
R e a l - T i m e Logics: Fict i t ious Clock
as an Abs trac t ion of D e n s e T ime

Jean-Franqois Raskin and Pierre-Yves Schobbens
{jfr,pys} ~info.fundp.ac.be

Computer Science Institute, University of Namur
Rue Grandgagnage 21, 5000 Namur, Belgium

Tel: +32 81 72 4990 Fax: +32 81 72 4967

Abs t rac t . In this paper we study two possible Semantics for the real-
time logic MTL (Metric Temporal Logic). In the first semantics, called
dense time semantics, time is modeled by the positive real numbers. In
the second one, called fictitious clock semantics, real-time information is
delivered by a global fictitious clock. We show that the fictitious clock
semantics can be viewed as an abstraction of the dense time semantics.
This abstraction relation is formalized by a parametric conservative con-
nection. This formalization can be used to partially decide undecidable
problems in the dense time semantics by reasoning on the fictitious clock
semantics.

1 I n t r o d u c t i o n

It is now widely recognized that the use of formal methods is very useful (and
often necessary) for developing correct concurrent and reactive systems. This
observation is still clearer when dealing with real-time and hybrid systems. One
of the favorite formalisms to specify and verify concurrent systems are temporal
logics. Temporal logics [10] are modal logics that enable the expression of prop-
erties about a.o. the ordering of events in executions of concurrent programs [14].
These logics are more and more used as tools for the verification of concurrent
finite state programs [11, 6].

The properties that can be expressed in temporal logics are qualitative con-
straints about the ordering of events; quantitative timing constraints cannot be
expressed. Logics that are able to express quantitative requirements are called
real-time logics [5, 4]. Real-time logics have received a lot of attention from the
research community since the early 90s [13, 4, 5, 2, 3]. The formulae of a lin-
ear real-time logic are evaluated in t imed sequences of states. There are two
main ways to introduce real-time information in sequences of states, giving two
different semantics for real-time:

- dense time semantics: in this framework an interval of the positive real num-
bers is associated to each state of the sequence;

- fictitious clock semantics: a global fictitious clock generates special events,
called ticks, at a fixed rate. The granularity of the real-time information
depends upon the rate of the clock.

166

Intuitively the fictitious clock semantics is a kind of abstraction of the dense
time semantics: roughly, the dense real-time information is rounded by the clock
rate. This paper is devoted to the study and the formalization of this relation
between the two semantics.

An appropriate mathematical framework to relate semantic domains is ab-
stract interpretation [7, 8]. In abstract interpretation an abstract domain is re-
lated to a concrete domain by a Galois connection [9]. Properties of Galois con-
nections are used to conduct analysis in the concrete domain by computing in
the abstract domain. To formalize the relation between the dense time and the
fictitious clock semantics, we use a variant of a Galois connection. By similar
principles we show that it is possible to partially decide the model-checking and
satisfiability problems in dense time semantics by computing in the fictitious
clock semantics. Dense time logic is an adequate formalism at the specification
stage, while fictitious clock logic deals easily with implementations. The formal-
ization of the relation between the two semantics is thus also useful to ensure a
proper transition.

The rest of this paper is organized as follows: section 2 introduces the two
semantics of real-time and their respective logics: MTLDT for the dense time and
MTLFr for the fictitious clock. Section 3 develops some definitions of the theory
of abstract interpretation and applies it to formalize the relation between the two
semantics. Section 4 shows how to partially decide whether a given dense time
formula f is satisfiable by deciding the satisfiability of a related fictitious clock
formulae $5 f or $5] . Section 5 extends the approach to partially decide the
model-checking in the dense time semantics. Due to the lack of space, the proofs
are not presented in this paper, the interested reader can find them in [16].

2 The two semantics and their logics

2.1 T h e d e n s e t i m e s e m a n t i c s

In the dense time semantics, time is modeled by the real numbers 1. State evolves
with time: we represent this by a function from instants, i.e. real numbers, to
states. As we are interested in discrete event systems, i.e. systems that evolve
from state to state by non continuous changes, we can pair each state s of the
system with the interval of time during which the system remains in this state s.
A model of a system execution is an infinite sequence of couples (ss, Is) where ss
is a description of the System state and Is is the interval of real time during which
the system remains in the i th state of the system. It is clear tha t this numbering
is only conventional, hence repetition (stuttering) of states is irrelevant.
N o t a t i o n . Let I be an interval, i.e. a non-empty convex subset of the positive
real numbers ~+: l(I) , respectively r (I) , denotes the left, respectively the right,
end bound of the interval I.

1 Note that the rational numbers can also be used; the property needed is the denseness
of the domain, i.e. between two time points there is always a third point.

167

D e f i n i t i o n 1. I~ n, I~n , . . . , l m , . . , is a s e q u e n c e o f i n t e rva l s that partitions
I~ + iff:

1. Vi > 0 .r(I i) = l(/ i+l) a n d / / [' l / i + 1 = ~;

2. U i / / = N + .

The second point of the definition ensures that the time has no bound. It
excludes executions where the system executes an infinite number of changes in
a finite amount of time. This is called "non-Zenoness" property [1].

D e f i n i t i o n 2. A d e n s e t i m e m o d e l m is an infinite timed sequence of states

8 m I m . . . m = (s~, I~"), (s~, I ~) , . . . , (n , ,,),

where s~ is a subset of the propositions (?) , i.e. s~ C_ IP, that are true in the i th
state of the model m and I m the interval of real time during which the model
m stays in the i th state. Furthermore, I~ n, I{ n, . . . , Iron , " " forms a sequence of
intervals tha t parti t ion N+. Let us note that a dense time model can also be
viewed as a function from N+ to 2 ~'.

