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A b s t r a c t .  Message Sequence Charts (MSCs) are increasingly used in 
software engineering methodologies and tools to capture, for instance, 
system requirements, test scenarios, and simulation traces. They have 
been standardized by ITU-T in Recommendation Z.120 [IT96]. However, 
various aspects Of environment behavior remain underspecified in MSCs, 
e.g.i the presence of resources for inter-process communication and the 
coordination of concurrent processes at points of control branching. Such 
underspecifications can result in ambiguities in an MSC specification and 
discrepancies between an MSC specification and its implementation. In 
this paper we characterize two consequences of harmful underspecifica- 
tions: process divergence and non-local branching choice. We also present 
two syntax-based analysis algorithms that detect both problems. 

1 Introduction 

The intuitive, graphical notation of Message Sequence Charts (MSCs) increased 
their popularity within the software engineering community. They have already 
been adopted within several software engineering methodologies and tools for 
concurrent, reactive and real-time systems. They are used to document system 
requirements that  guide the system design (e.g., [SGW94]), describe test cases 
and scenarios (e.g., [Jea92,BR.95]), express system properties that are verified 
against SDL specifications (e.g., [ALHH93]), visualize sample behavior of a sim- 
ulated system specification (e.g., [SGW94,ALHH93]), and to express legacy spec- 
ifications in an intermediate representation that  helps in software maintenance 
and reengineering [IIK+91]. 

The syntax of MSCs is defined by the ITU-T in Recommendation Z.120 [IT96]. 
An MSC essentially consists of a set of processes that run in parallel and ex- 
change messages in a one-to-one, asynchronous fashion. Several approaches have 
been proposed to formalize the semantics of MSCs. They range from adopt- 
ing the policy of "what-you-see-is-what-you-get"(e.g., [LL95,ALHH93,IIK+91]) 
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to incorporating constraints pertinent to implementation, e.g., architecture and 
queuing protocols [AHP96]. In addition, these approaches differ in terms of their 
techniques: they derive the traces of an MSC through a translation to either a 
process algebra [MR94,IT95], or from a global state automaton that is obtained 
via a translation into an algebraic structure called Message Flow Graph [LL95]. 

To accommodate industrial-size applications, the standard Z.120 [IT95] 
evolved to allow the description of a large system by composing basic MSCs [IT96]. 
The resulting graphical language, called High-Level MSCs (hMSCs), provides for 
operators to connect basic MSCs to describe parallel, sequential, iterating, and 
non-deterministic execution of basic MSCs. In this paper, we call an hMSC to- 
gether with its referenced bMSCs an MSC specification. 

While the syntax of hMSCs has been well defined in Z.120, the introduction 
of the sequential and non-deterministic execution can lead to unimplementable 
MSC specifications or implementations with behavior unintended in the MSC 
specifications. More specifically, an MSC specification can lead to an implemen- 
tation with discrepant behavior due to two problems we call process divergence 
and non-local branching choice. These two problems are in fact independent of 
the semantics of basic MSCs, and rather are the result of under-specification of 
two factors: 1) resource related constraints, e.g., processor speed, system archi- 
tecture and queuing protocols, and 2) the "environment" from the point of view 
of individual processes in an MSC specification. 

msc MSC1 
P1 P2 

= ~  reql 

rea2 
[ Msc, 

t 

pm~slc M I P2 

msc M2 
P1 P2 

Y 
[ M 1 

M1 l I  .2  

ix 2x 
(a) (b) 

F i g .  1. MSC specification with:  (a) process divergence; (b) non-local  branching choice 

Consider the MSC specification of Figure 1 (a). At this level of abstraction, 
the visual interpretation is that the basic MSC ltSCl is iteratively executed. 
From the point of view of process P1 in the basic MSC MSCi, this process will re- 
peatedly send messages reqi  then req2 to the process P2. Since communication 
is asynchronous and there is no explicit information about the communication 
link, queuing strategy, nor processor speed, an interpretation of this MSC spec- 
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ification can allow process P l to run faster than process P2. We call such a 
behavior process divergence. As a consequence Pl may overflood P2 with mes- 
sages r e q l  and req2.  Such system behavior is usually unintended in the MSC 
specification. In addition, its semantic implications, e.g., presence of buffers, are 
not explicitly accounted for in the MSC specification. Furthermore, it can lead 
to an implementation that  behaves differently from the specification, e.g., the 
implementation loses multiple copies of r e q l  and req2,  or overwrites multiple 
copies of a message. 

