
Syntactic Detection of Process Divergence and
Non-local Choice in Message Sequence Charts*

Han~ne Ben-Abdallah and Stefan Leue

Electrical and Computer Engineering
University of Waterloo

Waterloo, Ontario N2L 3G1, Canada
hanene I sleue@swen, uwaterloo, ca

A b s t r a c t . Message Sequence Charts (MSCs) are increasingly used in
software engineering methodologies and tools to capture, for instance,
system requirements, test scenarios, and simulation traces. They have
been standardized by ITU-T in Recommendation Z.120 [IT96]. However,
various aspects Of environment behavior remain underspecified in MSCs,
e.g.i the presence of resources for inter-process communication and the
coordination of concurrent processes at points of control branching. Such
underspecifications can result in ambiguities in an MSC specification and
discrepancies between an MSC specification and its implementation. In
this paper we characterize two consequences of harmful underspecifica-
tions: process divergence and non-local branching choice. We also present
two syntax-based analysis algorithms that detect both problems.

1 Introduction

The intuitive, graphical notation of Message Sequence Charts (MSCs) increased
their popularity within the software engineering community. They have already
been adopted within several software engineering methodologies and tools for
concurrent, reactive and real-time systems. They are used to document system
requirements that guide the system design (e.g., [SGW94]), describe test cases
and scenarios (e.g., [Jea92,BR.95]), express system properties that are verified
against SDL specifications (e.g., [ALHH93]), visualize sample behavior of a sim-
ulated system specification (e.g., [SGW94,ALHH93]), and to express legacy spec-
ifications in an intermediate representation that helps in software maintenance
and reengineering [IIK+91].

The syntax of MSCs is defined by the ITU-T in Recommendation Z.120 [IT96].
An MSC essentially consists of a set of processes that run in parallel and ex-
change messages in a one-to-one, asynchronous fashion. Several approaches have
been proposed to formalize the semantics of MSCs. They range from adopt-
ing the policy of "what-you-see-is-what-you-get"(e.g., [LL95,ALHH93,IIK+91])

* This work was in part supported by the Information Technology Research Centre
of the Province of Ontario and by the National Science and Engineering Research
Council of Canada. ObjecTime Limited provided further support.

260

to incorporating constraints pertinent to implementation, e.g., architecture and
queuing protocols [AHP96]. In addition, these approaches differ in terms of their
techniques: they derive the traces of an MSC through a translation to either a
process algebra [MR94,IT95], or from a global state automaton that is obtained
via a translation into an algebraic structure called Message Flow Graph [LL95].

To accommodate industrial-size applications, the standard Z.120 [IT95]
evolved to allow the description of a large system by composing basic MSCs [IT96].
The resulting graphical language, called High-Level MSCs (hMSCs), provides for
operators to connect basic MSCs to describe parallel, sequential, iterating, and
non-deterministic execution of basic MSCs. In this paper, we call an hMSC to-
gether with its referenced bMSCs an MSC specification.

While the syntax of hMSCs has been well defined in Z.120, the introduction
of the sequential and non-deterministic execution can lead to unimplementable
MSC specifications or implementations with behavior unintended in the MSC
specifications. More specifically, an MSC specification can lead to an implemen-
tation with discrepant behavior due to two problems we call process divergence
and non-local branching choice. These two problems are in fact independent of
the semantics of basic MSCs, and rather are the result of under-specification of
two factors: 1) resource related constraints, e.g., processor speed, system archi-
tecture and queuing protocols, and 2) the "environment" from the point of view
of individual processes in an MSC specification.

msc MSC1
P1 P2

= ~ reql

rea2
[Msc,

t

pm~slc M I P2

msc M2
P1 P2

Y
[M 1

M1 l I .2

ix 2x
(a) (b)

F i g . 1. MSC specification with: (a) process divergence; (b) non-local branching choice

Consider the MSC specification of Figure 1 (a). At this level of abstraction,
the visual interpretation is that the basic MSC ltSCl is iteratively executed.
From the point of view of process P1 in the basic MSC MSCi, this process will re-
peatedly send messages reqi then req2 to the process P2. Since communication
is asynchronous and there is no explicit information about the communication
link, queuing strategy, nor processor speed, an interpretation of this MSC spec-

261

ification can allow process P l to run faster than process P2. We call such a
behavior process divergence. As a consequence Pl may overflood P2 with mes-
sages r e q l and req2. Such system behavior is usually unintended in the MSC
specification. In addition, its semantic implications, e.g., presence of buffers, are
not explicitly accounted for in the MSC specification. Furthermore, it can lead
to an implementation that behaves differently from the specification, e.g., the
implementation loses multiple copies of r e q l and req2, or overwrites multiple
copies of a message.