We have defined the models of the dense time semantics. We can now define
the logic MTLDT [5, 13].

D e f i n i t i o n 3 MTLDT s y n t a x . A formula of MTLDT is composed of proposi-
tional symbols P, Pl ,P2 , . . . , q , . . . , the usual boolean connectives V and 7, the
qualitative temporal operato r "Until" (U) and the quantitative temporal op-
erators "bounded Until" (U~c). A well-formed formula of MTLoT satisfies the
following syntactical rule:

FormulaOT ::= p [f l V f2 [~ f [f l U f 2 [f lU~cf2
Where ,-~E {<, _<, =, >, >}, p E P ,

f , f l , f2 are well-formed formulae of MTLDT and c E Q+

To define the semantics of the MTLDT logic elegantly, we define the notion of
f F i n e model, adapted from [1]. In the following definitions, we note m ~DT f to
express that m is a model of the SC formula f , (m, i) ~DT f to express that f is
verified in all points of interval I m~ , (m, i, t) ~DT f to express that f is verified
at t i m e t E I F o f m .

D e f i n i t i o n 4 fFine m o d e l s . For a MTLDT formula f , a timed state sequence
m = (s, I) is called I F i n e iff for all i _> 0, for all sub-formulae f l of f , for all
t, t' E I[~: (m, i, t) ~DT f l iff (m, i, t') ~OT f l .

It is important to note that every model m can be refined in a l F i n e model.
It can be shown that a MTLoT formula is satisfiable iff it has a f F i n e model.
The model-m in the following definition, without loss of generality, is considered
to be l l F i n e and 12Fine 2. The semantics that we give to MTLDT presents some

2 Let us note that definition 4 and 5 axe not cyclic since every timed sequence of state
is propositions-Fine.

168

subtle differences from the usual semantics as given in [5]. Our semantics of the
b/operator is invariant to the fact that intervals are open or closed, see [16] for
details. Here is our semantics:

D e f i n i t i o n 5 MTLDT seman t i c s . A MTLDT formula f holds in a dense time
model m at real-time t �9 I m, noted (m, i, t) ~DT f~ iff (by recursion) :

- (m, i, t) DOT P iff p E Sp for p C P;
-- (7"r~,i,t) ~=::DT 351 Vf2 iff (g/~,i,t) ~DT f l or (?~,i,t) >DT f2;
-- (m, i, $) t:::DT ~f iff (Tn, i, $) 4~:DT f;
- (m, i, t) ~DT fLg/f2 iff 3j ___ i such that

1. (m, j)DDT f2
2. Vk : i < k < j : (m ,k) ~oT f l

- (ra, i , t) ~DT fiLl~el2, with wE {<,__}, i f f3 j > i such that
1. (re , j) ~DT f2
2. V k : i < k < j : (m , k) ~ D T f l
3. 3t' E Ia .m : t' -- t -~ C;

-- (re, i, t) ~DT fllg=ef2, iff 3j > i such that
1. (re, j) ~OT f~
2. V k : i < k < j : (m , k) DDTrfl
3. either :

�9 3 t ' E I ~ n : t ' - t = c a n d (m , j) ~ D T f l ;
�9 o r l (I F) - t = c a n d l (I F) e I F .

- (m, i, t) ~DT flbl~cf2, with ,-,�9 {>, >}, iff 3j > i such that

1. (rt%j) DD T f2
2. Vk : i < k < j : (m, k) ~DT f l
3. either :

�9 ~ t ' �9 I F : t ' -- t ~'~ C a n d (re, j) DDT fl ;
�9 o r V t ' � 9 F : t ' - t ~ c .

A formula f holds in a model m, noted m ~:::DT f iff (m, 0, 0) DDT f ; this is the
anchored interpretation [1].

As usual we can define abbreviations: f l A f2 = -~('~fl V -~f2), T = -~f V f ,

Example I Some MTLDT formulae. In the intuitive readings below, we consider
that p and q are state formulae and that the time unit is seconds :

- [:](p -+ 0<2q). A p state is always followed by a q state within two seconds
(bounded response time).

- O(-~E]<2q). q is never true during two seconds consecutively.
- [](p -+ O=aq). A p state is always followed by a q state exactly 3 seconds

later (exact response time).

169

We will now study "stuttering". It allows a simplification of the formalization
of the relation between the dense time and the fictitious clock semantics. A step
is a s t u t t e r i n g s t ep if it links two successive identical states. Two models are
stuttering equivalent, noted Stutt~)T(ml,m2), if ml can be obtained from m2
by deleting and adding stuttering steps. Stutt~) m is an equivalence relation and
defines classes of equivalent models.

T h e o r e m 6. MTLDT is invariant to stuttering:

Stutt~)T(ml, m2) :=~ ((ml, 0) ~DT .f ~=~ (m2, 0) ~DT f)

MTLDT is undecidable [4].

2.2 T h e f ic t i t ious clock s e m a n t i c s

Fictitious clock models are infinite sequences of states, where each state has a
time-stamp which is a natural number. A global clock generates special periodic
events called ticks. Those ticks indicate that time has increased of one time unit.

Example 2. To illustrate the notion of fictitious clock model, let consider the
following sequence of states:

�9 ""-+ {p}3 --+ {P, q}3 __+tick {p, q}4 -+ {P}4 _.+tick {p, q}5 - + ' ' "

In this example the first two states are labeled by the time-stamp 3. When the
system is in the second, a tick takes place, time has increased of 1 time unit i.e.
the time-stamp of the third state is 4.