The second problem that  may impede the implementation of an MSC specifi- 
cation is non-localbranching choice. Consider the MSC specification of Figure 1 
(b) where after behaving as described in the basic MSC ~I, the system has a 
choice between behaving either as described in the basic MSC M1 or M2. An 
implicit assumption in this interpretation is that the processes P1 and P2 will 
synchronize their choices between behaving either as in M1 or M2. However, when 
examining the two processes, one sees that  this implicit assumption can not be 
implemented, in a modular way, without introducing the unintended behavior 
where process P i chooses to branch left and send an a message while process P2 
chooses to branch right and send a b message. 

Currently, basic MSCs can be analyzed for deadlocks [LS], race conditions 
and timing inconsistencies [AHP96]. These analysis techniques deal only with 
basic MSCs. In this paper, we syntactically characterize process divergence and 
non-local branching choice. Our analysis complements the analysis presented 
in [AHP96] as it is another step towards ensuring that  an MSC specification is 
implementable in a modular fashion and without discrepancies. 

2 Message Sequence Chart Specifications 

In this section, we briefly describe the syntax and semantics of the subset of 
basic and high-level MSCs we use throughout the paper; for details the reader 
is referred to [LL95,Leu94]. 

2.1 Basic Message Sequence Charts 

Im;  .2 i 

Fig. 2. Basic MSC (left) and corresponding basic MFG (right) 

A basic MSC  (bMSC) describes finite executions of concurrent processes in a 
system; see Figure 2 for an example. Each vertical line is delimited by a start 
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and end symbol and represents one process in the system. (Recommendation 
Z.120 [IT96] calls a process an instance.) Each horizontal or sloping arrow de- 
scribes a message sent from the process at the tail of the arrow to the process at 
the head. The intersections of the vertical lines and arrow tails and heads rep- 
resent send and receive events, respectively. Communication is one-to-one and 
asynchronous, i.e., sending a message is non-blocking. Processes have disjoint 
name labels, and message arrows have labels that  denote message types. Con- 
trol flows independently within each process from the start  symbol to the end 
symbol. 

The behavior of a bMSC is the set of sequences (or traces) of send and receive 
events. It is deduced from the order of events within each process in the bMSC 
together with the causal precedence between sending and receiving a message. 
Within each process, events are totally ordered according to their position from 
the start  to the end symbols on the process axis. In addit ion,  for each message 
in the bMSC, its send event is ordered before its receive event. In general, the 
overall events in a bMSC are partially ordered. 

In this paper, to interpret bMSCs we follow the two-step approach presented 
in [LL95]: First translate the bMSC into an algebraic structure called Message 
Flow Graph (MFG); then derive the reachable states and communication events 
that  the MFG (and thus bMSC) can execute via a labeled transition system 
called Global State Transition Graph (GSTG).  Appendix A formally defines 
MFGs. We next informally describe the correspondence between a bMSC and 
an MFG, as well as the concept of a GSTG. For details, refer to [LL95]. 

Let M be a bMSC; its corresponding message flow graph is a directed graph 
FM --= (,-q, C, he, sig, ST, 8type, ET,  etype). Each node represents a communica- 
tion event in M, i.e., arrow tail or head in M. Each node is labeled and has a 
type that  consists of two parts: 1) the type of the corresponding communica- 
tion event: ! for a send event and ? for a receive event; and 2) the type of the 
corresponding message arrow which is drawn from ST.  The type of a node is 
retrieved with the function etype and belongs to the set E T  = {!, ?} • ST.  

Nodes in the MFG FM are connected by two types of edges: 1) next event 
edges, set ne, which reflect the control flow between communication events within 
each process of M; and 2) signal edges, set sig, which reflect the causal prece- 
dence of a message's send and receive events. Each signal edge in the set sig 
is labeled with the corresponding message type from S T  and which is retrieved 
with the function s~ype, see Figure 2 for an example of MFG of a bMSC. 

We call an MFG that  corresponds to a basic MSC a basic MFG (bMFG) 1. 
Note that  in a bMFG, there is a one-to-one mapping between the messages (i.e., 
arrows) in the bMSC and the set sig of signal edges. In addition, the set ne of next 
event edges is a non-branching and cycle-free relation. Further, each maximal- 
connected components through the ne relation corresponds to a process; hence 
we can also talk about  a process in the bMFG and we use ptype(n) to denote 
the process to which belongs a node n in the bMFG. 

1 A basic MFG is called simple MFG in ILL95]. 
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One of the advantages of MFGs is that  they allow us to distinguish between 
different occurrences of a message with the same type in a bMSC. Another 
advantage is that  they provide an algebraic structure f rom which we can derive 
the behavior of a bMSC, i.e., all possible states and communicat ion events that  
the bMSC can execute. 

