
Representation of Bayesian Networks as
Relational Databases

S.K.M. Wong, Y. Xiang and X. Nie

Department of Computer Science

University of Regina

Regina, Saskatchewan, Canada S4S 0A2

1 Introduction

A Bayesian network can be regarded as a summary of a domain expert’s experience with
an implicit population. A database can be regarded as a detailed documentation of such
an experience with an explicit population. This connection between Bayesian networks
and databases is well recognized and have been pursued for knowledge acquisition [1,
2, 11]. Existing databases are treated as information resources. Automatic generation
of Bayesian networks from databases are studied as a way to bypass the knowledge
acquisition bottleneck. Once Bayesian networks are generated, databases are regarded
as no longer relevant to the evidential reasoning process in Bayesian networks.

Much evidence suggests that even deeper connection between Bayesian networks
and relational databases exists. Relational databases manipulate tables of tuples, and
Bayesian networks manipulate tables of probabilities. Relational databases answer
queries that involve attributes in multiple relations by joining the relations and then
projecting to the set of target attributes. In Bayesian networks, joint distributions
are defined by products of local distributions, and belief updating [9] computes the
marginalization of joint distributions. Relational databases make use of junction (join)
trees in database design [7]. Multiply connected Bayesian networks are transformed
into junction trees [5] or junction forests [13] to achieve inference efficiency. Scenario
based explanation [3] in Bayesian networks uses the most likely configurations, which
are equavalent to the universal tuples that repeat most frequently if we allow repetition
in the database. Sequential updating (learning) of conditional probabilities [10, 12] in
Bayesian networks makes use of new cases which are new tuples in databases.

The paper explores the connection between Bayesian networks and relational databases.
We presents a representation and inference framework of Bayesian networks using re-
lational databases. The framework is based on the junction tree representation of
Bayesian networks [5]. We show that with some minor extension to the conventional
relational database model, it can be used to represent Bayesian networks and to perform
probabilistic inference. This unified framework formally reveals the close relationship

1

between Bayesian networks and relational databases. It allows widely available rela-
tional database management systems to be used for probabilistic reasoning, and thus
potentially facilitates the development and deployment of knowledge-based systems
based on Bayesian networks.

2 Bayesian Networks

A Bayesian network [9, 8, 6, 5] is a triplet (N,E,P). N is a set of nodes. Each
node is labeled with a random variable that is associated with a space. Since the
labeling is unique, we shall use ‘node’ and ‘variable’ interchangeably. E is a set of
arcs such that D = (N,E) is a directed acyclic graph (DAG). The arcs signify the
existence of direct causal influences between the linked variables. For each node Ai ∈
N , the strengths of the causal influences from its parent nodes πi is quantified by a
conditional probability distribution p(Ai|πi) of Ai conditioned on the values of Ai’s
parents. The basic dependency assumption embedded in Bayesian networks is that a
variable is independent of its non-descendants given its parents. P is a joint probability
distribution. For a Bayesian network with n nodes, P can be specified by the following
factored form due to the assumption: P = p(A1 . . . An) =

∏n
i=1 p(Ai|πi).

For example, the probability distribution for a Bayesian network shown in Figure 1
can be specified as

p(x1, x2, x3, x4, x5, x6) = p(x1)p(x2|x1)p(x3|x1)p(x4|x1, x2)p(x5|x2, x3)p(x6|x5) (1)

x1

x2 x3

x4

x5

x6

Figure 1: The DAG of a Bayesian Network.

The joint probability distribution of a Bayesian network can be equivalently factored
based on an undirected graph derived from the original DAG [6, 5]. For example, the

2

above joint distribution p(x1, x2, ..., x6) can be written as a product of the distributions
of the cliques of the graph G (depicted in Figure 2) divided by a product of the
distributions of their intersections, namely:

p(x1, x2, x3, x4, x5, x6) =
p(x1, x2, x3)p(x1, x2, x4)p(x2, x3, x5)p(x5, x6)

p(x1, x2)p(x2, x3)p(x5)
(2)

x1

x2 x3

x4

x5

x6

Figure 2: An Undirected Graph G derived from the DAG in Figure 1.

Note that the conditional independence, p(x2, x3|x4) = p(x2|x1)p(x3|x1), in equa-
tion (1) is not explicitly represented in equation (2). It will be shown, however, that a
tree organization of the cliques of G as shown in Figure 1 provides a convenient way
of representing a Bayesian network as a relational database system and of performing
probabilistic inference in that network.