We avoid the introduction of events in the models for simplicity and adopt
the following convention: if the time stamp of two adjacent states are different,
then the special proposition tick is true in the first state. With our convention,
the sequence of example 2 is represented by:

�9 ..--+ {p} --+ {p, q, tick} --~ {p, q} --+ {p, tick} --+ {p, q} --4 �9 .-

De f in i t i on 7 F ic t i t i ous -c lock m o d e l . A fictitious clock model h is a infinite
sequence of states h = h0, h i , . . . , hn , . . , where hi is the subset of the propositions
that are true in the i th state of h and contains the special proposition tick if the
global clock produces the special event tick just after the i th state. Furthermore
there are infinitely many hi such that tick E hi. (non-Zenoness).

De f in i t i on 8. The t i m e d i f fe rence f u n c t i o n between the i th state and the
jth state of a fictitious clock model h is:TD(h,i , j) = ~{k I i < k < j : tick E hk}.

The syntax of MTLFc is as for MTLDT. Nevertheless, to show t h e intended
meaning, we use in MTLFc temporal operators decorated with ,-~:/4,/4~c, E], 0.

De f in i t i on 9 MTLFc seman t i c s . A MTLFc formula f holds in a fictitious-clock
model h at state i E N, noted (h, i) ~FC f , iff (by recursion) :

170

- (h,i) ~ F c p i f f p E h i f o r p E 7) ;
- (h,i) J:=FC f l VI2 iff (h,i) ~FC f l o r (h,i) ~FC f2;
- (h, i) ~=FC -~f iff (h, i) ~::FC f;
-- (h,i) ~FC f lUf2 iff 3j > i such that:

1. (h,i) h c/2
2. Vk. i _ k < j : (h,k) ~=FC f l ;

- (h, i) ~FC flff~~12 iff 3j > i such that:
1. (h , j) ~Fe f2
2. Vk. i _< k < j : (h, k) ~FC 11
3. TD(h, i , j) ~ c;

A formula f holds in a model h, noted h ~FC f , iff (h, 0) ~FC f ; this is the
"anchored interpretation".

D e f i n i t i o n 10, A step hi, hi+l in a fictitious clock model h is a s t u t t e r i n g s tep
iff tick r hi and hi = hi+l \ {tick}.

Two fictitious clock models are stuttering equivalent, noted Stutt~c (h 1, h2),
if they only differ by stuttering steps.

T h e o r e m 11. MTLFc is invariant to stuttering:

Stutt;c(hl, h2) ::~ ((hi,0) ~FC f r (h2,0) ~FC f)

Example 3 Some MTLFc formulae. The formulae of example 1 have now a dif-
ferent meaning:

- [3(P -+ ~)_<zq). A p state is always followed by a q state before the clock ticks
3 times. Thus this constraint is weaker than the corresponding dense time
constraint.

- [3(-q:]_<2q). At every instant, q will become false before the clock ticks 3
times.

- [~(P -+ ()=3q). A p state is always followed by a q state between the 3 rd and
the 4 th tick of the clock following the p state.

The satisfiability and model-checking problems of MTLFc are decidable.

3 F i c t i t i o u s c l o c k a s a n a b s t r a c t i o n o f d e n s e t i m e

3.1 I n t r o d u c t i o n

A general and elegant framework to relate semantic domains is abstract interpre-
tation. In abstract interpretation terminology, the values of a concrete domain
C are related to the values of an abstract domain A. This relation is formalized
by two functions:

- the abstraction function a that associates to each concrete value c its best
approximation a(c) in the abstract domain;

171

- the concretization/unction 7 which maps each abst ract value a to its con-
cretization 7(a) in the concrete domain.

Here the concrete values will be sets of dense t ime models and the abs t rac t
values will be sets of fictitious clock models. We concentrate now on the math-
ematical background underlying abst ract interpretation. To be useful, the func-
tions a and 7 must have part icular properties:

Definit ion 12 Conservative Connect ion. R = (C, _ c , A, EA, a, 7) is called
a conservative connection if the following conditions are satisfied:

1. The pairs (C , _ c) and (A, ___A/ are partially ordered sets;
2. The functions a : C --+ A and V : A --~ C are monotone;
3. For every c E C, c _Ec V(a(c));

In abs t rac t interpretat ion Galois connections are usually used instead of
conservative connections. Galois connections have the additional proper ty tha t
a (v (a)) _ a. We do not have this proper ty in our framework because the abst ract
domain is imposed.

T h e o r e m 13. I f R = (C, Ec , A, __A, a , V) is a conservative connection then

a(c) _EA a ~ c Ec ~/(a)

Usually, the concrete and abs t rac t domains are sets of sets of concrete and
abs t rac t values. In this context, each element of 2 c represents a concrete proper ty
and each element of 2 A an abst ract property.

3.2 Formalizing the abstraction relation

In this subsection we define formally the relation between the dense t ime and the
fictitious clock semantics. We use an abstract ion and a concretization function.

Definit ion 14. The concrete domain is the set of sets of dense t ime models
(2MOT); on this domain the relation EDT is defined as follows:

C1 EDT 02 r VCl e C1 " ~]c2 e C2 : S tu t t~T(C l ,C2)

Defini t ion 15. the abstract domain is the set of sets of fictitious clock models
(2Mrc); on this domain the relation __UF c is defined as follows:

A1 ___FC A2 t:~ Val E A1 �9 3ae E A2 : Stut t~c(al ,ae)

Before going into details, let us precise the intuition behind this relation. In
the fictitious clock semantics, a global clock delivers information through ticks.
The rate of this clock, noted 5, is the real amount of t ime tha t separa tes two
ticks. 5 gives the granulari ty of t ime in fictitious clock models: the difference
between two instants is rounded by the rate of the clock. Between two ticks we
only know the ordering of states in the sequence and tha t the difference between
two instants in tha t interval is inferior to the rate of the clock.