The second problem that may impede the implementation of an MSC specifi-
cation is non-localbranching choice. Consider the MSC specification of Figure 1
(b) where after behaving as described in the basic MSC ~I, the system has a
choice between behaving either as described in the basic MSC M1 or M2. An
implicit assumption in this interpretation is that the processes P1 and P2 will
synchronize their choices between behaving either as in M1 or M2. However, when
examining the two processes, one sees that this implicit assumption can not be
implemented, in a modular way, without introducing the unintended behavior
where process P i chooses to branch left and send an a message while process P2
chooses to branch right and send a b message.

Currently, basic MSCs can be analyzed for deadlocks [LS], race conditions
and timing inconsistencies [AHP96]. These analysis techniques deal only with
basic MSCs. In this paper, we syntactically characterize process divergence and
non-local branching choice. Our analysis complements the analysis presented
in [AHP96] as it is another step towards ensuring that an MSC specification is
implementable in a modular fashion and without discrepancies.

2 Message Sequence Chart Specifications

In this section, we briefly describe the syntax and semantics of the subset of
basic and high-level MSCs we use throughout the paper; for details the reader
is referred to [LL95,Leu94].

2.1 Basic Message Sequence Charts

Im; .2 i

Fig. 2. Basic MSC (left) and corresponding basic MFG (right)

A basic MSC (bMSC) describes finite executions of concurrent processes in a
system; see Figure 2 for an example. Each vertical line is delimited by a start

262

and end symbol and represents one process in the system. (Recommendation
Z.120 [IT96] calls a process an instance.) Each horizontal or sloping arrow de-
scribes a message sent from the process at the tail of the arrow to the process at
the head. The intersections of the vertical lines and arrow tails and heads rep-
resent send and receive events, respectively. Communication is one-to-one and
asynchronous, i.e., sending a message is non-blocking. Processes have disjoint
name labels, and message arrows have labels that denote message types. Con-
trol flows independently within each process from the start symbol to the end
symbol.

The behavior of a bMSC is the set of sequences (or traces) of send and receive
events. It is deduced from the order of events within each process in the bMSC
together with the causal precedence between sending and receiving a message.
Within each process, events are totally ordered according to their position from
the start to the end symbols on the process axis. In addit ion, for each message
in the bMSC, its send event is ordered before its receive event. In general, the
overall events in a bMSC are partially ordered.

In this paper, to interpret bMSCs we follow the two-step approach presented
in [LL95]: First translate the bMSC into an algebraic structure called Message
Flow Graph (MFG); then derive the reachable states and communication events
that the MFG (and thus bMSC) can execute via a labeled transition system
called Global State Transition Graph (GSTG). Appendix A formally defines
MFGs. We next informally describe the correspondence between a bMSC and
an MFG, as well as the concept of a GSTG. For details, refer to [LL95].

Let M be a bMSC; its corresponding message flow graph is a directed graph
FM --= (,-q, C, he, sig, ST, 8type, ET, etype). Each node represents a communica-
tion event in M, i.e., arrow tail or head in M. Each node is labeled and has a
type that consists of two parts: 1) the type of the corresponding communica-
tion event: ! for a send event and ? for a receive event; and 2) the type of the
corresponding message arrow which is drawn from ST. The type of a node is
retrieved with the function etype and belongs to the set E T = {!, ?} • ST.

Nodes in the MFG FM are connected by two types of edges: 1) next event
edges, set ne, which reflect the control flow between communication events within
each process of M; and 2) signal edges, set sig, which reflect the causal prece-
dence of a message's send and receive events. Each signal edge in the set sig
is labeled with the corresponding message type from S T and which is retrieved
with the function s~ype, see Figure 2 for an example of MFG of a bMSC.

We call an MFG that corresponds to a basic MSC a basic MFG (bMFG) 1.
Note that in a bMFG, there is a one-to-one mapping between the messages (i.e.,
arrows) in the bMSC and the set sig of signal edges. In addition, the set ne of next
event edges is a non-branching and cycle-free relation. Further, each maximal-
connected components through the ne relation corresponds to a process; hence
we can also talk about a process in the bMFG and we use ptype(n) to denote
the process to which belongs a node n in the bMFG.

1 A basic MFG is called simple MFG in ILL95].

263

One of the advantages of MFGs is that they allow us to distinguish between
different occurrences of a message with the same type in a bMSC. Another
advantage is that they provide an algebraic structure f rom which we can derive
the behavior of a bMSC, i.e., all possible states and communicat ion events that
the bMSC can execute.

The behavior of a bMSC is described by the GSTG. Informally, a state of the
GSTG consists of a subset of next-event edges, and a subset of signal edges each
of which represents one copy of a message sent but not yet received. In any state,
the enabled events, i.e., can be executed, are events tha t result f rom two cases:
1) a send event whose next-event edge is in the state, and 2) a receive event
whose incoming signal edge and at least one next-event edge is in the state.

