipulate trees are the core of language-based software.
Some tools have already gone a long way in the process of maturing. Compi-
lation of high-level programming languages, for instance, is a well-understood
process, in that all intermediate tree structures are well thought-out with re-
spect to space and time. Apparently, the reason for this understanding is tha t
high-level languages have much in common. This has stimulated people to de-
velop compiler-generating systems that offer for each compilation phase a tool
that generates an efficient implementation from a high-level specification. This
does, however, not apply to other less understood tools, such as simulation,
verification, test generation and test execution tools. These tools are typically
implemented in high-level languages, based on, e.g. a t t r ibute grammars or func-
tional languages. This works fine for prototypes, but does not always result in
satisfactory space and time performance. Another approach is to use a program-
ming language that allows total control over the space and time consumption of
the software, such as C. The disadvantage of languages like C is, however, that
the gap between the description of the functionality and its realization is large,
implying a long, tedious, and error-prone implementation effort. This means
that we actually need a system that bridges this gap, and allows, on one hand, a
high-level specification of data structures and the operations on data structures,
and on the other hand, low-level directions for the implementation.

* Kimwitu (pronounced 'kee-mweetu') is pidgin-Swahili for 'language of trees'

97

Our Kimwitu system[vEB92] attempts to blend the advantages of both ap-
proaches, in that it supports open multi-paradigm programming. Multi-paradigm
programming allows to express each part of the implementation in the most ap-
propriate language. It is a 'best of both worlds' approach, where one uses a
high-level language where possible, and a low-level language where necessary.
Kimwitu allows one to specify rewrite rules, call them from within C functions,
and arbitrarily mix advanced pattern-matching mechanisms over terms with or-
dinary C code. 'Open' in this context means that escape hatches are provided
to other implementation techniques. In Kimwitu, this can be done through the
mixing with C code. This allows one to integrate code generated by Kimwitu
with, for instance, X-Windows based user interfaces[Eer94], Yacc/Lex parsers or
socket-based services (the CLC system [Dub94]).

It has already been mentioned that trees or terms are a basic common con-
cept in language-based software. Terms are, therefore, the basis of the Kimwitu
system, in the sense that all formalisms operate on the same kind of structure.
This facilitates tool integration, and allows, for instance, interfacing with Lex,
Yacc and the Synthesizer Generator[RT89].

2 The Kimwitu System

The Kimwitu system is a term processor generator. The basis of its specification
language is a notation to describe a term algebra, which defines a set of terms
and operations to construct and manipulate terms. Computations over these
terms can then be described through a variety of mechanisms, as explained be-
low. Terms can be manipulated in a tool as well as exchanged between tools. In
this way tool integration is facilitated because the same term algebra describes
both the internal as well as the external representation of values. The descrip-
tion of terms and functions can be arbitrarily split into separate input files.
This allows one to separate the specification of well-defined interchange formats
from functions that operate over these interchange formats. Typically, a tool-
environment for a specific language will use a single, shared, description of the
abstract syntax of the language as a Kimwitu input file. This description is re-
used for each tool, and therefore allows all tools to read/write files that contain
terms according to that abstract syntax specification. This is the core function-
ality of two large tool environments that have been realized using Kimwitu: the
LOTOS [ISO89] tool environment LITE[BvV95] and the SDL Tool environment
OpenSITE[Hum]. Individual tools can subsequently define their own function
definitions over these, common, abstract syntax terms. This is comparable to
IDL specifications as used in the CORBA architecture [OMG95]. IDL, however,
is more powerful in that it also supports the definition of method-invocations
(which is, by definition, not supported by the file-interchange mechanisms used
in Kimwitu), but is also less powerful in that it only supports the definition of
interfaces, not of the implementations of these interfaces.

A specification that is input to the Kimwitu compiler consists of a descrip-
tion of terms, annotated with implementation directives, and a description of

98

functions to manipulate terms. Examples of the latter are functions for pat tern
matching, term rewriting and unparsing. The output (see also section 4) consists
of a number of C files that contain data-structure definitions for the terms, a
translation of the function definitions, and a number of s tandard functions to
create, compare and manipulate terms, and read and write them from and to
files in various formats. Each term-type (called a 'phylum') is mapped onto a C
type. This allows us to rely on the ANSI-C typing system for typechecking the
C extensions that can be merged in the Kimwitu-specification. The Kimwitu-
compiler itself will typecheck all rewrite-rules, patterns, e t c , and implements
warnings for incomplete pat tern specifications (e.g. when partial functions are
defined). The choice for C typing was pragmatic; a number of other systems are
more powerful in this area as C typing does not, for instance, allow for subtyping.
This could be improved by using C + + or Java instead of C, which we will exper-
iment with in future versions of Kimwitu. Additionally, analysis and statistics
collecting functions are generated. The generated C files are not intended to be
edited by hand. In this sense the Kimwitu 'specifications' are really 'programs'.

