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Abs t rac t .  We present a sound, complete and terminating tableau sys- 
tem for the propositional logic of linear-TIME with only [] and ~ as 
temporal operators. 

1 I n t r o d u c t i o n  

Deduction calculi for propositional linear-TIME temporal  logic and their reali- 
sation in theorem proving programs play an important  part in verification and 
analysis of systems. We are concerned here with one particular class of cal- 
culi, the tableau calculi, which seem to be most popular in this area and also 
well adapted to the task. As a first introduction to this method we refer to 
the overview paper [Wo185]. A more recent tableau calculus is treated at length 
in the book [MP95] and has also been implemented in the STeP System: see 
[MAB+94] and [BBC+96]. 
One drawback of all calculi for linear-TIME temporal logic proposed so far, as 
compared to calculi in classical propositional logic, is the fact that  termination 
of the procedure cannot be determined locally. In [Wo185] e.g. a loop-check has 
to be performed during the expansion of the tableau to detect recurring node 
labels. The tableau system in IMP95] depends crucially on the global concept of 
maximal strongly connected subgraphs of the tableau. Both approaches neces- 
sitate the use of involved data  structures and algorithms in an implementation, 
which limits the efficiency of the resulting theorem proving system. In this pa- 
per, we present a calculus that  terminates when no further expansion rule is 
applicable, which is guaranteed to happen. 
The formulas we consider in this paper only use D and ~ as temporal  opera- 
tors, and the next-time operator @ is not included. This fragment, let us call it 
LTLo, is less expressive than full l inear-TIME time logic, LTL. An extension of 
the calculus to full LTL is in preparation. But the restricted temporal language 
also deserves attention, if only for the reason that the satisfiability problem for 
LTLo is merely NP-complete [SC85], while it is PSPACE-complete for LTL. It 
may therefore be advantageous to submit problems that happen to belong to 
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the fragment LTLo to a special proof procedure, rather than to feed them into 
a prover that  treats all of LTL .  
Another approach to tableau calculi for linear-TIME temporal  logic was taken 
in [HI94]. In this paper the logical calculus is augmented by introducing integer 
constraints, and the use of algorithms from integer programming is suggested. 
The present paper has profited from this work, in that we use similar signed 
formulas (sometimes also called labelled formulas) in our calculus. 

2 L i n e a r - T I M E  T e m p o r a l  L o g i c  

The formulas of the linear-TIME temporal logic LTLo,  which we shall denote by 
capital letters in the range F,  G, H, . . . ,  are built from propositional variables 
A, B, C, . . .  by the following grammar: 

F ::=AI FIFAFIFVFIOFI F 

F ~ G  is taken to be an abbreviation for -~FVG, and F ~ G  for (F--+G)A(G--~F). 
We call literal L any formula of the form A or -~A, where A is a variable. 
The semantics is as follows. A structure S is a pair (s, ~) where s : (so, s l , . . . )  

is an w-sequence of states in which all the states are distinct and ~ is a valuation 
mapping each si, i E IN, to some set of propositional variables (the variables 
that  are true in state si). We may identify states with natural integers. An 
interpretation (S, i) is a pair of a structure S and a state i. Then, we say that  a 
formula F holds under (S, i), and we write S, i ~ F,  in the following cases: 

- s ,  i A ifr A 

- S , i ~ - , F i f f S ,  i ~ : F ;  
- S , i ~ F A G i f f S ,  i ~ F a n d S ,  i ~ G ;  
- S , i ~ F V G i f f S ,  i ~ F o r S ,  i ~ G ;  
- S, i ~ [] F iff for every j >__ i, S , j  ~ F ;  
- S , i ~ O F i f f f o r s o m e j ~ i , S , j ~ F ;  

A formula is said to be valid in a structure S, denoted by S ~ F,  if S, i ~ F 
holds for all i. A formula is valid if it valid in every structure. 

The tableau calculus to be described will operate not just on formulas but will 
also exploit "semantic" information in the form of signed clauses and constraints. 
As a preparation we introduce the notion of time points. We shall make Use of 
an infinite vocabulary Tc of time constants co, cl, . . ,  which are simply fresh 
names. Time points s, t, . . .  are defined as pairs (c, n), where c is a time constant 
and n E 2Z. We define (c, n) + m as (c,n + m) for any m E ~ ,  and similarly 
(c, n) - m = (e, n - m). We abbreviate (c, 0) as c, (c, n) as c + n and (c, - n )  as 
c -  n. The set of all t ime points wilt be denoted by T. Intuitively, t ime constants 
and time points denote states in a structure. 