172

Example 3. Let us consider this fragment of a fictitious clock model

h __~tick {p} _+ {q} _.+tick...

between the two ticks we have no information about the real-time. We do not
know how long the system remains in state {p}, we only know that it evolves to
state {q} before the following tick of the global clock.

Furthermore, when the system is in a given state, we do not know the exact
amount of time it will take for the next tick to be produced. It is only known
that this delay, noted d in the sequel, is strictly inferior to the rate of the clock
(0 < d < 5). To relate the two semantics, we will define the behavior of a
fictitious clock in the dense time semantics. If we consider a model m at t ime
t the behavior of a particular clock is determined by the delay that separates t
of the following tick of the clock and the rate of the clock. The behavior of the
clock is determined in the sense that with d and 5 we can predict the exact time
of all the following ticks. We can now define a function which, given a dense time
model m (concrete model), returns the fictitious model that is its abstraction for
a given global clock of delay d and rate 5. To define the function in an elegant
way, we first put the model in "sliced" form:

D e f i n i t i o n 16 S d'5. A dense time model m respects the slicing induced by the
clock of parameters (d, ~), noted S d,~ (m) iff the following is verified:

Vn _> 0 . 3 i > 0 : r (I ~) = n . 5 + d

T h e o r e m 17. Vm C MDT'Vd'0 ~ d < ~.3m' E MDT : Sd '~ (m ')AS tu t t~T(m,m ')

As stated by the theorem 17 every dense time model m has a stuttering
equivalent model m ~ which respects the special form imposed by a particular
clock (d, 5). We can now define the function that abstracts a given dense time
model for a particular clock:

D e f i n i t i o n 18 Tickln d'a. The predicate Tickln d'~ has the following definition:

Ticklnd'a(I m) ~=~ 3n >_ O. r (I[n) = n . ~ + d

d,• - d D e f i n i t i o n 19 F u n c t i o n fDT~FC" The funcUon fDI=-~FC : MDT ~ MFC is a par-
tial function which maps a dense time model m to its abstraction, a fictitious
model h. The partial function is defined as follows:

Vm E MDT' S d'a(m) :
r d , ~ ,' ",

h = TDT_~F c [m)

Vi. i > 0 : (Ticklnd'~(I/n) --~ hi = s m U {tick} A -~Ticklnd'~(I m) -+ hi = s m)

We can also define the relation which exists between a fictitious clock model
h and its possible concretizations for a particular clock:

173

d,6 D e f i n i t i o n 20 R e l a t i o n RFC_.+DT. The relation ud'~ "FC-~DT : MFC x MDT relates a
fictitious clock model h to its corresponding dense time models for a given clock
(d, 6):

d,6 d 6
Vm �9 MDT" Sd'6(m) �9 Vh �9 MFC : RFC__+DT(h,m) r h = fD~=__+FC(m)

We can now define the abstraction and concretization functions. Those func-
tions are extensions of ~d,~ and ud'~ "DT-+FC "FC-+DT to sets of models. They will be
parameterized by the clock rate 6, but the parameter d of the clock will be con-
sidered as unknown to fit with the semantics of formulae, we only can state tha t
O < d < &

D e f i n i t i o n 21. The a b s t r a c t i o n f u n c t i o n a 5 is a function which maps a set
of dense time models C to its best approximation A, a set of fictitious clock
models, for a given clock rate 6. a E d (C) iff

* I r d , 6 / Ix 3c E C . 3d. 0 _< d < 6 . 3 c ' e MDT" sd'6(c ') A StuttoT(c, e) A a = rOT~FctC)

D e f i n i t i o n 22. The c o n c r e t i z a t i o n f u n c t i o n 76 is a function which maps a
set of fictitious clock models A to its corresponding set of dense time models C
for a given clock rate 6. More formally : 76 : 2 M~c --+ 2 M~ and

Rd,6 , e E "y6(A) r 3a E A . 3d . 0 <_ d < 6 : FC~DT(a,c)

T h e o r e m 23. The concrete domain 2 M~ is pre-ordered by _EDT and the abstract
domain 2 MFr is pre-ordered by EFC.

(2 MDT, ___DT) and (2 MFr __.FC) are pre-ordered sets, they are not partially or-
dered as it is required by the theorem 3 to obtain a conservative connection.
However the preorders __EDT and EFC are constructed with equivalence rela-
tions Stut t ;T and Stutt;c. Those two relations induce the definition of equivalent
classes of models in the two semantics. Sets of those classes are partially ordered
by the set inclusion relation. It can easily be shown that monotonicity of "y~ and
a ~ on those preorders induce monotonicity of ~/6 and a ~ on the partially ordered
sets (A, C) of sets of classes induced by the relations Stut t ;T and Stutt;c. In the
sequel, for simplicity, we will work directly on the preorder instead of on the
partially ordered sets of classes. This is equivalent as the two logics are invariant
to stuttering.

T h e o r e m 24. The structure R -- (2 MDT, ~DT, 2 MFc, _EFc, a 6, .y6) is a conserva-
tive connection.