The behavior of a bMSC is described by the GSTG.  Informally, a state of the 
GSTG consists of a subset of next-event edges, and a subset of signal edges each 
of which represents one copy of a message sent but not yet received. In any state, 
the enabled events, i.e., can be executed, are events tha t  result f rom two cases: 
1) a send event whose next-event edge is in the state, and 2) a receive event 
whose incoming signal edge and at least one next-event edge is in the state. 

A transition in the GSTG consists of sending or receiving an enabled event. 
The result of a transition on sending an event augments  the target  state with a 
signal edge that  indicates a message was sent but not yet received. A transit ion 
on receiving a message removes the corresponding signal edge from the target  
state. One note to make about  this semantics is that,  in accordance with Z.120 
Annex B [IT95], it does not support  any queuing mechanism and assumes that  
multiple copies of a sent message are disabled by one reception of the message. 
The reader is referred to [LL95] for a detailed, formal description of how a 
G S T G  is derived f rom an MFG. In the remainder of this paper,  we denote a 
transit ion from state q to state q~ and label a as q ~ ~ ql. 

2.2 H i g h - L e v e l  M S C s  a n d  M S C  S p e c i f i c a t i o n s  

Reactive systems often consist of non-terminat ing and non-deterministic pro- 
cesses. To provide for such systems, the recommendat ion Z.120 suggests High- 
Level M S C s  (hMSCs) to compose basic MSCs to specify systems with recursive 
and non-deterministic behavior. An hMSC is a digraph where nodes refer to 
bMSCs and edges indicate possible continuations of bMSCs by others. In ad- 
dition, a n  hMSC has two distinguished types of nodes: one required start node 
tha t  indicates the beginning o f  the specification, and optional end nodes that  
indicate the terminat ion of the specification. 

To simplify the presentation of our analysis technique, in the sequel we as- 
sume that  nodes in an hMSC only refer to bMSCs. However, our analysis can be 
easily extended to allow hMSCs with nodes that  refer to other hMSCs as defined 
in recommendat ion Z.120 [IT95]. 

D e f i n i t i o n  1. An M S C  specification is a structure S = (B, V, sac, re f )  where 

- B is a finite set of bMFGs; 
- V = T U It2_L a finite set of nodes part i t ioned into the three sets of singleton- 

set of start node, in termediate  nodes, and end nodes, respectively; 
- suc C (T U I)  • V the relation which reflects the connectivity of the hMSC 

of S such that  all nodes in V are reachable from the start  node; and 
- r e f  : I ,  ~ B a function that  maps  each intermediate node to a bMFG. 
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The behavior of an MSC specification is obtained in a fashion similar to the 
behavior of a basic MSC. The bMSC to bMFG translation is extended to ac- 
count for the hMSC edges which connent referenced bMSCs. When the hMSC 
contains a loop or a branching the resulting MFG also contains loops and branch- 
ings and therefore it is not a basic MFG. Figure 3 illustrates an example of an 
MFG for an MSC specification. The GSTG of the resulting MFG is derived 
while accounting for possible branching via a history variable to register the 
branching decisions made by any process that  is ahead of others. For details, 
refer to [LL95,LLar,BAL96]. 

msc MSCI 

.• 

~ ~2 DR 

(a) (b) 

Fig. 3. (a) MSC Specification; (b) its corresponding MFG 

3 Deadlock Detection in MSC Specifications 

In this paper, the necessity of our syntactic characterization of process diver- 
gence and non-local branching choice in MSC specifications will make use of the 
reachability of a problematic state. Reachability can be hampered by deadlocks. 
Since semantic deadlock detection is expensive, one is therefore interested in 
specifying syntactic ways to detect deadlocks. 

The standard syntax of basic MSCs [IT96] indirectly guarantees that a bMSC 
is deadlock-free via two conditions: an informal constraint on the causality of 
messages and a drawing rule for message arrows. In Z.120, 

"it is not allowed that the (message output} is causally depending on its 
(message input} via other messages or general ordering constructs. This 
is the case i f  the connectivity graph contains loops." [IT95, Section 4.3] 

The Z.120 "connectivity graph" of a bMSC is isomorphic to our bMFG. In 
addition, both graphs are isomorphic to the mfg graphs defined by Ladkin and 
Simons [LS] who prove that  an mfg is deadlock-free if and only if: 1) its sig U ne 
relation is acyclic, and 2) each of its nodes has a matching node with which 
it participates in a communication action. It is clear that  bMSCs and bMFGs 
satisfy the second condition. Hence, syntactic deadlock detection in an arbitrary 
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bMFG is as hard as cycle detection in a directed graph. However, those bMSCs 
composed in accordance with the above Z.120 informal constraint are deadlock- 
free. 