A transition in the GSTG consists of sending or receiving an enabled event.
The result of a transition on sending an event augments the target state with a
signal edge that indicates a message was sent but not yet received. A transit ion
on receiving a message removes the corresponding signal edge from the target
state. One note to make about this semantics is that, in accordance with Z.120
Annex B [IT95], it does not support any queuing mechanism and assumes that
multiple copies of a sent message are disabled by one reception of the message.
The reader is referred to [LL95] for a detailed, formal description of how a
G S T G is derived f rom an MFG. In the remainder of this paper, we denote a
transit ion from state q to state q~ and label a as q ~ ~ ql.

2.2 H i g h - L e v e l M S C s a n d M S C S p e c i f i c a t i o n s

Reactive systems often consist of non-terminat ing and non-deterministic pro-
cesses. To provide for such systems, the recommendat ion Z.120 suggests High-
Level M S C s (hMSCs) to compose basic MSCs to specify systems with recursive
and non-deterministic behavior. An hMSC is a digraph where nodes refer to
bMSCs and edges indicate possible continuations of bMSCs by others. In ad-
dition, a n hMSC has two distinguished types of nodes: one required start node
tha t indicates the beginning o f the specification, and optional end nodes that
indicate the terminat ion of the specification.

To simplify the presentation of our analysis technique, in the sequel we as-
sume that nodes in an hMSC only refer to bMSCs. However, our analysis can be
easily extended to allow hMSCs with nodes that refer to other hMSCs as defined
in recommendat ion Z.120 [IT95].

D e f i n i t i o n 1. An M S C specification is a structure S = (B, V, sac, re f) where

- B is a finite set of bMFGs;
- V = T U It2_L a finite set of nodes part i t ioned into the three sets of singleton-

set of start node, in termediate nodes, and end nodes, respectively;
- suc C (T U I) • V the relation which reflects the connectivity of the hMSC

of S such that all nodes in V are reachable from the start node; and
- r e f : I , ~ B a function that maps each intermediate node to a bMFG.

264

The behavior of an MSC specification is obtained in a fashion similar to the
behavior of a basic MSC. The bMSC to bMFG translation is extended to ac-
count for the hMSC edges which connent referenced bMSCs. When the hMSC
contains a loop or a branching the resulting MFG also contains loops and branch-
ings and therefore it is not a basic MFG. Figure 3 illustrates an example of an
MFG for an MSC specification. The GSTG of the resulting MFG is derived
while accounting for possible branching via a history variable to register the
branching decisions made by any process that is ahead of others. For details,
refer to [LL95,LLar,BAL96].

msc MSCI

.•

~ ~2 DR

(a) (b)

Fig. 3. (a) MSC Specification; (b) its corresponding MFG

3 Deadlock Detection in MSC Specifications

In this paper, the necessity of our syntactic characterization of process diver-
gence and non-local branching choice in MSC specifications will make use of the
reachability of a problematic state. Reachability can be hampered by deadlocks.
Since semantic deadlock detection is expensive, one is therefore interested in
specifying syntactic ways to detect deadlocks.

The standard syntax of basic MSCs [IT96] indirectly guarantees that a bMSC
is deadlock-free via two conditions: an informal constraint on the causality of
messages and a drawing rule for message arrows. In Z.120,

"it is not allowed that the (message output} is causally depending on its
(message input} via other messages or general ordering constructs. This
is the case i f the connectivity graph contains loops." [IT95, Section 4.3]

The Z.120 "connectivity graph" of a bMSC is isomorphic to our bMFG. In
addition, both graphs are isomorphic to the mfg graphs defined by Ladkin and
Simons [LS] who prove that an mfg is deadlock-free if and only if: 1) its sig U ne
relation is acyclic, and 2) each of its nodes has a matching node with which
it participates in a communication action. It is clear that bMSCs and bMFGs
satisfy the second condition. Hence, syntactic deadlock detection in an arbitrary

265

bMFG is as hard as cycle detection in a directed graph. However, those bMSCs
composed in accordance with the above Z.120 informal constraint are deadlock-
free.

A simpler Z.120 syntactic constraint that eliminates deadlocks in a bMSC is
a drawing rule:

"Message lines may be horizontal or with downward slope (with respect
to the direction of the arrow) , . . . " lIT95, Section 2.4]

One can use a topological argument to prove the following conjecture [BAL96].

C o n j e c t u r e 2. A bMSC that has only horizontal or downwards sloping message
arrows is deadlock-free.