C o r o l l a r y 25. A s the s tructure R = (2 MDT, __.DT, 2MFc, ____.FC, 0~6, ~'6) is a conser-
vative connection, we have that:

V 6 > 0 . V U E 2 MDT,AE 2 MFc :

d (C) EFC A ~ C __EDT ~/~(A)

174

3.3 Order of approx imat ions

In abstract interpretation, a value a of an abstract domain A is an approxima-
tion of a value c of an concrete domain C iff c E c if(a). A notion of order of
approximation can be defined as follows:

Definition 26 Order of approximations. An abstract value al is a better
approximation for the value c that the abstract value a2 in the connection in-

duced by (a, 7) iff:

1. c ___c "y(al) and c ___c "y(a2)
2. (al) _Ec (a2)

This order can be directly applied to our parameterized connection (~ , ?~).
More interesting is the notion of precision induced by the parameter 5 of the
connection. It seems intuitive to assert that if an abstraction is obtained by a
more precise clock (51 < 52) then this abstraction is more accurate. Formally,
this is stated by 51 < 52 ~ ?~1(~1(c)) E_DT ?~2(a~(C)). But this assertion is
not valid. Let us consider the following counter example:

Example 5. Let m be the following model:

,~ = ({}, [0, 8))({p}, [8, 8])({}, (8, 16))({p}, [16, 16J)---

In m, the proposition p is true at each multiple of 8. Let C be the singleton {m).
If we choose 51 = 7 and 52 = 9 (51 < 62) we have that:

_ (~2(C) ~FC ~0<lP . In fact, as in m there is a p at each multiple of 8,
two consecutive p states are at most separated by 1 tick. This implies tha t

(c)) hot D0<lsp.
- ~#~ (C) ~FC ~(~<2P- Furthermore, as in m p is t rue at each multiple of 8,

d,6 there is a clock (dl, 5) such that h = fDT-+FC (m), with:

h = { } ._~tick { } _.+tick {p } ~ { } ~tick { } __~ {p } ._~ { } __~tlck . . .

this model is obtained by the clock d = 0 and 5 = 7. Now we can easily see
that the model m'

m' = ({}, [0, 6))({}, [6, 13])({}, (13, 20))({p}, [20, 20])({}, (20, 27]) . . .

can be obtained by concretizing the model h with a clock d = 6, 5 = 7.
Thus m' belongs to 7 ~1 (a 6~ (C)). Clearly there is no model m" equivalent
to m' modulo stuttering steps that belongs to ~2(a~2(C)), as in this set
all models respect D~<lsp, which is not the case of m'. Thus, we have that

(C)) (C)).

To refine the approximation we must strengthen the requirement. The fol-
lowing theorem establishes tha t we obtain a refinement if 52 ~ for n > 0.

T h e o r e m 27. I f we have that 51 : ~ with n E N + then we have that:
n

.-,f51 (0~61 (C)) ~---OT ~52 (O~f12 (C))

175

4 T h e s a t i s f i a b i l i t y p r o b l e m

In this section we apply the development of previous sections. We show that
it is possible to reason on the satisfiability of MTLoT formulae by deciding the
satisfiability of related MTLFc formulae. The satisfiabflity problem of a formula
f is to decide whether there exists a model that satisfies f . The satisfiability
problem is undecidable for MTLoT but decidable for MTLFr [4]. As we have
defined a formal link between the two semantics, we can use this link to infer
satisfiability of MTkoT formulae by computing satisfiability of related MTLFr
formulae:

T h e o r e m 28. Let f l be an MTLDT formula and f2 an MTLFc formula:

1. if ~/~(ModFc(f2)) EOT ModoT(fl) 3 and ModFc(f2) ~ ~ then ModDT(fl)
r and f l is satisfiable.

2. if ~(ModoT(f~)) U FC ModFc(f2) and ModFc(f~) = 0 then ModoT(f~) =
and f l is not satisfiable.

The theorem 28 gives us the basis for a partial automatic treatment of the
satisfiability problem in MTLoT, provided we define which formulae of MTLFr
must be used for a given MTLDT formulae. In the point 1 of theorem 28 the for-
mulae f2 is a kind of under-approximation of fl . On the other hand, in the point
2, f2 is an over-approximation of f l . We define now two constructive functions:
one noted J'~, which maps a MTLDT formula to its over-approximation in MTLFc,
the other noted $~, which maps a MTLoT formula to its under-approximation.

Defini t ion 29. The o v e r - a p p r o x i m a t i o n j'~ and the unde r - app rox ima t ion
$~ are defined inductively as follows:

_ t ~
_ , r~

- $ ~

_ . t~

- $ ~

_ ~

_ ,r~

_ , r~

- $ ~

(p) = p i f p E P ;
(71 v/2) = t ~ Av t~ 72
(-~fl) = -~ ~a fl
(fluff) = f flu f f2
(flU<c f2) =Y flu<_r~l Y f~
(I,u<~I~)
(I1u=oI~)
(I1U>_oI~)
(I1u>J~)

=f/lU=r~] f /~v f/lZ~=L~ j f / 2
=T ~ flZ~L~ J t ~ f2
=Y IIZ~_>L~ j Y/2

-- $ ~ (p) = p i f p E P ;

- $~ (f l v f2) =$~ f l y $~ f2
- $~ (~ f l) = ~ t ~ f l

- ~ (llu<_~f2) =4~ s ~ f~

3 ModFr = {m I (m,0) ~FC f} and ModoT(f) = {m I (m, 0,0) ~or f}.

176

-- J.5 (f l U - ~ c f 2) = ~F~] (-~ 5 fl)A ~:F~] (~. 5 f2)A ~_-L~j (JJ f2)
- $~ (IIU>_~I2) =$~ fl/~>r~]+l $~ f2
- ~ (I~U>~I~) =~]~U>-r~l+~ ~ I2

T h e o r e m 3 0 . For all dense time formula f , we have:

- 75(ModFc($ ~ f)) _DT MOdDT(f)
-- aS(ModDT(f)) _EFC ModFc($ ~ f)

C o r o l l a r y 31 . For all dense time formulae f , we have:

- if ~ f is not satisfiable then f is also not satisfiable
- if .~ f is satisfiable then f is also satisfiable