3 Input Specifications

In this section we explain the input structure of Kimwitu. We first describe how
terms and attr ibutes of terms are defined, next, how the storage strategy of
terms can be specified, and finally, how functions, rewrite and unparse rules can
be written.

3.1 Def in ing Terms and At t r ibute s

Terms in the Kimwitu system are specified by means of an abstract syntax
or term algebra, in a similar way as in the specification language SSL of the
Synthesizer Generator. Terms are defined by rules of the form:

x o : o p (x l x 2 . . . zn);

where op is an operator name and xi is a nonterminal, or (in the terminology of
abstract algebra) the name of a phylum. The phylum associated with a nonter-
minal is a non-empty set of terms (i.e. a set of trees) that can be derived from
it. An example is the following.

expr: Plus(expr expr)
I Minus(expr expr)
I Neg(expr)
I Zero()

exprlist: list expr;

99

These rules define the phyla expr and exprlist, each of which denotes a set of
terms. This example shows that there are two ways of constructing a phylum.
One is by enumerating its variants, each of which is an operator applied to a
list of phyla. It is possible to declare nullary operators, but it is not possible to
define phyla tha t do not have Operators. The other way is declaring a phylum
as a list phylum. The definition of exprlist above is equivalent to the following
right-recursive definition.

exprlist: Nilexprlist 0
I Consexprlist(expr exprlist)

A list phylum, therefore, always has a nullary operator to construct an empty
list, and a right-recursive binary operator to add an element to an already ex-
isting (possibly empty) list. The advantage of a list declaration, apart from its
brevity, is that it automatically instructs the system to generate additional, list-
specific, functions.

The aforementioned examples show how users can define their own phyla. For
each phylum, Kimwitu generates a C data type (a record) with the same name.
Kimwitu also offers a number of predefined phyla, among them are casestring and
nocasestring for case-sensitive and case-insensitive character strings, respectively.

Phyla can be declared to have attributes of a predefined type. This type can
be any C type, e.g. int or float. It can also be a C type that is generated by
Kimwitu, i.e., a phylum. An example phylum with an at tr ibute is:

expr: Plus(expr expr)
I Minus(expr expr)
I Neg(expr)
I Zero()
{ float value = 0;}

Here the at t r ibute value of type float is defined, and initialized with 0. Multi-
ple at tr ibutes can be defined between the curly brackets. The initializations are
optional. Attributes do not appear in structure files.

Attributes serve as a facility to decorate a tree with extra information. The
decoration can be done in arbi t rary user code. The at t r ibute becomes a compo-
nent of the record that is generated for the phylum. If x is a value of type expr,
then the at t r ibute can be referred to as x-~value.

As the last i tem of the initialization a piece of arbi t rary C code, enclosed in
curly brackets, is allowed. The code is executed after the term has been built
completely, and the other initializations have been performed. This can for ex-
ample be used to update at t r ibute values while a term is being built. It resembles
the constructor functions in e.g. C + + .

]00

3.2 Storage Options and Life T ime of Terms

The system provides a choice between two storage options, selectable per phylum.
For both options a C data type is generated for each phylum, together with a
'create' function for each operator. In the default storage option each operator
'application' just yields a new 'memory cell' containing pointers to the arguments
of the operator, with initialized attributes. The second storage option, called
'uniq', is more interesting. It will guarantee that if the operator is once called
with a certain set of arguments, each additional call with the s a m e arguments
will yield a pointer to the cell that was created at the first call. The result is that
common (sub)trees (including their attributes) are automatically shared. This
technique is known as 'hashed-consing' (because consing is the LISP function
to create new cells, and hashing is used to implement the uniqueness of the
representation). In this storage option attributes will be initialized only at the
first call. Obviously, side effects on subterms can jeopardize this scheme: terms
maintained under unique storage should not be modified (though their attributes
may be modified because they do not contribute to the uniqueness). An essential
condition on phyla definitions is that all constituent phyla of a 'uniq' phylum are
also 'uniq'. Kimwitu warns at generation time about violations of this condition.

The 'uniq' storage option has a number of interesting benefits. It gives us
automatic sharing of common (sub)expressions. E.g., the Binary Decision Dia-
gram (BDD) package which provides the primitives to implement a routine for
solving Boolean equations, depends on this [Kar95].