Intervals I are expressions of the form [s, t] or Is, +c<~[, where s and t are time 
points. Intuitively, [s, t] denotes the set of all states between s and t inclusively, 
and [s, +oo[ the set of all states at or above s. Note that  [s, t] denotes the empty 
set of states whenever s _> t + 1. We abbreviate Is, s] as Is]. 
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A clause is a multiset C of formulas. Notice that this generalizes the usual 
definition of a clause. A signed clause is either I C or [oo[ C, where C is a 
clause and I is an interval. We will use capital Greek letters like 4,  ~ for signed 
clauses and small Greek letters like g to denote intervals or the symbol leo[. 
An exception is ~ which will denote the empty clause. To explain the semantics 
of signed clauses we consider time assignments 7". These are mappings from 
Tc into lN satisfying r(e0) = 0. Extend r to a mapping T -+ ~ by letting 
r(c  + n) = ~-(c) + n. Given a structure S and a time assignment r,  we define: 

- S, v ~ Is, tiC iff for every i satisfying r(s) < i _< r(t)  there is some formula 
F in C such that  S , i  ~ F ,  

- S, r ~ [s, + ~ [ C  iff for every i satisfying r(s)  _< i there is some formula F 
in C such that  S, i ~ F,  

- S, r ~ [oo[ C iff for infinitely many i, S, i ~ F for every formula F in C. 

Notice the asymmetry:  a clause with prefixed interval is treated as a logical 
disjunction, while for Ioo I C the multiset C is considered as a logical conjunction. 

Expressions of the form s < t, with s and t time points are called constraints. 
A constraint set K is any finite set of constraints. We say that  a time assignment 
r satisfies a constraint s < t, denoted by r ~ s < t, if and only if r(s)  < r( t) ;  
and r satisfies a constraint set K if and only if it satisfies all the constraints in 
K.  K is satisfiable if it is satisfied by some time assignment. 

3 A T a b l e a u  S y s t e m  

A tableau T is a set of branches, where a branch (B, K) is a pair formed of a set 
B of signed clauses and a constraint set K.  To prove that  a formula F is valid, 
we set up the initial tableau To, consisting of a single branch (B0, K0), where 
B0 = {[c0]~F}, and K0 is empty. The tableau procedure proceeds by applying 
two different kinds of steps~ expansions steps and closures. An expansion step 
on a tableau T is performed by choosing a branch (B, K) in T and an unused 
signed clause r in B, and by applying the matching logical tableau rule as given in 
Figures 1, 2, and 3. Application of a tableau rule consists in marking the premise 
clause as used and in extending the branch (B, K) by adding the signed clauses 
and constraints in the conclusion of the tableau rule to B and K respectively. If 
the conclusions of a rule consists of two or three alternatives, which is denoted 
in the figures by a vertical bar, then (B, K) is split in two resp. three extensions. 
In each rule, u denotes a fresh time constant, that is, one that does not appear 
already on the branch. Also C, F abbreviates the clause C U {F} throughout.  

Observe that  the logical rules on open intervals are mostly the same as those 
on closed intervals (the conditions u < t are dropped in ~ and -~ [] rules, and 
an ]oo[ case is added). 

A signed clause cr C is atomic whenever C consists of literals only. A branch 
(B, K) is atomic when all its unused signed clauses are atomic. It is obviously 
not possible to apply an extension step to an atomic branch. 
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Extending the initial tableau ({[c0]-,F}, O) may be viewed as a systematic 
search for a counter-model of F.  Each branch may then be looked at as a partial 
counter-model. It will be shown below that  if a tableau is reached with all its 
branches unsatisfiable, then [c0]-,F is also unsatisfiable and thus F is valid. 

A branch (B, K) is satisfiable if there is a structure S and a time assignment 
r such that  S , r  ~ C for each signed clause C in B and r(s) <_ r(t) for all 
constraints s < t in K. 

Detecting t-he unsatisfiability of a branch is the objective of the closure steps. 
We postpone the details of closing branches until Section 5. For now, we just 
assume that  there is a procedure closing that  after a finite number of steps 
marks an atomic branch as closed iff it is unsatisfiable. 

[s, t]C, F ^ G 
[s, t] C, F 
Is, t] c,  c 

[s, t]C, F V G 
[s, t]C, F, G 

Is, t ic,  -,(F ^ a) 
[s, t]C, -,F,-,a 

[s, t]c, -X F v a) 
[s, t]C, -,F 
Is,tic, ~a  

[s,t]C,--,-,F 
[s, t]C, F 

[s, t]C, D F [s, t]C, O F 
[s, t ic  [s, u - 1 ]C  

[u, + ~ [ F  
s < u < t  

u fresh 

[s, t]C [u]F 
[u + 1, t ic  

s < u  
u fresh 

[s, tiC, --, [] F [s,t]C,--,OF 
[s, t]C [u]~F 

[u + 1, t ]c  
s < u  

u fresh 

[s, t]C [s, u - 1]C 
[u, + o o b F  
s < u < t  

u fresh 

Fig. 1. Logical miles, closed intervals 

4 Tableau Expansion 

Let T1 C_ T2 be subsets of the set of all t ime constants Tc and r a time assignment 
T1 -+ ]IN. We say that  a time assignment ~-2 extends v to 2"2 if v2 agrees with v 
on TI. 

The basic step in proving soundness and completeness of the expansion steps 
is the following Theorem. 

T h e o r e m  1 For every rule in Figures 1, 2, and 3, for every structure S, for 
every time assignment v on a set T containing all time constants occurring in 
the premise ~ of the rule, S, r ~ q~ if and only if  there is a conclusion of the rule 
and a time assignment v ~ extending r such that (1) r ~ satisfies the constraints 
of the conclusion and (2) S, v I ~ qY for every signed clause qY in the conclusion. 