The above syntactic characterizations of deadlocks in bMFGs can be easily
adapted for MSC specifications. In particular, it is straightforward to prove that
for a given MSC specification S, if each of its bMFGs has an acyclic sig U ne
relation and if S has no branching, then S is deadlock-free. In the presence of
branching, a deadlock can happen in S if processes branch into different basic
MSCs; we will revisit this topic in Section 5. The presence of a branching does not
preclude the reachability of a state; however, sequential composition of bMSCs
with cycles does. We will therefore assume throughout the paper that each MSC
specification has bMFGs with an acyclic sig U ne relation.

4 P r o c e s s D i v e r g e n c e

When concurrent processes iterate in an MSC specification, the asynchronous
nature of communication can lead to process divergence: a system execution
where one process sends a message an unbounded number of times ahead of
the receiving process. Since an MSC specification makes no assumption about
the speed of its processes, in the absence of a hand-shake mechanism, a sender
process can run "faster" than a receiver process--possibly flooding the receiver
with messages.

Process divergence can lead to discrepancies between the specification and
implementation, e.g., message over-writing and unexpected deadlocks, as well
as unimplementable specifications, e.g., one that requires message queues with
infinite sizes. It is therefore essential to detect potential process divergences in
an MSC specification prior to implementation.

As we argued in the introduction, one possible execution of the MSC spec-
ification of Figure 1 (a) is the infinite trace ! r eq l !req2 ! r eq l ! r e q 2 . . . which is
the result of process Pi sending messages without process P2 receiving any one.
To handle such a potential execution, the implementation must answer several
questions: What is the network architecture between the processes Pi and P2? Is
there any queuing mechanism and protocol? How are multiple copies of a not-yet
received message handled?

Regardless of the answers to the above questions, none of them is based on
information explicitly described in the given MSC specification. Further, while

266

the above questions seem pertinent to the implementat ion phase, we view pro-
cess divergence as unintended behavior of the specification that must be rather
detected and brought to the designer's attention. This allows the designer to
decide either to modify the specification to resolve the problem (e.g., by a d d i n g
explicit hand-shakes), or to postpone the problem to the implementat ion phase
which refines the specification.

It is worth noting that there are MSC speci-
fications for which ~he above questions are irrel-
evant. For instance, consider the MSC specifica-
tion in Figure 4 which slightly differs from the
specification in Figure 1 (a): The two processes
P1 and P2 in Figure 4 have a hand-shake com-
munication. In this specification, before start ing
any new iteration, process P1 must wait for the
reception of ack before sending r e q l ; similarly,
process P2 must wait for r e q l (and req2) before
sending ack. Thus, neither process can send an
unbounded number of messages before the other
process can receive any. Note also that in the
above two examples we showed the presence or

m s c M S C 1

P I ' P 2 Y

Fig . 4. An MSC Specifica-
tion with no process diver-
gence

absence of process divergence irrespectively of any particular semantic inter-
pretat ions or implementa t ion related constraints. We analyzed the MSC spec-
ifications simply by syntactic examinat ion of the communicat ion between its
processes.

4.1 Semant i c Character izat ion o f Process Divergence

In the sequel, for a letter e, a string s and integer m, we use # s (e, m) to denote
the number of occurrences of e in the prefix of s of length m.

Def in i t ion 3. Let Jr = (S, C, ne, sig, ST, stype, ET, etype) be an MFG and let
GF = (Q, qo, TF) be its GSTG. We say J: is divergent if there exist (z, y> E sig
and an infinite sequence of transitions in TF qo ~~ > ql ~1 > q2 ~ > " '"
such that for s = aoala2..., we have

V n E N S m E N # , (x , m) > n + # , (y , m) .

When an MFG .T is not divergent, we say ~ is non-divergent or divergence-free.
An MSC specification is divergent if its MFG is divergent.

4.2 Syntact ic Character izat ion of Process Divergence

To illustrate the intuition behind our syntactic characterization, let us first ex-
amine samples of MSC specifications. The MSC specification in Figure 5 (a) con-
tains a process divergence: processes P2 and P3 may jointly race ahead of process
P1. Since divergence is tied to the way processes exchange messages, let us ab-
stract out the number and order of exchanged messages. Figure 5 (b) contains a

267

msc divergencel
P1 P2 P3

T a b

i i
(a)

Y
divergencel

(b)

Fig. 5. (a) MSC example divorgoncol; (b) its Coordination graph c o o r d i n a t i o n l

directed graph, c o o r d i n a t i on l , that describes the messages exchanged between
the three processes of MSC d i v e r g e n c e l . Each node represents a process and a
directed edge between two nodes represents a message sent from the source pro-
cess to the target process. Note that in the graph c o o r d i n a t i o n 1 processes P2
and P3 exchange messages in both directions and thus have a hand-shake mech-
anism. Such a tight dependency forces the two processes to synchronize their
progress and thus eliminate potential divergence of either one with respect to
the other. On the other hand, process P2 sends messages to P1 without receiving
any which allows it to send a potentially unbounded number of messages.