As a bonus, the common subtree sharing is taken into account when terms
are written to a structure file, which may greatly reduce the size of such a file: for
the LOTOS abstract syntax tree that is the 'common object' in LITE[BvV95]
we found that the difference in file size between no sharing and maximal sharing
of common subtrees may be upto a factor 5.

Another benefit is cheap (constant-time) tree-matching. The LOTOS simu-
lator Smile leer94] uses Kimwitu trees to represent 'states' in a simulation run,
and the tree-matching is used a.o. to check if a certain state already has been
analysed.

Finally, the sharing of attributes of common (sub)trees makes it easy to
'simulate' associative arrays that can be used to implement for example symbol
tables and memo-functions. An example of such a symbol table is the following.
It can be read as a mapping from casestring to short.

ID {uniq}: Str(casestring)
{ short type = UNDEF;};

Suppose that for each defining occurrence of an identifier a term is created with
the attribute type appropriately set, then to check the type one merely has to
'create' it again, and look at the attribute. In the same way one can check if the
identifier is already defined at a defining occurrence. A sketch of this code is as
follows. It checks that an identifier is defined only once, and defined before use.

101

/* defining occurrence , /
id = Str(mkcasestring("foo"));
if (id->type != UNDEF) error("doubly defined");
id->type = USED; /* set other attributes here as well */

/* applied occurrence , /
id = Str(mkcasestring("foo"));
i f (id->type == UNDEF) error("undefined");

Of course, this is not the most sophisticated application of a symbol table, but
serves as an example. The LOTOS front-end LCR[Hof95], a batch-oriented
parser and static-semantics checker for LOTOS specifications that conforms
strictly to the LOTOS standard, extensively uses this technique to implement
its symbol tables. LCR generates the common abstract syntax terms used in
LITE. Also the Kimwitu compiler itself implements all its symbol tables using
these associative arrays, and most other Kimwitu-built programs use them.

Memo functions are functions that remember ('memorize') their results. If
called again with the same arguments, they will return the remembered value.
Memo functions are functional in their behaviour: a subsequent call with the
same argument will yield the same result. In their performance they are not
functional: the subsequent call will not need recomputation. Memo functions
of course constitute a t ime/space trade off. Their performance comes at the
expense of memory to store the results (and, in some schemes, memory to store
the operands).

The mapping technique illustrated above can easily be used to implement
a mapping from the function arguments to the result. Using Kimwitu, memo-
functions of one argument can be implemented as an at tr ibute of the phylum
of the argument term. Memo-functions of more than one argument can be im-
plemented as an at t r ibute of a uniquely represented term that represents the
function call. E.g. for a function F of two arguments one introduces a term
F_memo(x,y) of which the function result is an attribute. In both approaches it
is essential tha t the arguments of the function are represented uniquely.

The user is responsible for freeing the storage for trees (terms) that are
no longer needed. For terms maintained under normal (non-uniq) storage, this
can be done on a per-phylum basis. Terms maintained under uniq storage are
stored through hash tables (the create routines use a hash table to guarantee
the uniqueness of the representation) and can only be freed on the level of the
(a) hash table as a whole, because the 'uniqueness of storage' property should
not b e violated.

Kimwitu implements default memory- and hash table management routines
which are %pen' in the sense that they can be controlled and even overruled
by the user, and for example offer the user control over the hash tables used.
For normal use the default implementation is sufficient. More advanced memory
management can be realized by selectively overriding parts of the default memory
management routines.

t02

3.3 F u n c t i o n D e f i n i t i o n s

The structure of the generated C data types (see Section 4) for the phyla is very
regular. Nevertheless it appears tedious to write C functions over these data
types. Therefore, there is a mechanism that allows easier expression of functions
over phyla. This mechanism extends the normal C code with with-statements
and and]oreach-statements in which pat tern matching can be expressed, which
simplifies case analysis and subterm selection. The syntax of the with-statements
is also borrowed from the language SSL. For example:

int len(exprlist el) {
with(el) {

Nilexprlist:
tt = Consexprlist(,, t):

} }

return 0; }
{ r e t u r n ien(t) -I- 1; }

Here an integer-valued function len is defined with one argument of type exprlist
(for exprlist see Section 3.1). The C code of this funct ion body consists of a
with-statement, which does pat tern matching on its el argument. In t he case
where more than one pat tern matches, the most specific (leftmost innermost, see
Section 4) match is taken. The patterns can be arbi t rary terms with variables,
string-literals (double-quoted) and int-literals. Non-leaf variables can be denoted
as variable=subpattern, as tt in the example above. The construct * can be used
to denote an 'anonymous' variable. As a degenerate pat tern an operator name not
followed by parentheses can be used when one is not interested in the (number
of) subphyla. The Nilexprlist pat tern above is an example of such a pattern. The
'pat tern ' default can be used to indicate a default case. In case there is no default,
the default becomes to give a run-time error message.