P r o o f :  Figure 1: this is obvious for the rules not involving the modal con- 
nectives. Consider the rule with premise [s, t]C, n F.  Then S, r ~ [s,t]C, [] F 
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[s, +co[C, F A G 
[s, +co[C, F 
[s, +co[C, a 

[s, +oo[C, F v G 
[s, +oo[C, F, G 

[.% +co[c, -,(F ^ c) 
[~, +co[c,-,F, -~a 

[s, +oo[C, --,(F v C) 
[s, +oc[C, - ,F  
[~, +co[C, 7 0  

[s, +co[C, ~ = F  
[s, +co[C, F 

[s, +at[C, [] F 
[~--7 +oo[c I Is,. - i ] c  

I 
[u, + o e [ f  

s < u  
u fresh 

[s, +co[C, -, O F 

[s, +co[C, 0 F 
[s, +co[C [u]F 

[u + 1, +co[C 
s < u  

u fresh 
[s, +oo[C, -, [] F 

IcoIF 

[s, +oo[C [s, u - 1 ] C  
[,~, +co[-~F 

s<~tL 

u f resh  

[s, +oo[C [u]-~F 
[u + 1, +co[C 

s < u  

u fresh 

loci , F  

Fig. 2. Logical rules, open intervals 

I~IC, F A g 
I~IC, F,G 

IooIC, F v  G 
Iool c, F I IoolC, a 

I~IC, DF I~lC, OF I ~ I O , ~ F  
IoolC IoolC 

[u, + �9149 tool F 
Co<U 

Iool C,-,(F A C) 
Iool C,-,F I Iool c,--.c 

Ioot c, - . (F v G) 
!ool C, ~F, -~C 

Iool c, u 

all u fresh 

Fig.  3. Logical rules, infinitely occurring events 

IoolC Io~lO 
Iool-~F [u, +oc[--,F 

c o < u  

iff S D [i,j]C, [] F, where i, resp. j ,  is the value of s, resp. t, under  r .  If 
S D [i,j]C, DF, then we dist inguish two cases. In the first case, C holds on 
the whole interval [i, j]: then the left-hand conclusion holds under t ime assign- 
ment  r .  In the second case, there is a s tate  k, i < k < j, where C does not  
hold. Then,  [] F must  hold in s ta te  k, i.e. S , k  ~ ~ F - f o r  every k' _> k, i.e. 
S ~ [k, + � 9  Moreover,  we may  choose k as the earliest state  where C does 
not  hold, so S ~ [i, k - 1]C. Take r '  extending r SO tha t  T'(U) = k: r' satisfies 
the constraint  s < u < t, and every signed clause of the r ight-hand conclusion 
holds under  S, r ' .  

Conversely, if r '  extends r so tha t  S,r '  D [s,t]C, then S , r  ~ [s,t]C and 
tr ivial ly S , r  ~ [s,t]C, OF. And if r' extends r so tha t  (1) and (2) hold on the 
r ight-hand conclusion, then let t ing i, j ,  k be the values of s, t, u under  r '  (also 
under  r for the first two), we have S D [i, k - 1]C, S ~ [k, + � 9  and i < k < j .  
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In particular, we have S ~ [i, k - 1]C and S ~ [k, j] [] F,  so S ~ [i, j]C, [] F, so 
the premise holds under v. 

Consider now the rule with premise [s, tiC, OF. If [i, j]C, OF holds, then 
either [i,j]C holds (left conclusion), or there is a state k in [i,j] where C does 
not hold. In the latter case, choose k the latest such k. Then [k + 1, j]C holds, 
and O F holds in staite k. In particular, there is a state k' > k such that  F 
holds in state k'. Moreover, since [k + 1 , j ]C holds and k' _> k, in particular 
[ k ' +  1 , j ]C holds. And i < k' also holds, so (1) and (2) are verified on the 
right-hand conclusion if we take 7-' extending 7- by mapping u to k' (not k). 

Conversely, if [i,j]C holds (left conclusion), then [i , j]C,r  holds too 
(premise). And if [k', k']F and [ k ' +  1,j]C hold with i < k' (right conclusion), 
then [i, k'] e F  on the one hand and [k'+l,j]C on the other hand, so [i,j]C, r 

The cases of [s,t]C,-, n F and [s, t]C, ~ OF are similar. 

Figure 2. The cases are similar, except that in the [s, +oc[C, OF case, where 
we assume that  [i, +c~[C, O F ,  there might not be any latest k _> i such that  C 
does not hold. This justifies the third possible conclusion: in that  case, there is 
an infinite sequence k0 < kl < . . .  of states such that k0 > i and C does not 
hold at k0, or kl, or . . .  ; therefore O F  must hold at k0, and at kl, and . . .  ; so 
there are states k' o >_ ko, k i >_ k l , . . . ,  where F holds. This sequence k~, kl, . . . ,  
must be infinite, otherwise it would be bounded from above, hence k0, kl, . . . ,  
would also be bounded from above, which is impossible. So there is an infinitely 
increasing subsequence of states k' < k' < at which F holds, i.e. Ioc]F 

( T  0 ( 7 1  �9 . . 

holds. Conversely, if ]oc] F holds, there is a sequence k0 < kl < . . .  of states 
at which F holds; then for every j _> i, there exists a kp such that  kp __ j ,  at 
which F holds, so [i, + o c [ O F  holds, and therefore [i, +oc[C, O F  holds, i.e. the 
premise holds. The case of the rule of premise [s, +co[C,- ,  [] F is similar. 