A simpler Z.120 syntactic constraint that  eliminates deadlocks in a bMSC is 
a drawing rule: 

"Message lines may be horizontal or with downward slope (with respect 
to the direction of the arrow) , . . . "  lIT95, Section 2.4] 

One can use a topological argument to prove the following conjecture [BAL96]. 

C o n j e c t u r e  2. A bMSC that  has only horizontal or downwards sloping message 
arrows is deadlock-free. 

The above syntactic characterizations of deadlocks in bMFGs can be easily 
adapted for MSC specifications. In particular, it is straightforward to prove that  
for a given MSC specification S, if each of its bMFGs has an acyclic sig U ne 
relation and if S has no branching, then S is deadlock-free. In the presence of 
branching, a deadlock can happen in S if processes branch into different basic 
MSCs; we will revisit this topic in Section 5. The presence of a branching does not 
preclude the reachability of a state; however, sequential composition of bMSCs 
with cycles does. We will therefore assume throughout the paper that  each MSC 
specification has bMFGs with an  acyclic sig U ne relation. 

4 P r o c e s s  D i v e r g e n c e  

When concurrent processes iterate in an MSC specification, the asynchronous 
nature of communication can lead to process divergence: a system execution 
where one process sends a message an unbounded number of times ahead of 
the receiving process. Since an MSC specification makes no assumption about 
the speed of its processes, in the absence of a hand-shake mechanism, a sender 
process can run "faster" than a receiver process--possibly flooding the receiver 
with messages. 

Process divergence can lead to discrepancies between the specification and 
implementation, e.g., message over-writing and unexpected deadlocks, as well 
as unimplementable specifications, e.g., one that requires message queues with 
infinite sizes. It is therefore essential to detect potential  process divergences in 
an MSC specification prior to implementation. 

As we argued in the introduction, one possible execution of the MSC spec- 
ification of Figure 1 (a) is the infinite trace ! r eq l  !req2 ! r eq l  ! r e q 2 . . .  which is 
the result of process Pi  sending messages without process P2 receiving any one. 
To handle such a potential execution, the implementation must answer several 
questions: What  is the network architecture between the processes Pi  and P2? Is 
there any queuing mechanism and protocol? How are multiple copies of a not-yet 
received message handled? 

Regardless of the answers to the above questions, none of them is based on 
information explicitly described in the given MSC specification. Further, while 
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the above questions seem pertinent to the implementat ion phase, we view pro- 
cess divergence as unintended behavior of the specification that  must  be rather 
detected and brought to the designer's attention. This allows the designer to 
decide either to modify the specification to resolve the problem (e.g., by a d d i n g  
explicit hand-shakes), or to postpone the problem to the implementat ion phase 
which refines the specification. 

It  is worth noting that  there are MSC speci- 
fications for which ~he above questions are irrel- 
evant. For instance, consider the MSC specifica- 
tion in Figure 4 which slightly differs from the 
specification in Figure 1 (a): The two processes 
P1 and P2 in Figure 4 have a hand-shake com- 
munication.  In this specification, before start ing 
any new iteration, process P1 must  wait for the 
reception of ack before sending r e q l ;  similarly, 
process P2 must  wait for r e q l  (and req2)  before 
sending ack. Thus, neither process can send an 
unbounded number  of messages before the other 
process can receive any. Note also that  in the 
above two examples we showed the presence or 

m s c  M S C 1  

P I  ' P 2  Y 

Fig .  4. An MSC Specifica- 
tion with no process diver- 
gence 

absence of process divergence irrespectively of any particular semantic inter- 
pretat ions or implementa t ion related constraints. We analyzed the MSC spec- 
ifications simply by syntactic examinat ion of the communicat ion between its 
processes. 

4.1 Semant i c  Character izat ion o f  Process  Divergence  

In the sequel, for a letter e, a string s and integer m, we use # s  (e, m) to denote 
the number  of occurrences of e in the prefix of s of length m. 

Def in i t ion  3. Let Jr = (S, C, ne, sig, ST, stype, ET, etype) be an MFG and let 
GF = (Q, qo, TF) be its GSTG.  We say J: is divergent if there exist (z, y> E sig 
and an infinite sequence of transitions in TF qo ~~ > ql ~1 > q2 ~ > " '"  
such that  for s = aoala2..., we have 

V n E N S m E N  # , ( x , m )  > n + # , ( y , m ) .  