For each pat tern a piece of C code is given between curly brackets. If several
patterns share the same piece of C code, the patterns can be grouped. In this C
code, pat tern variables denote the various components of the term. Attributes
can be referred to as e.g. variabie-+value.

Another construct in function bodies and C code is the]oreach-statement,
which expresses the iteration over a list. Its components are the loop variable,
which automatically gets the type of the list element, the list to loop over, and
a body. Another example of the len function:

int len(exprlist el) {
int length ---- O;
foreach(e; expdist el)

length-H-;
}
re tu rn length;

103

3.4 Rewri te Definit ions

Functional languages are a convenient formalism for expressing functions over
trees. Another convenient formalism is formed by rewrite rules [EM85]. For in-
stance, if we have a certain equivalence over terms, then rewrite rules expressing
this equivalence might define a procedure for computing a normal form of a
term. Another use for term rewriting is as an alternative way of defining func-
tions. For example to implement the function 'plus' on natural numbers one can
define 'plus' as an operator and specify the rewrite rules such that the normal
form does not contain a plus. The result o f normalizing (term rewriting) then
is tha t the function is 'evaluated'. The notation for term rewrite rules is simple.
For example:

Neg(x) -> Minus(Zero(), x);

In this example x is a variable, used in the term in the right-hand side. The
meaning of this example is that every occurrence of the operator Neg is replaced
by an equivalent construct.

For the collection of rewrite rules, the system generates for each phylum
a function rewrite_phylum, which has the normalized form as its result. This
function can be called in the same way as any other function. The currently
implemented rewrite strategy is left-most inner-most. It is the responsibility of
the user to guarantee that the rewrite systems always yields a normal form.

3.5 Unparse Rules

The Kimwitu system generates print functions that print a textual representa-
tion of terms in a fixed format to the standard output, but this representation
is effectively only useful for debugging purposes. Unparse rules allow the user
to describe textual representations of terms, by associating patterns with un-
parse items. Each unparse rule consists of a pattern, a list of views and a list of
unparse items. The patterns are the same as those in function definitions and
rewrite rules. Views can be used to specify different textual representations for
the same term (e.g. a pre-order or a post-order representation of an expression).
An unparse i tem can be any of the following: a string denotation, a piece of
arbi t rary C code in which pat tern variables can be used, a pat tern variable, or
an at t r ibute of a pat tern variable. From the collection of unparse definitions, for
each phylum a function unparse_phylum is generated. These functions take three
arguments: the phylum that will be unparsed, a (void) printer function (to be
supplied by the user) that will be applied to each string denotation, and the view
to be used. Each unparse item defines a part of an unparse_phylum function.

In the example below the unparse rules contain strings and pat tern variables.

Plus(el, e2)
Minus(el, e2)
Neg(el)

--> [: el "+" e2];
--> [: el e2];
- > [: e l];

104

Z~oO

Nilexprlist 0
Consexprlist(ex, Ni lexpr l is tO)
Consexprl ist(ex, rest)

- > [: "0"];

- > [:];
- > [: ex];
- > [: ex " , " rest];

In the case of overlapping patterns, the most specific match is preferred. In the
example this is used for the output of commas as list element separators. See
the last line of the example where this is used to ensure that the number of
separators is one less than the number of list elements. For each operator there
is always a default pat tern, in case none of the patterns match. The unparse rule
associated with this default pat tern simply unparses all its subphyla sequentially.

The possibility to include C code in unparse rules makes them usable for
much more than only formatt ing the textual representation of a term. They can
easily be used to describe arbi t rary t ree-walksto e.g. check or update the value
of attributes. Views can be used to differentiate between different tree-walks. We
demonstrate this in Section 5.2:

4 O u t p u t

Kimwitu generates a number of C files. They contain data types and functions
on those data types.