3 Representation of a Factored Probability Distri-

bution as a Product on a Hypertree

In order to facilitate the development of a relational representation of a Bayesian
network and to use it for answering queries that involve marginal distributions of the
network, we first demonstrate how to express a joint probability distribution as a
product on a hypertree1.

1Other terms like ‘junction tree’ and ‘joint tree’ have been used to denote hypertree [9, 4, 5, 7] in
the literature. We will use ‘hypertree’ throughout the rest of the paper.

3

3.1 Hypergraphs and Hypertrees

Let L denote a lattice. We say that H is a hypergraph, if H is a finite subset of
L. Consider, for example, the power set 2X , where X = {x1, x2, ..., xn} is a set of
variables. The power set 2X is a lattice of all subsets of X . Any subset of 2X is a
hypergraph on 2X . We say that an element t in a hypergraph H is a twig if there
exists another element b in H, distinct from t, such that t ∩ (∪(H− {t}) = t ∩ b. We
call any such b a branch for the twig t. A hypergraph H is a hypertree if its elements
can be ordered, say h1, h2, ..., hn, so that hi is a twig in {h1, h2, ..., hi}, for i = 2, ..., n.
We call any such ordering a hypertree construction ordering for H. Given a hypertree
construction ordering h1, h2, ..., hn, we can choose, for i from 2 to n, an integer b(i)
such that 1 ≤ b(i) ≤ i − 1 and hb(i) is a branch for hi in {h1, h2, ..., hn}. We call the
function b(i) satisfying this condition a branch function for H and h1, h2, ..., hn.

For example, let X = {x1, x2, ..., x6} and L = 2X . Consider a hypergraph, H =
{h1 = {x1, x2, x3}, h2 = {x1, x2, x4}, h3 = {x2, x3, x5}, h4 = {x5, x6}}, depicted in Fig-
ure 3. This hypergraph is in fact a hypertree; the ordering, for example, h1, h2, h3, h4,
is a hypertree construction ordering. Furthermore, we obtain: b(1) = h3, b(2) = h1,
and b(4) = h3.

h4

h1

h2

x5 x6

x3

x2

x4

x1

h3

Figure 3: A Graphical Representation of the Hypergraph H = {h1 = {x1, x2, x3}, h2 =
{x1, x2, x4}, h3 = {x2, x3, x5}, h4{x5, x6}}.

A hypertree K on L is called a hypertree cover for a given hypergraph H on L if
for every element h of H, there exists an element k(h) of K such that h ⊆ k(h). In
general, a hypergraph H may have many hypertree covers. For example, the hypertree
depicted in Figure 3 is a hypertree cover of the hypergraph

{{x1, x2}, {x1, x3}, {x2, x5}, {x3, x5}, {x1, x2, x4}, {x5, x6}}.

4

3.2 Factored Probability Distributions

Let X = {x1, x2, ..., xn} denote a set of variables. A factored probability distribution
p(x1, x2, ..., xn) can be written as

p(x1, x2, ..., xn) = φ = φh1φh2...φhn

where each hi is a subset of X , i.e., hi ∈ 2X , and φhi is a real-valued function on hi.
Moreover, X = h1 ∪ h2 ∪ ... ∪ hn =

⋃n
i=1 hi. By definition, H = {h1, h2, ..., hn} is a

hypergraph on the lattice 2X . Thus, a factored probability distribution can be viewed
as a product on a hypergraph H, namely:

φ =
∏

h∈H
φh.

Let vx denote the discrete frame (state space) of the variable x ∈ X . We call an
element of vx a configuration of x. We define vy to be the cartesian product of the
frames of the variables in a subset y ⊆ X :

vy = ×x∈yvx.

We call vy the frame of y, and we call its elements configurations of y.
Let h, k ∈ 2X , and h ⊆ k. If c is a configuration of k, i.e., c ∈ vk, we write c↓h

for the configuration of h obtained by deleting the values of the variables in k and not
in h. For example, let h = {x1, x2}, k = {x1, x2, x3, x4}, and c = (c1, c2, c3, c4), where
ci ∈ vxi. Then, c↓h = (c1, c2).

If h and k are disjoint subsets of X , ch is a configuration of h, and ck is a con-
figuration of k, then we write (ch ∗ ck) for the configuration of h ∪ k obtained by
concatenating ch and ck. In other words, (ch ∗ ck) is the unique configuration of h ∪ k
such that (ch ∗ ck)

↓h = ch and (ch ∗ ck)
↓k = ck. Using the above notation, a factored

probability distribution φ can be defined as follows:

φ(c) = (
∏

h∈H
φh)(c) =

∏

h∈H
φh(c

↓h)

where c ∈ vX is any configuration.