Figure 3. The case of the rule with premise loci C, FAG is obvious (remember 
that  clauses under the loci sign are taken conjunctively). 

As regards loci C, F V G, it holds if and only if there is a sequence k of states 
k0 < kl < �9 �9 at which C and F V G hold. Consider the subsequence M of states 
at which C and F hold, and the subsequence k" of states at which C and G 
hold. Every state in k belongs to k' or k", so k' or k" must be infinite. If k' is 
infinite, then the left conclusion loci C, F holds, and if k" is infinite, the right 
conclusion holds. Conversely, ioo1 C, F or leo] C, G clearly implies ]e~ I C, F V G. 

Look at the rule with premise leo] C, [] F.  If it holds, then there is a sequence 
k0 < kl < . . .  of states at which both C and [] F hold. In particular, loci C and 
[k0, +oc [ F  hold: we let r '  extend r by mapping u to k0, then the conclusion 
holds. Conversely, if Ioc I C and [k, +oo[F  both hold, then let k0 < kl < . . .  be 
the sequence of states at which C holds. The subsequence of these states that  
are _> k is an infinite sequence at which C A [] F holds, so the premise holds. 

Consider now the rule with premise loci C,<>F. If it holds, then there is a 
sequence k0 < kl < . . .  of states at which both C and O F hold. So on the one 
hand loci C holds, and on the other there are states k~ > k0, k~ _> kl, . . . ,  at 
which F holds. If k~, k[, . . . ,  were bounded from above, so would be k0, kl, . . .  ; 
so we can extract an infinite increasing subsequence k' < k' < of states at 

( 7 0  ( 7 1  �9 . . 
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which F holds. Tha t  is, Ioo] F holds. Conversely, if both [oo I C and I~1F hold, 
then let k0 < kl < . . .  be an infinite sequence of states at which C holds. At 
each kp, C holds and there is also a later state at which F holds, so O F holds 
at kp. Therefore the premise Iool c, <> F holds. 

The other rules of Figure 3 are similar. [] 

T h e o r e m  2 Applying the rules in Figures 1, 2, 3 terminates. 

P r o o f :  Define the following complexity measure: IAI = 1 for variables A, IF A 
al = IFval = IF I  + Ial +2, I-~FI = I D f l  = I O F I  = IFI  + J-; I[~, t ] f l , . . . ,  F,,I = 
I[~, +oo[&,..., F,,I = Ilool & , . . . ,  F,~I = I & l  + . . .  + IF,~I. ~f B is a branch of a 
tableau, then ]B I is the natural ordinal sum of the will where r ranges over the 
signed clauses on B (i.e., we compare branches by a multiset ordering). Then 
every conclusion of a rule is smaller that its premise, so that  branches decrease 
by application of each rule. [] 

Assume that  a procedure closing is given that  takes as input atomic tableau 
branches (B, K) and returns the answer closed iff (B, K) is not satisfiable. 
We call a tableau T closed when all it branches are atomic and the procedure 
closing returns closed for all branches in T.  

T h e o r e m  3 A formula F from LTLo is valid iff from the initial tableau 
{([c0]--~F, 0)} a closed tableau can be reached by successive applications of ex- 
pansion steps. 

P r o o f i  Given a structure S and a time assignment v we say that S, r satisfies 
a tableau 7" if there is one branch (B, K) in 7- with S, 7" ~ (B, K).  
Let To , . . .7~  be a sequence of tableaux, with To the initial tableau for F,  7i+1 
is obtained from 7~ by one extension step for all 0 _< i < k and 7~ is closed. 
We claim that  F is valid. By definition and the assumptions on the procedure 
closing 7-k is not satisfiable. Using Theorem 1 repeatedly we conclude that  To is 
not satisfiable, which is just  another way of saying that F is valid. 
Assume on the other hand that F is valid, thus the initial tableau To is not 
satisfiable. By Theorem 2, we know that  by a finite number of expansion steps 
we will reach an atomic tableau 7~. Repeated application of Theorem 1, now 
used in the reverse direction, shows that  Tk is not satisfiable. By the assumption 
on closing this implies that  7~ is indeed closed. [] 

Observe also that  all rules are invertible, so that F is in fact valid iff a closed 
tableau can be reached by any maximal sequence of expansion steps: we don' t  
have to backtrack on the choice of the expansion rule. 