For each phylum a C data type is generated. Its name is the same as the
phylum so it can be arbitrari ly used in a C program. Technically, it is a structure
containing the attributes, a variant selector (cf. the operator) and a union of the
alternatives. Note that this scheme allows type checking over C programs to
check if a term is constructed from the correct phyla. An additional data type
is YYSTYPE, which can be used in Yacc-generated parsers to construct terms.
The generated C code for the example in Section 3.1 is given below. Note, it is
rarely necessary to directly refer to these C structures, as function definitions
are much more convenient.

t y p e d e f e n u m { . . . , sel_Neg = 4, sel_Minus = 5, sel_Plus = 6, sel_Zero = 7,
sel_Nilexprlist = 8, sel_Consexprlist = 9, . . . } kc_enum_operators;

typedef struct kc_tag_expr *expr; /* 'ezpr' is a pointer to 'struct kc_tag_expr',/
typedef struct kc_tag_exprlist ,exprlist;

struct kc_tag_expr {
kc_enum_operators prod_sel;
union {

struct { expr expr_ l ; } Neg;
struct { expr expr_l; expr expr_2; } Minus;
struct { expr expr_l; expr expr_2; } Plus;

} u;
f loat value; / , an a~tribute * /

};

105

struct kc_tag_exprlist {
kc_enum_operators prod_sel;
union {

struct { expr expr_l; exprlist exprlist_l; } Consexprlist;
} u;

};

For each user-provided function a corresponding C function is generated.
Kimwitu also offers a number of C functions to manipulate hash tables, to con-
struct phyla, to rewrite, unparse, and test terms for equality, a~d to read and
write terms from and to a structure file.

The rewrite systems are compiled into C based on the approach described
in [Heu88]. The patterns in rewrite rules, unparse rules and user-provided func-
tions are all compiled in the same way. In case of overlapping patterns P and Q,
the 'preorder most specific' one takes precedence: we say that P is more specific
than Q if in a preorder treewalk of both patterns, at the point where the tree-
walks diverge, P contains (at least) one node more 'down' in the tree than Q. We
have chosen this strategy because it (mostly) frees the user from thinking about
the order in which patterns should appear. A disadvantage of this strategy i s
that it gives the user less control than for example a 'first matching pattern wins'
strategy, which makes us infrequently write more pattern rules than is strictly
necessary. However, our strategy turns out to work well in practice.

5 Some Special Features

In this section we explain some of the possibilities of rewrite systems, and the
use of attributes grammars in Kimwitu.

5.1 Abstract Data T y p e s and Rewri te Sys t ems

The following example illustrates an abstract data type (ADT) style of program-
ming functions. The data type defined here is the type of natural numbers. In
ADT theory there is usually no difference between constructors, which make up
a term in normal form, and functions, which can be applied to terms. The differ-
ence between these two is only a property of the rewrite system. In the phylum,
both of them are operators.

/* the abstract data type of natural numbers . /
nat: zero()
I s(nat)
I plus(nit nat)
I mul(nat nat)
J ack(nat nat)

106

/* rewrite rules for addition, multiplication, and Ackermann's function */
plus(x, zero()) --> x; ack(zeroO, x) - > s(x);
plus(x, s(y)) - > s(plus(x, y)); ack(s(x), zero()) -:> ack(x, s(zeroO));
mul(x, zero()) -> zero(); ack(s(x), s(y)) -> ack(x, ack(s(x),y));
mul(x, s(y)) -> plus(mul(x, y), x);

/," application in C code: invoke rewrite_nat to rewrite the term ack(3, 4) , /
nat result = rewrite_nat(ack(s(s(s(O))), S(S(S(S(O))))));

5.2 A t t r i b u t e Grammars

Attribute grammars are a formalism where each node, or term~ is decorated
with a number of attributes, of which the value is computed from the values of
the subterms of the node or from the encompassing node. In the literature a
number of evaluation methods are presented for different classes of attribute
grammars[Alb91]. Most evaluation methods tacitly assume that all attributes
are stored in the tree. However, most attributes carry only an intermediate result,
and are only used to pass information. It is rarely necessary to keep attribute
values in the tree.

In the current version of Kimwitu it is left to the user to specify his own
attribute evaluator, which may be a reasonable simple thing t ~ do. Unparse
rules can be used to specify treewalks and attribute updates, as has been done
in the implementation of the Kimwitu compiler itself. However, the following
example shows that the design and implementation of an attribute evaluator
can be a complicated task. The example is from the original paper on attribute
grammars[Knu68], and computes the value of a fractional binary number, e.g.
1101.01. The original attribute grammar, as presented by Knuth, is shown below.
Note that the syntactic rules are on the left, and the associated evaluation rules
on the right. The nonterminals B, L and N stand for Bit, List and Number, and
the attributes v, s and I for value, scale and length, respectively.