m s c divergence2
P1 P2 P3 P4

(a)

Y
divergence2

(b)

Fig. 6. (a) MSC example divergence2; (b) its Coordination graph

In Figure 6 (a) it is process P4 that alone may race ahead of the other
processes in the specification. Here again when we examine the communication
pat tern between the processes of this specification (Figure 6 (b)), we see that
process P4 is not involved in any hand-shakes to coordinate its progress with
other processes. On the o the r hand, the remaining processes coordinate their
progress either directly (e.g., P1 and P2), o r indirectly (e.g., P1 and P3 through
P2).

From the above examples, we can see that a two-way message exchange
between two processes synchronizes their progress and eliminates the possibility

268

that one races ahead of the other. In addition, such a message exchange need
not be direct but can be through an intermediate process. Further, the number
of messages exchanged is irrelevant; one message can be enough to cause process
divergence.

D e f i n i t i o n 4. The coordination graph of an MFG F is a directed graph CF =
(PTF , corF) where:

- PTF is the set of nodes where each node corresponds to a process in F;
- cor F C_ PTF • PTF is the set of directed edges such that an edge is from P

to Q if P sends a message to Q; formally:
A

corF = {(P, Q) E PTF • 19(a, b) E sigF (ptype(a) = P Aptype(b) = Q)}

Our syntactic characterization of divergence focuses only on the bMSCs that
are involved in a loop. A loop in an MSC specification S = (B, V, sue, re]) is
a sequence of nodes (i.e., bMFGs), bl, b2 , . . . , b~, such that (bi, bi+~) E suc for
i = 1 , . . . n - 1 and (b,, bl) E suc. A loop is called simple if all nodes are distinct
except the first and last nodes which are identical.

In the sequel, we denote the transitive closure of a relation R as R + and its
reflexive, transitive closure as R*.

T h e o r e m 5. An M S C specification S is not divergent iff for each simple loop of
basic MSCs, M1, M2, �9 �9 ", Mn, M1 in S, such that, for the corresponding MFGs
F~ of M~ and coordination graphs C~, = (PT~,, corF,), we have U~=I e~ is
symmetric.

P r o o f . See [BAL96].

Algorithm. The algori thm gets an MSC specification S and returns DIV_FREE iff
S is not divergent, and returns DIVERGE iff S is divergent. In the next algorithm,
we use k to denote the number of processes in each bMFG in S, the operation OR
to denote the (boolean) disjunction operation over matrices, and we use cor(M)
to denote the coordination relation of a bMFG M.

Begin

I. For each simple loop L in S

2. Let cor be a k by k matrix initialized with zeros

3. For each bMFG M in L

4. construct the coordination relation cor(M) of M

5. cor = cor OR cor(M)

6. If cor+ is not symmetric

7. Then Return DIVERGE

8. Return DIV_FREE

End

Let S = (B, V, suc, re f) be the MSC specification to b e analyzed. Finding all
simple loops in S can be done through a modified DFS algori thm to find all
strongly connected components in the directed graph (V, suc), e.g., Tar jan ' s

269

algorithm [AHU74] which runs in O(ma=(Isuch IVl)). In the worst case, S has
21z] _ 1 loops where [I[is the total number of intermediate nodes in S. To
construct the coordination graph of a bMFG an algorithm basically simplifies
the relation sig which represents all message exchanges in the bMSC; thus step
4 runs in a worst t ime of O([sig[). In step 5, to update the cor relation, we need
k 2 t ime units. To construct the transitive closure of a coordination relation, we
can use the algorithm in [AHP96] with the coordination relation representing
the relation << relation. This algorithm is a special case of the Floyd-Warshall
algorithm and it runs in O(k 2 +Ik) t ime where l is an upper bound on the number
of processes directly related in the coordination graph. In our case, l is bounded
by)-~M in L [sigM], i.e., the number of messages in all the bMSCs in the loop
L. To verify that the transitive closure of the coordination relation is symmetric
takes O(k 2) time. Thus, the overall worst case time of the above algorithm is
O(2Pl(IBIk2+ k ~-]~M~S I sigM[)) �9 In other words, the above algorithm is linear in
the total number of messages in the MSC specification. This is efficient compared
to examining potentially all executions of an MSC specification which can be
exponential in the number of messages.