When an MFG .T is not divergent, we say ~ is non-divergent or divergence-free. 
An MSC specification is divergent if its MFG is divergent. 

4.2 Syntact ic  Character izat ion  of  Process  Divergence  

To illustrate the intuition behind our syntactic characterization, let us first ex- 
amine samples of MSC specifications. The MSC specification in Figure 5 (a) con- 
tains a process divergence: processes P2 and P3 may jointly race ahead of process 
P1. Since divergence is tied to the way processes exchange messages, let us ab- 
stract  out the number  and order of exchanged messages. Figure 5 (b) contains a 
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Y 
divergencel 
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Fig. 5. (a) MSC example divorgoncol; (b) its Coordination graph c o o r d i n a t i o n l  

directed graph, c o o r d i n a t  i on l ,  that describes the messages exchanged between 
the three processes of MSC d i v e r g e n c e l .  Each node represents a process and a 
directed edge between two nodes represents a message sent from the source pro- 
cess to the target process. Note that  in the graph c o o r d i n a t i o n 1  processes P2 
and P3 exchange messages in both directions and thus have a hand-shake mech- 
anism. Such a tight dependency forces the two processes to synchronize their 
progress and thus eliminate potential divergence of either one with respect to 
the other. On the other hand, process P2 sends messages to P1 without receiving 
any which allows it to send a potentially unbounded number of messages. 

m s c  divergence2 
P1 P2 P3 P4 

(a) 

Y 
divergence2 

(b) 

Fig. 6. (a) MSC example divergence2;  (b) its Coordination graph 

In Figure 6 (a) it is process P4 that  alone may race ahead of the other 
processes in the specification. Here again when we examine the communication 
pat tern between the processes of this specification (Figure 6 (b)), we see that  
process P4 is not involved in any hand-shakes to coordinate its progress with 
other processes. On the o the r  hand, the remaining processes coordinate their 
progress either directly (e.g., P1 and P2), o r indirectly (e.g., P1 and P3 through 
P2). 

From the above examples, we can see that  a two-way message exchange 
between two processes synchronizes their progress and eliminates the possibility 
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that one races ahead of the other. In addition, such a message exchange need 
not be direct but  can be through an intermediate process. Further, the number  
of messages exchanged is irrelevant; one message can be enough to cause process 
divergence. 

D e f i n i t i o n  4. The coordination graph of an MFG F is a directed graph CF = 
( PTF , corF ) where: 

- PTF is the set of nodes where each node corresponds to a process in F; 
- cor F C_ PTF • PTF is the set of directed edges such that  an edge is from P 

to Q if P sends a message to Q; formally: 
A 

corF = {(P, Q) E PTF •  19(a, b) E sigF (ptype(a) = P Aptype(b) = Q)} 

Our syntactic characterization of divergence focuses only on the bMSCs that  
are involved in a loop. A loop in an MSC specification S = (B, V, sue, re]) is 
a sequence of nodes (i.e., bMFGs),  bl, b2 , . . . ,  b~, such that  (bi, bi+~) E suc for 
i = 1 , . . . n  - 1 and (b,, bl) E suc. A loop is called simple if all nodes are distinct 
except the first and last nodes which are identical. 

In the sequel, we denote the transitive closure of a relation R as R + and its 
reflexive, transitive closure as R*. 

T h e o r e m  5. An M S C  specification S is not divergent iff for each simple loop of 
basic MSCs, M1, M2, �9 �9 ", Mn, M1 in S, such that, for the corresponding MFGs 
F~ of M~ and coordination graphs C~, = (PT~,, corF,), we have U~=I e~ is 
symmetric. 

P r o o f .  See [BAL96]. 

Algorithm. The algori thm gets an MSC specification S and returns DIV_FREE iff 
S is not divergent, and returns DIVERGE iff S is divergent. In the next algorithm, 
we use k to denote the number  of processes in each bMFG in S, the operation OR 
to denote the (boolean) disjunction operation over matrices, and we use cor(M) 
to denote the coordination relation of a bMFG M. 