S ~ 0 v(B) = 0
B -+ 1 v(B) = 24B)
L - + B v (L) = v (S) , s (B) = s (i) , l (L) = l
L1 -+ L2 B v(L1) = v(L~) + v(B), s(B) = s (i l) ,

s(L2) = s (L 1) + l , l (L 1) = l (L 2) + l
N -+L v (N) = v (L) , s (n) = o
N -+ L1.L2 v(N) = v(L1) + v(L2), s(L~) = O,

s(L2) = - l (L2)

Below we give the abstract syntax.

/* The abstract syntax tree of fractional binary numbers, attributed */
number: Nonfraction (bitstring)
I Fraction(bltstring bitstring)
{ float value; /* synthesized . /}

107

bitstring:
I
{

};

bit:

{

);

Oneb(bit)
Moreb(bitstring bit)
float value; /* synthesized */
int length; /* synthesized */
int scale; /* inherited */

One()
Zero()
float value; /* synthesized . /
int scale; /* inherited */

We first present a demand-driven evaluation scheme, in which we don't store
attributes in the tree. Any synthesized attr ibute is connected to the root of some
subtree. With each combination of a synthesized attr ibute and a subtree (phy-
lum) we associate a function eval_phyIum_synthesized_attr. This function takes as
arguments the subtree concerned and (some) inherited attributes of the root, and
returns the value of the synthesized attribute. The functions below do pattern
matching on the function argument that is prefixed with $.

/* illustrating attribute evaluation without storing the attributes */
f loat eval_number_value(number $n) {

Nonfraction(b): { re turn eval_bitstring_value(b,0); }
Fraction(bl, b2): { return eval_bitstring_value(bl,0) -t-

eval_bitstring_value(b2, -eval_ bitstring_length (b2)) ;}
}

float eval_bitstring_value(bitstring Sbs, int scale) {
Oneb(b): { return evaLbit_value(b, scale);)
Moreb(bs_bs, be_b): { return eval_bitstring_value(bs_bs,scale+l) +

eval_bit_value(bs_b, scale); }
)

int eval_bitstring_length(bitstring $bs) {
Oneb: { return 1; }
Moreb(bs_bs, ,): { return eval_bitstring_length(bs_bs)-F1; }

)

/* pow is a C math library ~unction * /
float eval_bit_value(bit $b, int scale) {

One: { re tu rn pow(2,(double)scale); }
Zero: { re tu rn 0.0; }

)

While it is simply enough for a number of cases, there can be some problems
with this approach. First, an inherited attribute of a phylum may depend on

108

a synthesized attr ibute of that phylum. For example bitstring_scale depends on
bitstring_length, and the computation of bitstring_length therefore cannot have
scale as an argument. An analysis of the attr ibute dependencies is necessary to
prune the argument lists of the functions. Second, as each used occurrence of
a synthesized attr ibute is represented as a call to the corresponding function,
attributes may be evaluated more than once. This is of course the other side of
not storing results in the tree.

We now present an evaluation scheme that visits the tree a number of times,
computes at each visit of a node all the attributes that can be computed, and
stores their values in the tree. In the implementation we use unparse rules and
give each pass its own view. As unparse items (see Section 3.5) we use pattern
variables (to recursively unparse, or visit, the corresponding subterms), and (be-
tween braces) C code (to update attributes). In the C code $0 represents the
term being unparsed. In our example there are two passes. In the first pass the
attr ibute length is computed, and in the second pass the other attributes.

/* illustrating a multi-pass evaluation, using unparse rules */
%uview passl, pass2; / , declare unparse views */

/* rules]or phylum number, pass1: , /
Nonfraction(b) - > [passl: b];
Fraction(b1, b2) - > [pass1: bl b2];

/* rules]or phylum bitstring,
Oneb(*) - > [pass1:
Moreb(bs, *) -> [passl:

passl: . /
{S0->length=l;}];
bs {$0->length=bs->length-bl;}];

/* rules for phylum number, pass2: , /
Nonfraction(b) -> [pass2: {b->scale=0;} b {$0->value=b->value;}];
Fraction(b1, b2) -> [pass2: {bl->scale=0; b2->scale= -b2->length;}

bl b2
{$0->value=bl->value-I- b2->value;}];

/ . rules .for phylum bitstring, pass2: , /
Oneb(b) -> [pass2: {b->scale=$0->scale;} b {$0->value=b->value;}];
Moreb(bs, b) -> [pass2: {b->scale=S0->scale; bs->scale=S0->scale+l;}

bs b
{$0->value= bs->value -t- b->value;}];

/ , rules]or phylum bit, pass2 (pow is a math library function): */
One() --> [pass2: {$0->value=pow(2,(double)S0->scale);}];
Zero() --> [pass2: {S0-->value=---0.0;}];

Again, this scheme has its disadvantages. The allocation of attributes to passes
has to be derived from an analysis of the attr ibute dependencies. Second, in com-
parison with the previous scheme, this one represents the opposite t ime/space
trade-off. No attr ibute is evaluated more than once, but at the expense of stor-
ing all intermediate results. Finally, this scheme does not coexist very well with

109

unique storage of phyla that have inherited attributes. Two occurrences of a
phylum cannot be shared if they have different inherited attributes.