5 N o n - L o c a l B r a n c h i n g C h o i c e

An MSC specification can compose basic MSCs to express alternative behavior.
Figure 7 illustrates an example which describes a system where MSC1 is followed
by either MSC2 or MSC3. At this level of abstraction, all current interpretations
assume that all processes choose the same alternative flow of control so that the
overall system behavior is described by one basic MSC at a time. In terms of
implementation of individual processes, such an assumption can however be non-
trivial as it requires additional, dynamic information about which alternative
other processes in the specification took.

msc MSC 1 i P, P2

m s c MSC2 i msc MSC3 1 P l P2 P I P2 P31

Y

I Msc2 I I M c3 I

A
Fig. 7. MSC Specification with a non-local branching choice

For example, consider the specification in Figure 7. Assume that, after exe-
cuting the Dreq event, process P 1 is the first process to decide whether to go 'left',
i.e. the next MSC to execute is MSC1. In order to implement properly the seman-
tics of choice, the processes P2 and P3 must be informed about Pl ' s decision so

270

that they branch accordingly. However, neither the MSC semantics as presented
in Annex B of Z.120 [IT96] nor hMSC graphs provide an explicit way to handle
such an information exchange. T o handle this type of inter-process synchroniza-
tion, Ladkin and Leue ILL95] suggested the use of global history variables that
keep track of early process branching choices. Their approach, however, can re-
sult in an infinite-state semantic representation (i.e., global system transition
graph) which can impede formal analysis.

Note that not all branchings in an MSC specification require global history
variables to keep track of early process branching choices. Consider for instance
the MSC specification in Figure 3. In this example, the type of the first received
message can be used to determine the choices made by other processes in the
specification. Consider process P3; since sending messages is non-blocking, this
process can decide to precede either as MSC2 or I~SC3 independently of other
processes. It can therefore either send message CC or DR, respectively, by making
a local decision to resolve the non-determinism. On the other hand, since the
first event in process P2 is to receive either message from P3, process P2 can
learn about the decision that P3 made based on the type of message it receives:
if it receives a CC message, it knows that the MSC2-branch has been chosen and
proceeds with sending a Cind to P1; otherwise it receives a DR message, knows
that a branching to MSC3 has occurred, and follows accordingly by sending a
Dind to P1. Finally, process P1 can also resolve the nondeterminism based on
the type of message it receives from process P2. This strategy of wait-and-see
can be easily implemented and eliminates the need for global history variables
[LLar]. When the wait-and-see strategy can be used to resolve a non-determinism
within each process, we call the branching a local branching choice. Otherwise,
when explicit synchronization between the processes is necessary to resolve a
non-determinism, we call the branching a non-local branching choice.

5.1 Semantic Characterizat ion of Non-Local Branching Choice

Recall that a state in the GSTG contains a subset of: 1) next-event edges, and 2)
signal edges that indicate an event was sent but not yet received. Also, as men-
tioned in Section 2.1, given a signal edge, we can trace its unique corresponding
process in the bMSC via the bMFG. Thus, for each state in the GSTG, we can
trace the processes and bMSCs to which they belong through the subset of signal
edges in the state.

Given an MSC specification S = (B, V, suc, r e /) and its MFG F = (S, C, ne,
s i t , ST , stype, E T , etype) with GSTG G = (Q, q0, T) and set of processes P T , we
define the following three functions:

- p*ype : (S U C) > P T returns for each node in the MFG F the process to
which the node belongs;

- Snode : (S U C) > V returns for each node in the MFG F the corresponding
node in the hMSC of S; and

- F n o d e s : Q ~ :P(S (D C) returns for each state in the GSTG the set of
MFG-nodes that correspond to all events enabled in the state.

271

The formal definitions of the above functions can be found or derived from
auxiliary functions in [LL95].

Definition 6. Let S = (B, V, suc, re f) be an MSC specification with MFG
F = (S, C, ne, sty, ST, stype, ET, etype) and G S T G G = (Q, qo, T). S has a non-
local branching choice if there exists a finite sequence of transitions in T q0 a l >

t3t 2 ~3~ n
ql) " '" > qn such that

3nl, n2 E Fnodes(qn)(ptype(nl) # ptype(n2)
A
3b E V 3bl, b2 E range({b} ~ suc)

(bl # A' S ode() E ra ge((h} A
Snode(n) E range((b }))

Informally, the above condition ensures that the reachable state qn contains
nodes f rom two processes in bMFGs that are reached by branching in different
direction for each process.

5.2 Syntactic Characterization of Non-Local Branching Choice

Our syntactic characterization of non-local branching choice relies on the "first"
(according to the visual order) message exchanged in a bMSC. For this, we will
assume in the remainder of this section that the MSC specification S to be
analyzed satisfies the next two conditions:

1. S is normalized: for each branching node in S, the successor bMSCs do not
have a common prefix of ordered sequence of message exchanges; and

2. each process in each bMSC in S exchange at least one message with other
processes in the bMSC.