Begin 

I. For each simple loop L in S 

2. Let cor be a k by k matrix initialized with zeros 

3. For each bMFG M in L 

4. construct the coordination relation cor(M) of M 

5. cor = cor OR cor(M) 

6. If cor+ is not symmetric 

7. Then Return DIVERGE 

8. Return DIV_FREE 

End 

Let S = (B, V, suc, re f )  be the MSC specification to b e  analyzed. Finding all 
simple loops in S can be done through a modified DFS algori thm to find all 
strongly connected components  in the directed graph (V, suc), e.g., Tar jan ' s  
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algorithm [AHU74] which runs in O(ma=(Isuch IVl)). In the worst case, S has 
21z] _ 1 loops where [I[ is the total number of intermediate nodes in S. To 
construct the coordination graph of a bMFG an algorithm basically simplifies 
the relation sig which represents all message exchanges in the bMSC; thus step 
4 runs in a worst t ime of O([sig[). In step 5, to update the cor  relation, we need 
k 2 t ime units. To construct the transitive closure of a coordination relation, we 
can use the algorithm in [AHP96] with the coordination relation representing 
the relation << relation. This algorithm is a special case of the Floyd-Warshall 
algorithm and it runs in O(k 2 +Ik) t ime where l is an upper bound on the number 
of processes directly related in the coordination graph. In our case, l is bounded 
by )-~M in L [sigM], i.e., the number of messages in all the bMSCs in the loop 
L. To verify that  the transitive closure of the coordination relation is symmetric 
takes O(k 2) time. Thus, the overall worst case time of the above algorithm is 
O(2Pl(IBIk2+ k ~-]~M~S I sigM[)) �9 In other words, the above algorithm is linear in 
the total number of messages in the MSC specification. This is efficient compared 
to examining potentially all executions of an MSC specification which can be 
exponential in the number of messages. 

5 N o n - L o c a l  B r a n c h i n g  C h o i c e  

An MSC specification can compose basic MSCs to express alternative behavior. 
Figure 7 illustrates an example which describes a system where MSC1 is followed 
by either MSC2 or MSC3. At this level of abstraction, all current interpretations 
assume that  all processes choose the same alternative flow of control so that  the 
overall system behavior is described by one basic MSC at a time. In terms of 
implementation of individual processes, such an assumption can however be non- 
trivial as it requires additional, dynamic information about which alternative 
other processes in the specification took. 

msc MSC 1 i P, P2 

m s c  MSC2 i msc MSC3 1 P l P2 P I P2 P31 

Y 

I Msc2 I I M c3 I 

A 
Fig. 7. MSC Specification with a non-local branching choice 

For example, consider the specification in Figure 7. Assume that,  after exe- 
cuting the Dreq event, process P 1 is the first process to decide whether to go 'left', 
i.e. the next MSC to execute is MSC1. In order to implement properly the seman- 
tics of choice, the processes P2 and P3 must be informed about  Pl ' s  decision so 
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that  they branch accordingly. However, neither the MSC semantics as presented 
in  Annex B of Z.120 [IT96] nor hMSC graphs provide an explicit way to handle 
such an information exchange. T o  handle this type of inter-process synchroniza- 
tion, Ladkin and Leue ILL95] suggested the use of global history variables that  
keep track of early process branching choices. Their  approach, however, can re- 
sult in an infinite-state semantic representation (i.e., global system transition 
graph) which can impede formal analysis. 

Note that  not all branchings in an MSC specification require global history 
variables to keep track of early process branching choices. Consider for instance 
the MSC specification in Figure 3. In this example, the type of the first received 
message can be used to determine the choices made by other processes in the 
specification. Consider process P3; since sending messages is non-blocking, this 
process can decide to precede either as MSC2 or I~SC3 independently of other 
processes. It can therefore either send message CC or DR, respectively, by making 
a local decision to resolve the non-determinism. On the other hand, since the 
first event in process P2 is to receive either message from P3, process P2 can 
learn about  the decision that  P3 made based on the type of message it receives: 
if it receives a CC message, it knows that the MSC2-branch has been chosen and 
proceeds with sending a Cind to P1; otherwise it receives a DR message, knows 
that  a branching to MSC3 has occurred, and follows accordingly by sending a 
Dind to P1. Finally, process P1 can also resolve the nondeterminism based on 
the type  of message it receives from process P2. This strategy of wait-and-see 
can be easily implemented and eliminates the need for global history variables 
[LLar]. When the wait-and-see strategy can be used to resolve a non-determinism 
within each process, we call the branching a local branching choice. Otherwise, 
when explicit synchronization between the processes is necessary to resolve a 
non-determinism, we call the branching a non-local branching choice. 

5.1 Semantic  Characterizat ion of  Non-Local  Branching Choice 

Recall that  a state in the GSTG contains a subset of: 1) next-event edges, and 2) 
signal edges that  indicate an event was sent but not yet received. Also, as men- 
tioned in Section 2.1, given a signal edge, we can trace its unique corresponding 
process in the bMSC via the bMFG. Thus, for each state in the GSTG, we can 
trace the processes and bMSCs to which they belong through the subset of signal 
edges in the state. 