Here follows the C code to call the attribute evaluations.

number n -- Fraction(Moreb(Moreb(Moreb(Oneb(OneO),OneO),ZeroO),OneO) ,
Moreb(Oneb(ZeroO) , One())); / * 1101.01 */

prinff(" 7,f \n", eval_number_value(n));
unparse_number(n, 0 /*no strings to print./, passl); unparse_number(n~ O, pass2);
printf(" Y.f \n" , n-->value);

The current version of Kimwitu does not prescribe a particular evaluation
scheme. The advantage is that schemes can be mixed at liberty, and can even be
combined with non-attribute grammar paradigms. The disadvantage is of course
that the evaluation order, e.g. the allocation of attributes to passes or visits, has
to be determined manually, or by using some other tool.

A next version of Kimwitu will therefore provide an attribute evaluator func-
tion, based on an approach of Jourdan[Jou84], which meets the above-mentioned
demands. It will be based on the class of absolutely non-circular attribute gram-
mars, which is a class that seems to include every practical example. Attributes
will not be stored in the tree, unless the user stipulates otherwise. Analysis of
the attribute dependencies will be used to determine the argument list of the
evaluation functions (i.e., the inherited attributes that are needed to compute a
synthesized attribute). Evaluation by need will guarantee that only (or almost
only) those attributes are computed that are needed to compute the synthesized
attributes at the root of the tree. Memo-functions will be used to avoid that
attributes are evaluated more than once.

6 E x p e r i e n c e s

Kimwitu has proven to be a powerful tool that has been used to develop several
language-based tools, such as compilers, simulators, testers and verifiers, and as
'glue' between tools in toolkits. The system has been in use now for more than
6 years, and has proven to be stable enough for production quality tools.

Common uses of Kimwitu exploit one or more of the following features: the
easy interface with Yacc and Lex, to build abstract syntax (parse) trees; pattern
matching and rewrite rules, to manipulate terms (trees); unparse rules, both
to describe the textual representation of terms, and to specify tree-walks; the
unique storage option, to get state matching almost for free, but also to be able to
use associative array-like functionality in C programs; the ability to manipulate
hash tables, to get efficient memory management with little effort; the ability to
read and write from and to structure files, to interface between tools in toolkits.
It is our experience that users need some time to 'digest' the features offered by
Kimwitu to be able to select the most 'natural' way to describe their algorithms
in Kimwitu, but in this Kimwitu does not differ from other advanced systems.

Our main experience with Kimwitu has been the work on LOTOS [IS089]
tools, which was part of the Lotosphere (Esprit II) project[BvV95]. In this

110

project an integrated toolset, LITE, has been built for LOTOS. Every tool in
LITE works on a central object, which is a representation of a LOTOS specifi-
cation. This object is formally described in 525 lines of Kimwitu input. Kimwitu
generates data structures and I/O routines from this description. This makes
changes to the structure of the interface object rather easy - - in most cases pro-
grams only have to be recompiled. The fact that the specification of the central
object is used for both the external and the internal representation simplifies the
production of tools that work on the central object. In one case, a person with
no experience in C or Kimwitu produced a conversion tool in one week.

A compiler for equational systems into code for specialized abstract term
rewriting and narrowing machines [Wol91] has been produced using Kimwitu
in three man-months, which was about half of the planned development time.
This system is described in 2900 lines of Kimwitu input. In particular the au-
tomatic management of symbol tables proved very helpful. The speed of the
resulting program is comparable with earlier versions, which were written in C.
The interpreters for the abstract machines were written in 2600 lines of C.