The first assumption is a minor deviation from the general syntax of MSC spec-
ifications in Z.120 [IT96]. On one hand, this assumption facilitates the inter-
pretat ion of bMSC sequencing as a "weak sequencing" [IT96], and on the other
hand it can be easily supported through a syntactic, pre-processing phase to
our analysis; see [BAL96] for one normalization method. The second assump-
tion simplifies the computa t ion of the first event in a sequence of bMFGs (i.e.,
bMSCs). However, it can be eliminated by modifying the way we compute the
first event in a sequence of bMFGs, i.e., bMSCs. This assumption reduces the
syntactic verification to checking immediate successors of the branching node b
as opposed to successors through the transitive closure of the relation succ, as
required in Definition 6 [BAL96]. A consequence of the second assumption is
tha t each bMFG in S has a non-empty set of first events all of which are of type
8end.

In the sequel, we use the following notat ion which is formally defined in the
appendix. For a bMFG F, the partial order relation of F is PF = sigF U neF
and its set of first nodes (i.e., nodes from which an event can be sent first) is
f i rs tnodes(pF); for an MSC specification S -- (B, V, sue, re f) , the set of nodes
with a branching is branchnodes(suc), and the set of nodes successors to a node
n is range({n} ~ suc).

272

T h e o r e m 7. Let S = (B, V, suc, re f) be a normalized MSC specification where
each process in each bMFG exchanges at least one message with another process.

S has no non-local branching choice

Vb e branchnodes(suc) I U {PtYPe(n)ln E firs~nodes(p~f(c))} I= 1
cerange({b}~,suc)

Informally, an MSC specification S has no non-local branching choice iff at each
of its branching points, the first events in all bMSCs are sent by the same process.

P r o o f . See [BAL96].

Algorithm. The algorithm gets an MSC specification S and returns the flag
NON_LOCAL iff one of the branches in S has a non-local choice; it returns the
flag LOCAL iff all branches in S can be resolved locally.

1

2

3

4

5
6
7"

8

9
10
11

12

13

14

15
16
17

Begin

For each intermediate node c

compute firstnodes(p(ref(c))

For each branching node b

first_proc = NULL

For each node c successor of b

If (Ifirstnodes(c)l != 1)

Return NONLOCAL

Else

n = firstnode(c)

If (first proc == NULL)

first_proc = ptype(n)

Else

If (first_proc != ptype(n))

Return NON_LOCAL

Return LOCAL

End

To compute the set of first nodes in each bMFG F takes in the worst case
O(]SF W CF[) where [SF O CF[is the number of nodes in the bMFG F. All
remaining operations take a constant time. Thus, the above algorithm runs in
the worst case in O(~Fe B (]SF O CF [), where B is the set of bMFGs in the MSC
specification being analyzed. In other words, the algorithm runs in a time linear
with the total number of messages exchanged in the MSC specification.

Our syntactic analysis relieves a designer from the burden of explicitly co-
ordinating the process branchings in an early design. Detecting and resolving
non-local branching choices can be used as a refinement step of the design, in
which a designer can introduce a coordination protocol, e.g., through additional
messages.

273

6 Conclusion

We have highlighted two potential problems in MSC specifications that are due to
implicit assumptions about the environment behavior. Both problems can lead to
interpretat ions with an infinite state space, discrepancies between a specification
and its implementat ion, as well as unimplementable specifications. One problem,
process divergence, is the result of i terating basic MSCs and implicit assumptions
about the queuing mechanism between communicat ing processes. It leads to a
specification where one or more processes run faster than others flooding them
with multiple copies of messages that they may not receive. The second problems
non-local branching choice, appears in MSC specifications where basic MSCs
can be executed in an alternative way. It results in MSC specifications that are
either unimplementable or implemented with unintented deadlocks. We have
semantically defined the above two problems and syntactically characterized
them. We also have proposed detection algori thms that run in an order linear in
the total number of messages exchanged in the MSC specification being analyzed.

References

[AHP96]

[AHU74]

[ALHH93]

[BAL96]

[BR95]

[IIK+91]

[IT95]

[IT96]

[Jea92]

[Leu94]