3.3 Marginalization

Consider a function φk on a set k of variables. If h ⊆ k, then φ↓h
k denotes the function

on h defined as follows:
φ↓h

k (c) =
∑

c′
φk(c ∗ c′)

where c is a configuration of h, c′ is a configuration of k−h, and c∗c′ is a configuration
of k. We shall call φ↓h

k the marginal of φk on h.
A major task in probabilistic reasoning in Bayesian networks is to compute marginals

as new evidence becomes available.

5

4 Representation of a Factored Probability Distri-

bution as a Generalized Acyclic Join Dependency

x x x
1 2 7

c c c

c c c

c c c

11 12 1l

21 22 2l

s1 s2 sl

..

.
..
.

..

.
..
.

φh
f

φ
h(c1)

φ
h(c2)

φ
h(cs)

......

......

......

......

φh =

Figure 4:

Let c be a configuration of X . Consider a factored probability distribution

φ(c) =
∏

h∈H
φh(c

↓h)

We can equivalently express each function φh in the above product as a relation.
Suppose h = {x1, x2, .., xl}. The function φh can be expressed as a relation on the
set {x1, x2, ..., xl, fφl

} of attributes shown in Figure 4. In Figure 4, a configuration
ci = (ci1, ci2, ..., cil) is expressed as one row excluding the last element in the row, and
s is the cardinality of vh.

By definition, the product φh · φk of any two function φh and φk is given by:

(φh · φk)(c) = φh(c
↓h) · φk(c

↓k)

where c ∈ vh∪k. We can therefore express the product φh · φk equivalently as a join of
relation φh and φk, written φh ⊗ φk, which is defined as follows:

(i) Compute the natural join, φh ./ φk, of the two relations of φh and φk.

(ii) Add a new column with attribute fφh·φk
to the relation φh ./ φk on h ∪ k. Each

value of fφh·φk
is given by φh(c

↓h) · φk(c
↓k) where c ∈ vh∪k.

(iii) Obtain the resultant relation φh ⊗ φk by projecting the relation obtained in step
(ii) on the set of attributes h ∪ k ∪ {fφh·φk

}.

For example, let h = {x1, x2}, k = {x2, x3}, and vh = vk = {0, 1}. The join φh ⊗ φk is
illustrated in Figure 5.

6

x x
1 2

0 0

φh
f

φk =φh
a1

0 1 a2

1 0 a3

1 1 a4

x x
2 3

0 0

φk
f

b1

0 1 b2

1 0 b3

1 1 b4

(i)

x x
1 2

0 0

φh
f

a1

0 0 a1

0 1 a2

0 1 a2

x
2

0

1

0

1

φk
f

b1

b2

b3

b4

1 0 a3

1 0 a3

1 1 a4

1 1 a4

0

1

0

1

b1

b2

b3

b4

=

x x
1 2

0 0

φh
f

a1

0 0 a1

0 1 a2

0 1 a2

x
2

0

1

0

1

φk
f

b1

b2

b3

b4

1 0 a3

1 0 a3

1 1 a4

1 1 a4

0

1

0

1

b1

b2

b3

b4

φh
f

a1

a1

a2

a2

a3

a3

a4

a4

.

.

.

.

.

.

.

.

.

φk

b1

b2

b3

b4

b1

b2

b3

b4

(ii)

x x
1 2

0 0

0 0

0 1

0 1

x
2

0

1

0

1

1 0

1 0

1 1

1 1

0

1

0

1

φh
f

a1

a1

a2

a2

a3

a3

a4

a4

.

.

.

.

.

.

.

.

.

φk

b1

b2

b3

b4

b1

b2

b3

b4

(iii) φkφh=

Figure 5: The join of two relations: φh and φk.

7

x x x
1 2 7

c c c

c c c

c c c

11 12 1l

21 22 2l

s1 s2 sl

..

.
..
.

..

.

φh
f......

......

......

......

φh =
1

1

1

Figure 6: A conventional relation with an unit function attribute added.

If all the functions φ’s are unit functions (see Figure 6), then the binary operator
⊗ defined above is identical to the natural join operator ./ in conventional databases.

Since the operator ⊗ is both commutative and associative, we can express a factored
probability distribution as a join of relations:

φ =
∏

h∈H
φh =

⊗

h∈H
φh.

we can also define marginalization as a relational operation. Let φ↓h
k denote the relation

obtained by marginalizing φk on h ⊆ k. We can construct φ↓h
k in two steps:

(a) Project the relation φk on the set of attributes h ∪ {fφk
}, without eliminating

identical configurations.