5 Closing Branches 

Any procedure for closing atomic branches that satisfies the requirement set 
forth above Theorem 3 can be used together with the expansion rules to yield a 
complete and sound method to prove validity of formulas in LTLo. In the next 
subsection we propose a procedure based on the resolution calculus. 
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5.1 Closing by Resolution 

The calculus we consider here is again a tableau calculus, now using the rules 
of Figure 4 and 5. Unlike the previously considered rules those in Figure 5 need 
two premises in order to be applicable to a branch. Also, the resolution rules 
do not mark their premises as "used". Thus the same formula may be used in 
several resolution steps. However, it is never necessary to resolve on the same 
pair of signed clauses twice on the same branch. 
The rules in Figure 5 basically amount to resolution with side-conditions on the 
way that  the end-points of intervals are ordered. 

T h e o r e m  4 The closing and resolution rules, see Figure 4 and 5, are sound, 
i.e. for every structure S, for every time assignment v, if the premises of any 
resolution rule hold under S, "r, then so does one of its conclusions. 

P r o o f i  Figure 4: 
[i, j]r holds if and only if for every i < k < j ,  S, k ~ r i.e. false. Tha t  is, [i, j]r 
if and only if there is no k such that  i < k < j,  namely if and only if i > j + 1: 
this justifies the teftmost topmost rule. 

Similarly, [s, +o0[r and tocl C, F , - - F  are never satisfied. 
If [i, +oc[F1, .., Fro,-'Fro+l,.., -,Fn and Iocl C, --F1, .., --F,~, Fro+l, .., F~ both 

hold, then there is an infinite sequence k0 < kl < . . .  where C and -~F1 A . . .  A 
-'Fro A Fm+l A . . .  A Fn both hold, i.e. where C and -~F both hold, where F is 
F1 V . . .  V Fm V -'Fm+l V . . .  V -~Fn. Take some kp such that  kp ~ i: then -~F 
holds, but also F since [i, + c c [ F  holds. This justifies the last rule of Figure 5. 
Consider the topmost resolution rule. If [s , t]C,F and [s',t ']C',-~F both hold 
under S, r ,  then for each state k in the intersection I of [s, t] and [s', t'] (inter- 
preted by r) ,  we both have C or F,  and C ~ or --F. Whether F is true or false 
at k, C, C ~ holds at k, hence everywhere on I. To compute I, we have four cases 
to consider, according to whether s < s ~ or s > s ~, and whether t < t ~ or t > t ~ 
under r .  This yields the four possible conclusions of the rule. 

The argument is similar for the next three rules. [] 

[s, t]~ [~, +oo[~ Iool c, F, -,F 
s > _ t + l  x x 

[s, +oo[F1,. . . ,  F,~,--Fm+l,...,--F,~ ]co I C,- ,F1, . . . ,  -,F,~, Fro+l, . . . ,  F,~ 
X 

( l < n ,  0 < r e < n )  

Here • is used as a marker for a closed branch. 

Fig. 4. Closing rules 

We will represent a constraint set K as a directed graph, whose vertices are 
the time constants occurring in /4, and whose edges from c to d correspond 
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Is, t]C, F 
Is', t']c', ~ f  

s <_ s'  - l ,  t <_ t'  - l s '  <_ s,  t < t '  - l s <_ s'  - l ,  t'  < t s '  <_ s, t '  <_ t 
[s', t]C, C' [s, t]C; C' [s', t']C, C z- [s, t']C, C' 

[s, t ]C ,  F [s, t ]C ,  ~ F  [s, +oo[C, F 
Is', + o o [ c ' , - F  [~', +oo[c' ,  F [r +oo[c',  . F  

s < s ' -  I s '  <_ s s < s ' - l [  s'  < s s <_ s ' -  i s '  < s 
[s( t ]c ,  c '  [~, t]c, c '  r- , - , , Is , t ] c , c  I[s,t]c,c Is , + o o [ c , c '  [ , , + ~ c , c '  

Fig. 5. Resolution rules 

exactly to constraints (e < c ~ + n) in K,  and are labeled by n. We may actuailly 
impose t, hat there is at most one edge from c to d by merging c " >c' and e " ~c' 
into c ~ >d, with n"  = min(n ,n  0. The weight of a path co ~~ ~1> ...~k-~Ck, 
k > 0 in this graph is no + nl + . . . +  nk-1; it is a cycle if and only if k > 0 and 
ck = co. We have: 

L e m m a  1. Let K be a well-formed constraint set, where "well-formed" means 
that, for every vertex c, there is a path from co to c of non-positive weight. 

K is satisfiable if and only if it has no cycle of strictly negative weight. 

P r o o f :  This is mostly well-known [Be158, Pra77]. [] 

Checking satisfiability of K amounts to checking whether there is a cycle with 
negative weight in K: this is checkable in polynomial time by Floyd's or Ford's 
shortest path algorithm (see [McH90], Chapter 3); there are even efficient incre- 
mental algorithms to do this [AIMSN90]. It is easy to check that  any constraint 
set produced by the tableau rules from the initial tableau To is well-formed. 
Finally we introduce the constraint rule which declares a branch (B, K) "closed" 
(put the marker x on it) if K is unsatisfiable. 

T h e o r e m  5 The resolution, closure and constraint rules are complete, i.e. given 
any unsatisfiable atomic branch (B, K) ,  there is a finite tableau starting from 
(B, K) and produced using these rules, whose branches are all closed. 