R. Alur, G. J. Holzmarm, and D. Peled. An analyzer for message sequence
charts. In T. Margaria and B. Steffen, editors, Tools and Algorithms for the
Construction and Analysis of Systems, Lecture Notes in Computer Science,
Vol. 1055, pages 35-48. Springer Verlag, 1996.
A. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Com-
puter Algorithms, chapter 5. Addison-Wesly Publishing Company, 1974.
B. Algayres, Y. Lejeune, F. Hugonment, and F. Hantz. The AVALON

project: a validation environment for SDL/MSC descriptions. In O. Faerge-
mand and A. Sarma, editors, Proceedings of the 6th SDL Forum, SDL'93:
Using Objects, October 1993.
H. Ben-Abdallah and S. Leue. Syntactic analysis os Message Sequence Chart
specifications. Tech Report 96-12, Department of Electrical and Computer
Engineering, University of Waterloo, November 1996.
G. Booch and J. Rumbaugh. The Unified Method: User Guide Version 0.8.
RATIONAL Software Corporation, October 1995.
H. Ichikawa, M. Itoh, J. Kato, A. Takura, and M. Shibasaki. SDE: Incre-
mental specification and development of communications software. IEEE
Transactions on Computers, 40(4):553-561, Apr. 1991.
ITU-T. Recommendation Z.120, Annex B: Algebraic Semantics os Mes-
sage Sequence Charts. ITU - Telecommunication Standardization Sector,
Geneva, Switzerland, 1995.
ITU-T. Recommendation Z.120. ITU - Telecommunication Standardization
Sector, Geneva, Switzerland, May 1996. Review Draft Version.
I. Jacobson and et al. Object-Oriented Software Engineering- A Use-case
Driven Approach. Addison-Wesley, 1992.
S. Leue. Methods and Semantics for Telecommunications Systems Engi-
neering. Doctoral dissertation, University of Berne, Switzerland, December
1994.

274

[LL95]

[LLar]

[LS]

[MR94]

[sGw94]

P. B. Ladldn and S. Leue. Interpreting Message Flow Graphs. Formal
Aspects of Computing, 7(5):473-509, 1995.
S. Leue and P. B. Ladldn. Implementing and verifying scenario-based spec-
ifications using Promela/XSpin. In J.-C. Gr~goire, G. J. Holzmarm, and
D. A. Peled, editors, Proceedings of the 2nd Workshop on the SPIN Verifi-
cation System, Rutgers University, August 5, I996. American Mathematical
Society, DIMACS/39, 1997, to appear.
P. B. Ladldn and B. B. Simons. Static analysis of communicating processes.
To appear, Springer Lecture Notes in Computer Science.
S. Mauw and M.A. Reniers. An algbraic semantics of basic message sequence
charts. The Computer Journal, 37(4), 1994.
B. Selic, G. Gullekson, and P.T. Ward. Real-Time Object-Oriented Mod-
elling. John Wiley & Sons, Inc., 1994.

A N o t a t i o n a n d D e f i n i t i o n s

Relations. Let f , g _ R • R denote binary relations over a set R, and S be a set.

f ~ s ~ {(a, b) l(a, b) E / A bES}
domai~(y) ~ {a 1(3b E R)((a,b) E f)}
f o g zx {(a,c) I (3b)((a,b) E f A (b,c) E g)}

f+ zx [.J,,>0 fn the transitive elosre of f

s ~ y ~= {(a, b)l(a, b) E f A a e S }
range(f) z~ {b l (3a E R)((a,b) E f)}

f l z~ =y

Digraphs. Let V denote a set and let E C V x V, then we call T = (V, E) a digraph.
(V, E, type, labels) is a digraph with node labels iff E C V • V, type : V -+ labels, and
labels -= range(type). (V, E, type, labels) is a digraph with edge labels iff E C V • V ,
type : E -4 labels, and labels = range(type). For a digraph T = (V, E) we define:

branchnodes(E) ~ {v E V I (I {v} ~ E I) > 1}.

Message Flow Graphs. Let S and C denote two arbi trary disjoint sets, the elements
of which we call sending events and receiving events, respectively. Furthermore, let S T
and E T denote arbi t rary disjoint sets (also disjoint from S and C), whose elements
we call signal and event types. We define a Message Flow Graph as a tuple ~ --
(S, C, he, sig, ST, stype, ET, etype) where (S U C, he, etype, ET) is a digraph with node
labels and (S U C, sig, stype, ST) is a digraph with edge labels satisfying the following
conditions:

1. sly C_ S • C is a (necessarily biparti te) bijective relation, where S = doraain(sig)
and C -- range(sig);

2. The set E T = ({!, ?} x ST) contains the event types (we write !t for (!, t) and ?t
for (?, t)).

3. If the type of a signal is t, then the corresponding send and receive events are of
type It and ?t respectively: (a, b) E sig --4 (3t E ST)(stype((a~ b)) = t A etype(a) =
It A etype(b) =?t) ;

4. Every component of the ne relation graph contains at most one start event:

(e ,e ' r range(ne) A (e,e ') Ene*) --4 (e = e ') .
A

We denote the part ial order precedence relation of the MFG 9 as Pa - sig U he, and
the first nodes in ~ according to pg as f irs tnodes(pg) = {e E S I (Pg ~ {e}) = @}, that
is the set of nodes from which a first event can be sent.