Given an MSC specification S = (B,  V, suc, r e / )  and its MFG F = (S, C, ne, 
s i t ,  ST ,  stype, E T ,  etype) with GSTG G = (Q, q0, T) and set of processes P T ,  we 
define the following three functions: 

- p*ype : (S  U C) > P T  returns for each node in the MFG F the process to 
which the node belongs; 

- Snode  : ( S U C )  > V returns for each node in the MFG F the corresponding 
node in the hMSC of S; and 

- F n o d e s  : Q ~ :P(S (D C) returns for each state in the GSTG the set of 
MFG-nodes that correspond to all events enabled in the state. 
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The formal  definitions of the above functions can be found or derived from 
auxiliary functions in [LL95]. 

Definition 6. Let S = (B, V, suc, re f )  be an MSC specification with MFG 
F = (S, C, ne, sty, ST, stype, ET,  etype) and G S T G  G = (Q, qo, T). S has a non- 
local branching choice if there exists a finite sequence of transitions in T q0 a l > 

t3t 2 ~3~ n 
ql ) " '"  > qn such that  

3nl,  n2 E Fnodes(qn)(  ptype(nl)  # ptype(n2) 
A 
3b E V 3bl, b2 E range( {b} ~ suc) 

( bl # A' S ode(  ) E ra ge((h} A 
Snode(n ) E range((b } ) ) 

Informally, the above condition ensures that  the reachable state qn contains 
nodes f rom two processes in bMFGs that  are reached by branching in different 
direction for each process. 

5.2 Syntactic Characterization of  Non-Local  Branching Choice 

Our syntactic characterization of non-local branching choice relies on the "first" 
(according to the visual order) message exchanged in a bMSC. For this, we will 
assume in the remainder of this section that  the MSC specification S to be 
analyzed satisfies the next two conditions: 

1. S is normalized: for each branching node in S, the successor bMSCs do not 
have a common prefix of ordered sequence of message exchanges; and 

2. each process in each bMSC in S exchange at  least one message with other 
processes in the bMSC. 

The first assumption is a minor deviation from the general syntax of MSC spec- 
ifications in Z.120 [IT96]. On one hand, this assumption facilitates the inter- 
pretat ion of bMSC sequencing as a "weak sequencing" [IT96], and on the other 
hand it can be easily supported through a syntactic, pre-processing phase to 
our analysis; see [BAL96] for one normalization method.  The second assump- 
tion simplifies the computa t ion  of the first event in a sequence of bMFGs (i.e., 
bMSCs). However, it can be eliminated by modifying the way we compute  the 
first event in a sequence of bMFGs, i.e., bMSCs. This assumption reduces the 
syntactic verification to checking immediate  successors of the branching node b 
as opposed to successors through the transitive closure of the relation succ, as 
required in Definition 6 [BAL96]. A consequence of the second assumption is 
tha t  each bMFG in S has a non-empty set of first events all of which are of type 
8end. 

In the sequel, we use the following notat ion which is formally defined in the 
appendix.  For a bMFG F, the partial  order relation of F is PF = sigF U neF 
and its set of first nodes (i.e., nodes from which an event can be sent first) is 
f i rs tnodes(pF);  for an MSC specification S -- (B, V, sue, re f ) ,  the set of nodes 
with a branching is branchnodes(suc), and the set of nodes successors to a node 
n is range({n}  ~ suc). 
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T h e o r e m  7. Let S = (B, V, suc, re f )  be a normalized MSC specification where 
each process in each bMFG exchanges at least one message with another process. 

S has no non-local branching choice 

Vb e branchnodes(suc) I U {PtYPe(n)ln E firs~nodes(p~f(c))} I= 1 
cerange({b}~,suc) 

Informally, an MSC specification S has no non-local branching choice iff at each 
of its branching points, the first events in all bMSCs are sent by the same process. 

P r o o f .  See [BAL96]. 

Algorithm. The algorithm gets an MSC specification S and returns the flag 
NON_LOCAL iff one of the branches in S has a non-local choice; it returns the 
flag LOCAL iff all branches in S can be resolved locally. 