4.1 A n exam p le

To i l l u s t r a t e the app l i cab i l i t y of the t h e o r y deve loped so far, we t r e a t here an
non- t r i v i a l p r o b l e m which is p a r t of the C S M A / C D pro tocol . This p ro toco l is
used to share an un ique c o m m u n i c a t i o n m e d i u m a m o n g severa l compute r s . T h e
pr inc ip le of the p ro toco l is i l l u s t r a t ed by the fol lowing scenar io:

Example 6 CSMA/CD. When a computer wants to send some message, it tests if the
line is busy. If not, it begins to send; on the contrary, if the line is busy, the computer
waits. A co l l i s ion occurs when more than one computer are t ransmit t ing at the same
time. The delay of propagation plays an impor tant role in the protocol: If one station
begins to send, the other stations see that the station is sending, not directly but at
most c~ t ime units after, where c~ is the propagation delay. Consequently, a collision may
occur between 0 and a t ime units after a computer has begun to send. The noise of the
collision can also take a t ime units to reach the sending computer. A computer is only
sure that no collision will occur after 2a time units. A sending which is interrupted by
a collision is lost. The sender of such a message must know that the message was lost.

We now formalize a part of the protocol in MTLoT. This set of axioms, noted S,
describes the behavior of a computer taking part in the network:

1. -,Sending
Initially the computer is not sending.

2. E](C --40<_~SeeC)
A collision is always perceived within 2a, 2 times the maximal propagation delay.

3. EJ(SeeC --+ -, EndSend)
If a collision is detected then the sending is lost.

4. [](SeeC V EndSend --+ -,Sending)
If a computer ends sending or detects a collision then it does not send anymore.

5. [](BeginToSend --+ Sending)
If a computer begins to send something, Sending becomes true.

6. [](Sending --+ SendingLt(EndToSend V SeeC))
If a computer is sending, it continues to send until it has sent the entire message
or it has detected a collision.

177

7. D(~Sending --4 ~SendingblBeginToSend)
A computer evolves to state Sending only if it begins the sending of a message.

8. [3(BeginToSend ~ D<_~EndToSend)
A sending lasts at least)~.

9. r ' l(D<a (Sending A ~C) --+ -,CLlEndSend)
If there is no collision after a, then no collision occur during this sending.

This set of axioms defines a solution for the following requirement R:

N~((Sending A SendingHEndToSend) A C)

expressing tha t a computer cannot succeed in sending if a collision has occurred during
this sending. This requires that the computer is always aware of the lost of one of its
messages due to a collision. In the ethernet protocol the parameters are a = 25.6#s and
)~ --- 782#s. To show tha t the solution proposed ensures R, we must prove that S --~ R
is valid. Which is equivalent to show that -~(S --+ R) is not satisfiable. There does not
exist an algorithm to check this in MTLDT but by the corollary 31 if we can establish
that 1 "~ -~(S -~ R) is not satisfiable for some 5 then -~(S ~ R) is also not satisfiable.
We have tested the satisfiability of t "~ -~(S --~ R) with the implementation of [15]. For
the parameters 5 = 50#s and also for 5 = 150#s the automatic procedure can establish
the non-satisfiability of 1 "~ -~(S --~ R) and thus, by corollary 31, tha t S -+ R is valid
in the dense t ime semantics. On the other hand, the validity of S -+ R can not be
established with a clock rate 5 - 500#s: in this case, the granularity of t ime is not fine
enough. Thus if the non-satisfiability or satisfiability of f can not be established by
corollary 31 with clock rate 51, we can retry with a more precise clock rate 52 < 51.

5 The model-checking problem

T h e mode l -check ing p r o b l e m is to decide whe the r a p r o g r a m P satisfies a given
p r o p e r t y expressed in a t e m p o r a l logic. Here we are in te res ted in ver i fying t h a t
a concur ren t p r o g r a m exh ib i t i ng r ea l - t ime behav io r s verifies some p r o p e r t y ex-
p ressed as a r ea l - t ime logic formula . A rea l - t ime p r o g r a m P can be mode l e d by

a t i m e d a u t o m a t o n which defines a set of t i m e d sequences of s ta tes : the mode l s
of i ts poss ib le execut ions . As for the logic MTL, we can define the seman t i c s of
t i m e d a u t o m a t a in the dense t ime f r amework or in the f ic t i t ious clock f ramework .

lo 11 12
x < 2 x > l A x ~ 5

F i g . 1. T i m e d a u t o m a t o n A.

178

A timed au toma t a is a finite state machine augmented with clocks and clock
constraints. A clock can be reset simultaneously with any transition. For in-
stance, in the t imed au tomaton of figure 1 the clock x is reset each t ime the
au tomaton evolves from location 10 to location 11. In the dense t ime semantics,
at any t ime t E]~+ the value of a clock is the t ime elapsed since the last t ime it
was reset. In the fictitious clock semantics, the value of the clock is the number
of ticks since the clock was reset. In an t imed automaton, locations are decorated
by:

- propositions: a location l is labelled by the propositions tha t are true when
the au tomaton stays in I. For instance, in location 11 of the au tomaton of
figure 1, the proposit ion q is true.

- clock constraints: those constraints impose real-t ime requirements on the be-
havior of the automaton. In our example, the au tomaton can stay in location
12 only if it has crossed the edge from 10 to I1 at most 5 t ime units and at
least 1 t ime unit earlier. In the fictitious clock semantics, the interpretat ion
is different: the au tomaton can stay in location 12 only if the clock has pro-
duced at least 1 tick and at most 5 ticks since the au tomaton has crossed the
edge from l0 to ll for the last time.