P r o o f :  The proof is by contraposition. Starting fi'om (B, K),  apply all resolution 
and closing rules until a saturated tableau T is reached, i.e. on each branch every 
rule that  is applicable has been applied. T can be reached in finitely many steps. 
Assume that  there is an open branch (B', K ' )  in T.  We then claim that  (B', K')  
has a model. Since B C_ B'  and K C K' ,  this is a contradiction. 

First, because the set of constraints K '  is satisfiable, let 7- be a mapping from 
time constants to integers satisfying it, and let N be the highest integer in the 
range of r.  Let also I~] C1, . . . ,  ]c~l C,~ be the signed clauses with sign [~] in 
B'. We build a structure (S, ~) on which B* will hold. 

For every i such that  0 < i < N, let: 
S; = { [s , t ]C C B'  I T(s ) < i < r ( t ) }  U { [s ,+oo[C e B' I ~-(s ) < i }  

and let S~ be the clauses in Si without signs: 
N = { C I  I C E Si for some interval I} 
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Si is closed under the rules of Figure 5, hence S~ is closed under the usual 
propositional resolution rule. By the completeness of propositional resolution: 

- either S~ contains the empty clause, and Si then contains some clause Is, t]c 
or [s, + ~ [ e ;  since B ~ is open, the second case is impossible; in the first case, 
and since B ~ is saturated, K t must contain the constraint s > t + 1, which 
contradicts our assumption that  j _< i < k, where j = v(s) and k = r(t);  

- or S~ does not contain the empty clause, so S~ then has a model: let ~ map 
i to the set of propositional variables that are true under this model. 

For every j E IN, for every 1 < i < n, we build 4(N ~- jn + i) as follows. 
Let Ti be the set of all clauses of the form [s, +cx~[C in B', and T~ be the set 
of the corresponding C's. Again, Ti is closed under the rules of Figure 5, hence 
T{ is closed under the propositional resolution rule, and cannot contain the 
empty clause. Let Ci be written as L i l , . . . ,  Lin~. Let then T~ I be T[ union the 
ni unit clauses Lil,  . . . ,  Li,u. Let T{ I~ be the closure of T[ ~ under propositional 
resolution. Since T~ ~ is already closed under this rule and by the closure rules from 
Figure 4, resolution among the units Lil,  . . . ,  Li,~, does not occur, and the only 
possible resolution steps take as one parent clause C,-~L~kl,...,-~Likj in T{ and 
resolve it, maybe repeatedly, with complementary units Li from Lil,  . . . ,  Li,~,. 
The empty clause could enter T "~ only if a clause in T{ consisted exclusively of 
complements of literals in Lil,  �9 �9 �9 Li,~. But in this case the bot tommost  closing 
rule of Figure 4 would close branch B ~, which contradicts our assumption. T[ ~ 
is therefore a resolution-closed set of clauses without the empty clause. Again 
by the completeness of propositional resolution, T{ ~ has a model: let ~ map 
N + jn + i to the set of propositional variables that  are true under this model. 

Consider any clause of the form [s, t]C in B'.  We have lN, ~ ~ [s, t]C. Indeed, 
for every i such that  s < i < t (modulo r) ,  in particular 0 < i < N, and [s, t]C 
is in Si, so C E S~, so by construction ~(i) makes C true. 

Consider any clause I~] Ci, 1 < i < n. By construction, every literal of Ci is 
true under ~ at state N + jn + i (they are the clauses that we have added to Ti t 
to yield T['). So IN, ~, g + jn + i ~ Ci, hence IN, ~ ~ I~1Ci.  

Finally, consider any clause [s, +c~[C in B ~. For every i such that  s < i < N, 
C holds at state i: the argument is as for clauses of the form [s, tiC. For every 
state N + j n + i ,  j > 0, 1 < i < n, by construction ~(N+jn+i)  is a propositional 
model of T{ ~, hence of T[. Therefore C holds at state N + jn + i. To sum up, C 
holds at every state ~ s, hence IN, ~ ~ [s, +oz[C. [] 

5 . 2  R e f i n e m e n t s  o f  R e s o l u t i o n  

Because the proof of Theorem 5 rests on the completeness of propositional res- 
olution in a rather simple way, it is tempting to use standard refinements of 
resolution [CL73]. 

Consider for instance ordered resolution, see [FLTZ93]. Unfortunately this 
does not preserve completeness; and the same is true for hyper-resolution or 
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linear resolution. This may be repaired by introducing a new sign Ioolc,, and 
transform loci Ci with Ci = L i l , . . . ,  Li,~, into the ni unit signed clauses: 

Io lc, Lil 

Ioolc, Lin, 

We then close branches by using the resolution rules of Figure 5, the additional 
resolution rules of Figure 6 and the closing rules of Figure 7, which replace those 
of Figure 4. Semantically, leOIc~ C, where C is a set of literals, means that the 
disjunction (not the conjunction!) of literals in C holds at all infinitely many 
time points N + jn + i, j > O, of the proof of Theorem 5; at all these time 
points, the conjunction of literals in Ci holds. 