(b) For every ch ∈ vh, replace the set of configurations of h ∪ {fφk
} in the relation

obtained from step (a) by the singleton configuration ch ∗ (
∑

ck−h
φk(ch ∗ ck−h)).

Consider, for example, the relation φk with k = {x1, x2, x3} as shown in Figure
7. Suppose we want to compute φ↓h

k for h = {x1, x2}. From step (a), we obtain the
relation in Figure 8 by projecting φk on h ∪ {fφk

}. The result after step (b) is shown
in Figure 9.

Two important properties are satisfied by the relational operator of marginalization:

8

φk =

x x
1 2

0 0

φk
f

d1

0 0 d2

0 1 d3

0 1 d3

x
3

0

1

0

1

1 0 d4

1 0 d4

1 1 d5

1 1 d6

0

1

0

1

Figure 7: A relation φk with attributes x1, x2, x3, fφk
.

Lemma 1

(1) If φk is a relation on k, and h ⊆ g ⊆ k, then

(φ↓g
k)↓h = φ↓h

k .

(2) If φh and φk are relations on h and k, respectively, then

(φh ⊗ φk)
↓h = φh ⊗ (φ↓h∩k

k).

Proof:
(1) By definition, a configuration of the set g ∪ {f

φ↓g
k
} of attributes in the relation

φ↓g
k is

cg ∗ φg(cg) = cg ∗ (
∑

ck−g

φk(cg ∗ ck−g))

where cg ∈ vg. Similarly, a configuration of the set of attributes h∪{f↓h
φg
} in the relation

φ↓h
g = (φ↓g

k)↓h is

ch ∗
∑

cg−h

φg(ch ∗ cg−h) = ch ∗ (
∑

cg−h

∑

ck−g

φk(ch ∗ cg−h ∗ ck−g)) = ch ∗ (
∑

ck−h

φk(ch ∗ ck−h))

which is a configuration of the set of attributes in the relation φ↓h
k .

(2) A configuration of the set of attributes h∪k ∪{fφh·φk
} in the relation φh ⊗φk is

c ∗ (φh(c
↓h) · φk(c

↓k))

where c ∈ vh∪k. Thus a configuration of the set of attributes h ∪ fφh⊗φk
in the relation

(φh ⊗ φk)
↓h is

c↓h ∗ (φh(c
↓h) ·

∑

ck−h

φk(c
↓h∩k ∗ ck−h))

9

x x
1 2

0 0

φk
f

d1

0 0 d2

0 1 d3

0 1 d3

1 0 d4

1 0 d4

1 1 d5

1 1 d6

Figure 8: The intermediate result (after step (a)) of marginalization φ↓h
k of the relation

φk in Figure 7 relative to h = {x1, x2}.

x x
1 2

0 0

φk
f

d1 d2

0 1 d3 d3

1 0 d4 d4

1 1 d5 d6

+

+

+

+

h

=φ
k

h

Figure 9: The marginalization φ↓h
k of the relation φk in Figure 7 relative to h = {x1, x2}.

On the other hand, by definition, a configuration of the set of attributes (h ∩ k) ∪
{fφ↓h∩k

k
} in the relation φ↓h∩k

k is

(c↓h∩k ∗
∑

ck−h

φk(c
↓h∩k ∗ ck−h).

Also, a configuration of the set of attributes h ∪ {fφh
} in the relation φh is

(c↓h ∗ φh(c
↓h)) = (c↓h−k ∗ c↓h∩k ∗ φh(c

↓h)).

By the definition of the join operation ⊗, we can therefore conclude that

(φh ⊗ φk)
↓h = φh ⊗ φ↓h∩k

k . 2

It should be noted that when all the relations φ involved represent unit functions,
the join operator ⊗ is equivalent to the natural join operator ./, marginalization

10

becomes projection, and the relation (φh ⊗ φk)
↓h is the semi-join of φh and φk as

defined in standard relational database systems. Both equalities (φ↓g
k)↓h = φ↓h

k and
(φh ⊗ φk)

↓h = φh ⊗ φ↓h∩k
k are trivially satisfied. Before discussing the computation

of marginals of a factored distribution, let us first state the notion of computational
feasibility introduced by Shafer. We call a set of attributes feasible if it is feasible
to represent relations on these attributes, join them, and marginalize on them. We
assume that any subset of feasible attributes is also feasible. Furthermore, we assume
that the factored distribution is represented on a hypertree and every element in H is
feasible.