Having the intuition of what a t imed au tomaton is, we can define it formally:

D e f i n i t i o n 32 C l o c k c o n s t r a i n t s . For a set of clocks C, the set of t iming
constraints is defined inductively as follows: p ::= x ~ c] Pz V p2 I pl A p2,
wE {<, _<, =, >_, >}, Pl and P2 are well-formed t iming constraints, c is a rational

number. The set of constraints is noted A Q+ (C).

D e f i n i t i o n 3 3 . A T i m e d A u t o m a t a A is a tuple (L, Lo, C , E , s 1 6 3 1 6 2
where:

- L is a finite set of locations;
Lo c_ L is the subset of initial locations~

- C is a finite set of clocks;
- E C L x 2 C • L a set of edges. An edge (11,),, 12) represents a transit ion

from location ll to location 12, J~ is the subset of clocks tha t are reset when
crossing the edge;

- s : L --~ 2 p is a labelling function which labels a location with the set of
a tomic propositions tha t are true in tha t location;

- s : L -~ A Q+ is a labelling function which assigns to each location a
constraint of A Q+ on the value of clocks that should be verified when staying
in tha t location;

- • is a set of sets of accepting locations.

Timed au toma ta also admit two semantics: in the dense t ime semantics clocks
are of type real whereas in the fictitious clock semantics they are of type natural.
The evolution of their value along t ime in a run of a t imed au tomaton is formally

179

described by the two functions DTTI and FCFI, o n e for each semantics. 4 But before
defining them let us precise the notion of run:

D e f i n i t i o n 34. A D e n s e T i m e R u n is an infinite sequence

= (l~, x~) _~o (l~, I~) - ~ . . - q~, I~) - ~

- li are locations;
- I o I 1 " �9 �9 I ~ �9 �9 �9 is a sequence of intervals that part i t ion ~+ ;
- hi are sets of clocks to reset.

D e f i n i t i o n 35. A F i c t i t i o u s C l o c k R u n is an infinite sequence

r = lo ~) o ~ l~ ~) ~ . . . l~ ~x~

- li are locations;
- t i =- tick if there is a tick during the transit ion from li to //+1 otherwise

l i = ~ t i c k ;
- hi are sets of clocks to be reset.

D e f i n i t i o n 36 C l o c k I n t e r p r e t a t i o n . The clock interpretat ion is defined as
follows:

- in the d e n s e t i m e s e m a n t i c s : the clock interpretat ion in t ime t E I r noted
DT~/~, along a run r respects the following definition:

t - r (I ~) if x E hj and Vk . j < k < i : x (J h k (t �9 I r)
V x � 9 t i f V j : 0 _ < j < i : x ~ h j

- in the f i c t i t i o u s c lock s e m a n t i c s : the clock interpretat ion in s tate r i of a
fictitious clock run r respects the following definition:

Yx �9 C :FC 7/~(x) = T D (r , j , i) where
{ ~ i fVk .0_< k < i : x f h k

J = + l i f x E h z A V k . l < k < i : x C h k

D e f i n i t i o n 37. A d e n s e t i m e r u n r is a c c e p t e d by A iff it respects the fol-
lowing requirements:

- I n i t i a l i t y : Ig �9 L0;
- C o n s e c u t i o n : Vi > 0 : (/~, hi, lr+l) �9 E or l i = / /+1 and hi = 0 (stuttering);
- T i m i n g c o n s t r a i n t s : Vi > 0 . Vt E I i : OTT/~ ~ s
-- A c c e p t a n c e : for all Fi �9 9 v, there exists a location l i �9 F i which appears

infinitely often along r (Bfichi condition).

The t imed sequence of states (dense t ime model) m corresponding to an run r
is defined as follows:

d,5 sd,5 4 In the following we use fOT-+FC, ... on runs instead of models, their extension to
runs is obvious.

180

- I n t e r v a l : Vi >_ 0 : I m = it;
-- A d e q u a t i o n : Vi _> 0 : s~ * = Z:7,(I~);

The set of dense t ime runs of A is noted Runom(A) and the set of corresponding
dense t ime models Exeet)T(A).

D e f i n i t i o n 38. A f i c t i t i ous c l o c k r u n r is a c c e p t e d by A if it respects the
following requirements:

- T i m i n g c o n s t r a i n t s : Vi > 0 :FC q~ ~ /:c(li);
-- Initiality, consecution and acceptance are the same as in definition 37.

The fictitious clock model h = ho ,h l , . . . , hn,"" corresponding to an run r is
defined as follows:

- T i m i n g : Vi _> 0 : tick E hi r ti = tick;
- A d e q u a t i o n : Vi _> 0 : hi\{tick} =/~7,(li);

The set of fictitious clock runs of an au tomaton A is noted RUnFC (A) and the
set of corresponding models ExecFc (A).

As we already said, the model-checking problem is undecidable in the dense
t ime semantics. But as for the satisfiability problem of MT/DT, we claim tha t the
dense t ime model-checking problem can often be decided by deciding a related
problem in the fictitious clock semantics. The following theorem is the basis for
a partial decision procedure for the model-checking problem in the dense t ime
semantics:

T h e o r e m 39. The automaton A verifies the dense time property f if:

1. ExecoT (A) EDT ,,/6 (ExecFc (1~ a A))
2. 7a(ModFc($ ~ f)) _OT MOdDT(f)
3. ExecFc(~ ~ A) _FC ModFc($ a f)

This theorem is of practical interest because exact real-time information is
often not necessary to prove interesting properties of real-time systems. I t re-
mains us to define formally the function ~ which must return a fictitious clock
over-approximation of a given dense t ime automaton:

D e f i n i t i o n 40. The function ~ maps a dense t ime au toma ta A to its fictitious
clock o v e r - a p p r o x i m a t i o n A~:

- L = L ' , L o = L ' o , C = C ' , E = E ' , s = s = ~';
- For all the locations l 6 L, we define the function ,/z6 as follows:

�9 induction cases:
�9 z:c(1) = pl v p2 p l V p2;
�9 s ---- Pl Ap2 =r /~ (I) =,/z~ plA /,z~ P2;

�9 base cases:
(x < c) = (x _<

181

(= < c) = (= _< r l)
�9 (= = c) = (= = v = = L~J)
�9 ~ a (x _> c) = (x _> L~J)
�9 p'~ (x > c) - - (= > L~J)

This function relaxes the constraints in the fictitious clock automaton.