[s, +oo[C,F [s, +oc[C,-nF Ioo1 , C,~F 
IC~lci C',-,F IOClc, C', F _l lc, c ' ,  F 
I lo, C, C' Ioolc, C, C' Io%, c, c' 

Fig. 6. Additional resolution rules 

Fig. 7. Closing rules (bis) 

s > t + l  x x 

T h e o r e m  6 For any complete refinement of resolution (ordered, hyper- 
resolution, linear resolution, etc.), the rules of Figures 5, 6 and 7 used according 
to the given refinement are complete. 

Proof i  Analogously to proof for Theorem 5. [] 

6 F u r t h e r  I m p r o v e m e n t s  

We present further improvements of our calculus that  preserve correctness and 
completeness, but prove to be very effective in an actual implementation, see 
Section 8. 
Let us first mention the simplification rules in Figure 8. The conclusion part 
of these rules is empty. So their application amounts to the deletion of their 
premise, which, as can be easily observed, will not contribute to the closure of a 
branch. They may be used either with the calculus of Subsections 5.1, or 5.2. 

[s, tiC, F, -~F [s, +oo[C, F, -~F loot e 

Fig. 8. Simplification rules 

Another shortcut in the application of the expansion rules of Figures 1, 2, 
and 3 is the case when the premise consists of just one formula, i.e. C = r 
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which allows us to omit any parts of the conclusion referring to C. Thus: 

[s, + ~ [ e ,  [] F [s, +oo[~ F 
[s, +oo[e Is, u - lie [u, +co[F  

[u, +co[F  is replaced by 
s<_u s < u  

u fresh u fresh 

Assume you wish to prove a formula of the form F A G. Then, it is enough 
to prove F and G separately, and this is what a tableau system for classical 
logic would do. However, here this would be transformed into [c0]-~F V -~G, and 
further into [c0]-~F,-~G. But when the current interval contains only one point, 
it is usually better to transform it into [c0]-~F and [c0]-~G. We may therefore 
add the following case decomposition rule: 

[ s ] F 1 ,  . . . , F ,  

[S]Fll...l[s]F~ 

Using this rule eagerly amounts to use it right after the rules with premise 
[s, t]C, F V G or [s, t]C, -~( F A G) when s = t. 

[s]F A G [s]F V G [s]-~(F A G) [s]'~(F V G) [ s ] ~ F  
[s]S [s]Fl[s]a [s]--Fl[s]-,a [s]-.F [s]F 
[s]a [s]-,a 

[s]n F [s]O F [s]-.I::lF [s]-.O F 
[s, +oo[F [u]F [u]-~F Is, +oo[-.F 

s < u  s < u  
u fresh u fresh 

Fig. 9. Logical rules, single time points 

Specializing the rules of Figure 1 to use the case decomposition rule eagerly 
yields new rules. Then, notice that  if we start from [c0]F, where F is the formula 
to prove, then all signed clauses of the form [siC that  we shall ever need are such 
that  C contains exactly one formula. This yields the rules of Figure 9. Here we 
do not need to include the case decomposition rule explicitly. 

7 An Example  

To i l lustratehow proof search proceeds, look at Figure 10: this is a proof of 
Dummett ' s  formula D([:](p-+ [] p) --+ p) --+ (O(Q p) -+ p). We use the shortcuts 
mentioned in Section 6. To help the reader each line in the proof is numbered, 
and the line numbers of the parent formulas are shown between brackets. 

On the leftmost branch, we resolve formulas 11 and 4; since the constraints 
on the branch imply that  so = sl, there is only one possible resolvent, namely 
[so, s0]e, which is unsatisfiable. On the middle branch, resolution of 19 and 15 
yields the only resolvent [sh, sh]e since s4 ~ sh, and this resolvent is unsatisfiable. 
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I [su,so]~(~D(~D(-~PvDP) v P)V~ODPV P) 

I 
�9 211] Is0, s~ D(~ D(~p v D ~) v p) 
311] [s~ s~ [] P 
411] [s0, so]~P 

I 
(~[2] so < s~ < so 

I 
7f3i [~,. ,4 D p 
813] so < s.., 

I 
9[7] [s~, +c~[P 
t0171 s~<s~<~2 

1 [] 
1115] [% +oo[P 15[~1 [s~, +oo[P 23151 To~iP, 

] as] I Si < S4 ] 

12[n,4] [s0,s0]e 17114] [s4,s4]P 24[23] I [~176 P 
13112] s o > s o + l  i81141 [s~,s4]-,nP 25[23] ]o~]-~P 
x 

26[25,9] x 19[I8] [s3,ss]-~P 
20118] s4 _< s~ 

I 
21119,15] [~, ~& 
22121] ~5 _> ~s + 1 
• 

~ P  

Fig.  10. Example, Dummet t ' s  formula 

8 Experimental  Results 

We have i m p l e m e n t e d  this sys tem in the H i m M L  byte-coded  interpreter ,  an 
i m p l e m e n t a t i o n  of S t anda rd  ML with  fast  set and m a p  operat ions .  The  rules of  
Figure  9 were used, and we always ma in t a in  formulas  in negat ion no rma l  form.  