The full LOTOS simulator Smile[Eer94] has been built in 6 man-months.
This simulator does extensive manipulation of complex data structures. The
size of Kimwitu code is about 4000 lines (112 Kb) with an additional 1200
lines of C code for the X-Window based user-interface. These numbers do not
include the abstract data type part mentioned previously. A previous system,
Hippo [vEVD89], was implemented in 20,000 lines of Yacc, Lex and C, of which
5000 lines are devoted to the abstract data type part. Its development took 18
man-months. Smile has more functionality than Hippo: it is fully symbolic and
its abstract data type part is much more advanced. The memory consumption
of Smile is less and the execution speed is better (both by a factor of 2 or 3), on
a comparable run. The following gives an indication of the performance of the
generated code. A 3195 line LOTOS specification results in a structure file of
780 Kb, containing approximately 200,000 operator applications. Reading this
object, initializing the simulator, and compiling the abstract data types takes 18
seconds of cpu-time on a SparcStation 1.

7 C o n c l u s i o n s

The Kimwitu system improves productivity, is relatively easy to learn, and pro-
duces efficient code. The novelty of our approach is to allow a variety of for-
malisms to be used in the construction of language-based software. We do not
claim novelty in the formalisms used, but rather in their combination. We believe
that our system is a significant tool in the implementation of programming and
specification languages.

Avai labi l i ty and Contac t Kimwitu is available from the internet, via URL
<http://wwwtios.cs.utwente.nl/kimwitu/>. The Kimwitu developers can be con-
tacted at <kimwitu@cs.utwente.nl>.

111

References

[Alb91]

[BvV95]

[Dub94]

lEer94]

[EM85]

[Heu88]

[Hof95]

[Hum]

[ISO89]

[Jou84]

[Kar95]

[Knu68]

[OMG95]

[RT89]

[vES92]

[vEVD89]

[Wo191]

Henk Alblas. Attribute evaluation methods. In H. Alblas and B. Melichar,
editors, International Summer School SAGA: Attribute Grammars, Appli-
cations and Systems, number 545 in LNCS, pages 48-113, Prague, 1991.
Springer-Verlag.
T. Bolognesi, J. van de Lagemaat, and C.A. Vissers, editors. LOTOSphere:
Software Development with LOTOS. Kluwer Academic Publishers, 1995.
Eric Emile Dubuis. Compiling the Behaviour Part of LOTOS. PhD thesis,
ETH Zurich, 1994. TIK-Schrifteureihe ur. 3.
E.H. Eertink. Simulation Techniques for the Validation of LOTOS Speci-
fications. PhD thesis, University of Twente, 1994.
Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic Specifica-
tion 1, volume 6 of EATCS Monographs on Theoretical Computer Science.
Springer-Verlag, 1985.
T. Heuillard. Compiling conditional rewriting systems. In St@bane Ka-
plan and J.-P. Jouannaud, editors, Conditional Term Rewriting Systems,
volume 308 of LNCS. Springer-Verlag, 1988.
A. Hofkamp. A static semantics checker for LOTOS. Master's thesis,
University of Twente, Enschede, The Netherlands, 1995.
OpenSITE: SDL Integrated Tool Environment.
URL: http://www.informatik.hu-berlin.de/Themen/SITE/.
ISO. Information processing systems - - open systems interconnection - -
LOTOS a formal description technique based on the temporal ordering
of observational behaviour. International Standard 8807, ISO, Geneva,
February 1989. 1st Edition.
M. Jourdan. Strongly non-circular attribute grammars and their recursive
evaluation. In SIGPLAN '84 Symposium o] Compiler Construction, pages
81-93. ACM, June 1984.
Pim Kars. Representation of process-gate nets in LOTOS and verification
of LOTOS laws: The boolean algebra approach. In Proc. FORTE '9~,
1995.
D.E. Knuth. Semantics of context-free languages. Mathematical Systems
Theory, 2:127-145, 1968. A correction appears in vol. 5 pp 95-96.
OMG. The Common Object Request Broker Architecture and Specifica-
tion. Object Managment Group, Framingham, MA, 1995. Revision 2.0.
T. W. Reps and T. Teitelbaum. The Synthesizer Generator - A System/or
Constructing Language-Based Editors. Springer-Verlag, New York, 1989.
Peter van Eijk and Axel Belinfante. The termprocessor kimwitu: manual
and cookbook. Technical Report INF-92-67, University of Twente, En-
schede Netherlands, 1992.
P.H.J van Eijk, C.A. Vissers, and M. Diaz, editors. The Formal Descrip-
tion Technique LOTOS - results of the ESPRIT/SEDOS project. North-
Holland, Amsterdam, 1989.
D. Wolz. Design of a Compiler for lazy pattern driven narrowing. In Recent
Trends in Data Type Specification. Proceedings of the 7th international
workshop on specifications of abstract data types, number 534 in Lecture
Notes in Computer Science, Wusterhausen-Dosse, 1991. Springer-Verlag.