T h e o r e m 41. EXeCDT(A) _EDT ~ya (EXeCFC (1~ ~ A))

In [12] Henzinger et al have studied how to use digital techniques to decide
problems in the dense time semantics. Their work is not easily comparable to our
because of the rather different semantical models used in the two works. Never-
theless we can assert tha t we propose a more general approach while in [12] they
propose more preservation for restricted properties, i.e. digitizable properties,
see the paper for details.

6 C o n c l u s i o n

The formalization presented in this paper clarifies the common intuition accord-
ing to which the fictitious clock semantics can be seen as an abstraction of the
dense time semantics. A conservative connection between the two semantics has
been defined. We have presented a m e t h o d to partially decide the logic MTLDT.
Another way to obtain an algorithmic approach to dense time is to define a
decidable subset of MTLDT, for instance: MITL [1]. The postulate on which our
approach is based, which is also a postulate of abstract interpretation in general,
is that the exact real-time information is seldom necessary to prove interesting
properties of systems. On the other hand the approach of MITL is to restrict
the logic but all the exact real-time information is preserved during verifica-
tion. It would be interesting to compare pragmatically the applicability of the
two approaches. To our knowledge' there is no implementation of satisfiability
and model-checking of MITL formulae. An important problem to implement effi-
ciently decision procedures in dense time is the absence of a good data structure
which would allow combining discrete information (system state) and continuous
information (dense time). In our proposal this problem disappears and symbolic
data structures as Sharing Trees or BDDs can be used. This has already given
good results for a satisfiability checking procedure [15].

Some designs or implementations use a global clock to rule their real-time
behavior. The fictitious clock semantics is well-suited to study those systems. On
the other hand, the dense time semantics is natural in early phases of program
development and should be preferred to fictitious clock in this context. If the
two semantics are used in the development of a same program, it is important
to have a formal link between the two semantics. Our parameterized connection
is such a formal link.

R e f e r e n c e s

1. 1~. Alur. Techniques f or Automatic Verification of Real-Time Systems. PhD thesis,
Stanford University, 1991.

182

2. R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time systems. In
Proceedings of the 5th Symposium on Logic in Computer Science, pages 414-425,
Philadelphia, June 1990.

3. R. Alur and T.A. Henzinger. Logics and models of real time: a survey. In
J.W. de Bakker, K. Huizing, W.-P. de Roever, and G. Rozenberg, editors, Real
Time: Theory in Practice, Lecture Notes in Computer Science 600, pages 74-106.
Springer-Verlag, 1992.

4. R. Alur and T.A. Henzinger. Real-time logics: complexity and expressiveness.
Information and Computation, 104(1):35-77, 1993. Preliminary version appears in
the Proc. of 5th LICS, 1990.

5. R. Alur and T.A. Henzinger. A really temporal logic. Journal of the ACM,
41(1):181-204, 1994. Preliminary version appears in Proc. 30th FOCS, 1989.

6. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic
model checking: 1020 states and beyond. In Proceedings of the 5th Symposium on
Logic in Computer Science, pages 428-439, Philadelphia, June 1990.

7. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Con-
ference Record of Fourth A CM Symposium on Programming Languages (POPL '77),
pages 238-252, Los Angeles, California, January 1977.

8. P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic
and Computation, 2(4):511-547~ 1992.

9. P. Cousot and R. Cousot. Comparison of the Galois Connection and Widen-
ing/Narrowing Approaches to Abstract Interpretation (Invited Paper). In
M. Bruynooghe and M. Wirsing, editors, Proceedings of the Fourth International
Workshop on Programming Language Implementation and Logic Programming
(PLILP'92), Lecture Notes in Computer Science, Leuven, August 1992. Springer-
Verlag.

10. E.A. Emerson. Handbook in Theoretical Computer Science, Formal Models and
Semantics, chapter Temporal and Modal Logic, pages 995-1072. Elsevier, 1990.

11. R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic ver-
ification of linear temporal logic. In Proc. 15th Work. Protocol Specification, Test-
ing, and Verification, Warsaw, June 1995. North-Holland.

12. T.A. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks? In
W. Kuich, editor, ICALP 92: Automata, Languages, and Programming, Lecture
Notes in Computer Science 623, pages 545-558. Springer-Verlag, 1992.

13. Ron Koymans. Specifying message passing and time-critical systems with temporal
logic. LNCS 651, Springer-Verlag, 1992.

14. A. Pnueli. The temporal logic of programs. In Proc. 18th IEEE Symposium on
Foundation of Computer Science, pages 46-57, 1977.

15. J.-F. Raskin. Model-Generation of a Fictitious Clock Real-Time Logic: A Symbolic
Decision Procedure Using Sharing-Trees. Research Paper RP-09-96, Computer
Science Department, FUNDP, Namur (Belgium), March 1996.

16. J.-F. Raskin and P.-Y. Schobbens. Real-Time Logics: Fictitious Clock as an Ab-
straction of Dense Time. Research Paper RP-17-96, Computer Science Depart-
ment, FUNDP, Namur (Belgium), September 1996.