1 

2 

3 

4 

5 
6 
7" 

8 

9 
10 
11 

12 

13 

14 

15 
16 
17 

Begin 

For each intermediate node c 

compute firstnodes(p(ref(c)) 

For each branching node b 

first_proc = NULL 

For each node c successor of b 

If ( Ifirstnodes(c)l != 1 ) 

Return NONLOCAL 

Else 

n = firstnode(c) 

If ( first proc == NULL ) 

first_proc = ptype(n) 

Else 

If ( first_proc != ptype(n) ) 

Return NON_LOCAL 

Return LOCAL 

End 

To compute the set of first nodes in each bMFG F takes in the worst case 
O(]SF W CF[) where [SF O CF[ is the number of nodes in the bMFG F.  All 
remaining operations take a constant time. Thus, the above algorithm runs in 
the worst case in O(~Fe  B (]SF O CF [), where B is the set of bMFGs in the MSC 
specification being analyzed. In other words, the algorithm runs in a time linear 
with the total number of messages exchanged in the MSC specification. 

Our syntactic analysis relieves a designer from the burden of explicitly co- 
ordinating the process branchings in an early design. Detecting and resolving 
non-local branching choices can be used as a refinement step of the design, in 
which a designer can introduce a coordination protocol, e.g., through additional 
messages. 
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6 Conclusion 

We have highlighted two potential  problems in MSC specifications that  are due to 
implicit assumptions about  the environment behavior. Both problems can lead to 
interpretat ions with an infinite state space, discrepancies between a specification 
and its implementat ion,  as well as unimplementable  specifications. One problem, 
process divergence, is the result of i terating basic MSCs and implicit assumptions 
about  the queuing mechanism between communicat ing processes. It  leads to a 
specification where one or more processes run faster than others flooding them 
with multiple copies of messages that  they may  not receive. The second problems 
non-local branching choice, appears  in MSC specifications where basic MSCs 
can be executed in an alternative way. It  results in MSC specifications that  are 
either unimplementable  or implemented with unintented deadlocks. We have 
semantically defined the above two problems and syntactically characterized 
them. We also have proposed detection algori thms that  run in an order linear in 
the total  number  of messages exchanged in the MSC specification being analyzed. 
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A N o t a t i o n  a n d  D e f i n i t i o n s  

Relations.  Let f ,  g _ R • R denote binary relations over a set R, and S be a set. 

f ~ s  ~ {(a, b) l(a, b) E /  A bES}  
domai~(y) ~ {a 1(3b E R)((a,b) E f)} 
f o g  zx {(a,c)  I (3b)((a,b) E f A  (b,c) E g)} 

f+  zx [.J,,>0 fn  the transitive elosre of f 

s ~ y  ~= {(a, b)l(a, b) E f  A a e S }  
range(f) z~ {b l (3a E R)((a,b) E f )}  

f l  z~ =y 

Digraphs. Let V denote a set and let E C V x V, then we call T = (V, E) a digraph. 
(V, E, type, labels) is a digraph with node labels iff E C V • V,  type : V -+ labels, and 
labels -= range(type). (V, E, type, labels) is a digraph with edge labels iff E C V • V ,  
type : E -4 labels, and labels = range(type). For a digraph T = (V, E) we define: 

branchnodes(E) ~ {v E V I (I {v} ~ E I) > 1}. 

Message Flow Graphs. Let S and C denote two arbi trary disjoint sets, the elements 
of which we call sending events and receiving events, respectively. Furthermore,  let S T  
and E T  denote arbi t rary disjoint sets (also disjoint from S and C), whose elements 
we call signal and event types. We define a Message Flow Graph as a tuple ~ -- 
( S, C, he, sig, ST, stype, ET,  etype) where ( S U C, he, etype, ET)  is a digraph with node 
labels and (S U C, sig, stype, ST)  is a digraph with edge labels satisfying the following 
conditions: 

1. sly C_ S • C is a (necessarily biparti te)  bijective relation, where S = doraain(sig) 
and C -- range(sig); 

2. The set E T  = ({!, ?} x ST)  contains the event types (we write !t for (!, t) and ?t 
for (?, t)). 

3. If the type of a signal is t, then the corresponding send and receive events are of 
type It and ?t respectively: (a, b) E sig --4 (3t E ST)(stype((a~ b)) = t A etype(a) = 
It A etype(b) =?t) ;  

4. Every component of the ne relation graph contains at most one start  event: 

(e ,e '  r range(ne)  A (e,e ' )  Ene*)  --4 (e = e ') .  
A 

We denote the part ial  order precedence relation of the MFG 9 as Pa - sig U he, and 
the first nodes in ~ according to pg as f irs tnodes(pg)  = {e E S I (Pg ~ {e}) = @}, that  
is the set of nodes from which a first event can be sent. 