Our  expans ion  s t r a t egy  is to expand  a current  goal until  it has become a tomic ,  
in which case we focus on ano the r  non -a tomic  signed fo rmula  on the current  
branch  as new goal; when the b ranch  becomes  a tomic ,  we call the resolut ion 
rules. We also accumula t e  cons t ra in t s  along the way, using the g raph  s t ruc ture  of  
L e m m a  1 and declare the b ranch  closed whenever  the current  set of  cons t ra in ts  
becomes  unsatisf iable.  Finally,  the fo rmula  tha t  we select in the current  goal 
clause is the first n o n - m o d a l  fo rmula  t ha t  we find in it, or the first m o d a l  fo rmula  
(n  F or O F )  if there  are no non -modM formulas  left in the goal. 

We have used posi t ive hyper-resolut ion,  where (non-uni t )  clauses to resolve 
are chosen so t ha t  one of t h e m  is a posi t ive clause, i.e. does not  conta in  any 
negated  a tom;  if there are uni t  clauses, we resolve pr ior i tar i ly  on them,  whether  
they are posi t ive or negat ive.  Th is  also means  tha t  we have used the closing rules 



143 

of Figure 7 instead of Figure 4. No subsumption test has been used, except that 
no duplicate clause is ever added to the clause set. 

We tested 46 formulas, 22 of which are valid in linear-TIME temporal logic, 
the results for the less trivial formulas ar shown in Figure 11, where the valid 
formulas are checked with a x/sign. Measurement errors are around 0.017 s., dis- 
regarding garbage collections. Tests were conducted under the HimML toplevel 
running on a diskless Sun 4 workstation under SunOS 4.1.2, with 16Mb core 
memory. The maximum process size was 2096 Kb, and garbage collection took 
9.3% of the time. Total running time was 1.47 s. 

The timings are good, and no combinatorial explosion occurs. But, for the 
most part, the benchmark formulas are not that  big. As a measure of complexity 
of a formula we use the number of ist modal sub-formulas. We are still far from 
real-life specifications, even from realistic toy problems [MP91]. For now, all that  
we can say is that  the ideas presented here seem to be a good start. 

game Statement DAG size size time (s.) 
M3 
linl 
Dum 
Dum4 
!4M 
5M 
BM 
!co 
H 
H+ 
L 
L+ 
L++  
Pt 
Z 

Grz5 
F 
P 
Zero 
K2 
K3 
K4 
K5 

a(op) ^ D(Oq) -+ O(p^ q) 
(op ̂  Oq) . (o0 ^ oq) v O(q ̂  or)) 
D(m(p ~ []p) -+p) -+ (o(D p) -+p) 
D ( D ( p .  = p ) .  p) ~ (O(D p ) .  p v [] p) 
D p A  Oq--+ O ( D p A q )  
Op n Oq-+ O(Op A q) 
pA Oq-4- O(OpAq) 
o(p^ aq) -+ D(p v Oq) 
=(p v q) ̂  =(Dp vq) ̂  [](pv aq) ~ []p v =q 
D(Dp v q) ̂  a(pV aq) + apV Oq 
~3(p A E] p -.--~ q) V [3(q A [3 q -+ p) 
[-n([] p __+ q) V n(~j q ~ p) 

[]([] p . D q) v D(~q -~ D p) 
D(p v Op) ~ o(p ̂  ~p) 
[](~v-+p) ~ (o(op) -+ Dp) 
D(n(p -.+ f3q) --+ nq) A [~(D("~p -~ [3q) -+ Dq) -+ nq  
(o(• p) --+ q) v [](e q-+ p) 
o(o(ov)) -+p-~  []p 
[](o(op)) .p-+ np 
EJ(p V q) --~ FJ p V r~ q 
o(~(op)) ++ ~(op) 
D(o(~ p)) ++ O(Dp) 
D(o(p v q)) ++ D(op) v D(Oq) 

11 13 0.033 
12 18 0.067 V 
~ 180.050 V 

21 0.050 V 
9 12 0.017 V 
9 12 0.033 
9 11 0.033 
10 12 0.017 ~/ 
15 23 0.083 x/ 
12 18 0.083 x/ 
13 17 0.033 ~/ 
11 13 0.017 x/ 
11 15 0.033 ~/ 
9 12 0,033 
I0 15 0.033 
18 28 0.033 
11 13 0.033 
9 11 0.033 
8 11 0.017 
9 11 0.033 
o 19 0.033 V 
9 19 0.017 ~/ 
15 20 0.050 ~/ 

Fig. 11. Experimental Results 

9 C o n c l u s i o n  

We have presented a tableau calculus for the linear-TIME temporal logic L T L o  
and shown its viability in a first implementation. A next step could be:. 
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To extend the present approach to full l inear-TIME temporal  logic; this is 
under way and looks promising. 

- To improve branch closure. Is it possible to adapt  Floyd's or Ford's graph 
algorithm, which just  detects negative cycles, to directly check the satisfi- 
ability of an atomic branch (B, K)?  Is it possible to replace the resolution 
principle, which is known not to perform very well on propositional logic, 
by a variant of the Davis-Putnam-procedure,  or a variant of BDD-based 
satisfiability algorithms? 
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