Lemma 2 Let φ = ⊗h∈Hφh be a factored probability distribution on a hypergraph H.
Let t be a twig in H and b be a branch for t. Then the followings hold:

(i) (⊗{φh|h ∈ H})∪H−t
= (⊗{φh|h ∈ H−t}) ⊗ φ↓t∩b

t .

(ii) If k ⊆ ∪H−t, then (⊗{φh|h ∈ H})↓k = (⊗{φh|h ∈ H−t})↓k where H−t denotes
the set of hyperedges H− {t}, φ−t

b = φb ⊗ φ↓t∩b
t , and φ−t

h = φh for all other h in
H−t.

Proof: Since ⊗{φh|h ∈ H−t} is a relation on ∪H−t and t ∩ (∪H−t) = t ∩ b, we
obtain from property (2) of Lemma 1:

(⊗{φh|h ∈ H)↓∪H
−t

= ((⊗{φh|h ∈ H−t) ⊗ φt)
↓∪H−t

= (⊗{φh|h ∈ H−t) ⊗ φ↓t∪H−t

t

= (⊗{φh|h ∈ H−t) ⊗ φ↓t∪b
t .

The right-hand side of th above equation can be rewritten as:

(⊗{φh|h ∈ H−t) ⊗ φ↓t∪b
t = ⊗{φ−t

h |h ∈ H.

Since k ⊆ H−t, by property (1) of Lemma 1, it follows:

(⊗{φh|h ∈ H)↓k = ((⊗{φh|h ∈ H)↓∪H
−t

)↓k

= (⊗{φ−t
h |h ∈ H−t})↓h. 2

We now describe an an algorithm for computing φ↓k for k ∈ H, where φ = ⊗{φh|h ∈
H} and H is a hypertree. Choose a hypertree construction ordering for H that begins
with h1 = k as the root, say h1, h2, ..., hn, and choose a branching b(i) for constructing
ordering. For i = 1, 2, ..., n, let

Hi = {h1, h2, ..., hi}.

This is a sequence of sub-hypertree, each larger than the last; H1 = {h1} and Hn = H.
The element hi is a twig in Hi. To compute φ↓k, we start with Hn going backwards in
this sequence. We use Lemma 3 each time to perform the reduction. At the step from

11

Hi to Hi−1, we go from φ↓∪Hi
to φ↓∪Hi−1

. we omit hi in Hi to Hi−1 and change the
relation on hb(i) in Hi−1 from φi

hb(i)
to

φi−1
hb(i)

= φi
hb(i)

⊗ (φi
hi

)↓hi∩hb(i),

and the other relations in Hi−1 are not changed. The collection of relations with which
we begin, {φn

h|h ∈ Hn}, is simply {φh|h ∈ H}, and the collection with which we end,
{φ1

h|h ∈ H1}, consists of the single relation φ1
h = φ↓h1.

Consider a factored probability distribution φ = ⊗{φh|h ∈ H} on a hypertree
H = {h1, h2, ..., hn}. We say that φ satisfies the acyclic join dependency (AJD),
∗[h1, h2, ..., hn], if φ decomposes losslessly onto h1, h2, ..., hn, i.e., φ can be expressed as:

φ = φ↓h1 ⊗′ φ↓h2 ⊗ ...⊗ φ↓hn,

where ⊗′ is a generalized join operator defined by:

φ↓hi ⊗′ φ↓hj = φ↓hi ⊗ φ↓hj ⊗ φ↓hi∩hj .

Theorem 3 Any factored probability distribution φ = ⊗{φh|h ∈ H} on a hypertree,
H = {h1, h2, ..., hn}, decomposes losslessly onto h1, h2, ..., hn. That is, φ satisfies the
AJD, ∗[h1, h2, ..., hn].

Proof:
Suppose t ∈ H is a twig. By the properties of conditional independence in a factored

probability distribution, we can always define a set of relation {φ′
h1

, φ′
h2

, ..., φ′
t, ..., φ

′
hn
}

such that
φ = ⊗{φh|h ∈ H} = ⊗{φ′

h|h ∈ H}

and φ′
t = p(t|t ∩ b), where b is a branch of t in H. By Lemma 2,

φ↓∩H = ((⊗{φ′
h|h ∈ H−t}) ⊗ φ′

t)
↓∩H−t

= (⊗{φ′
h|h ∈ H−t})⊗ φ′

t
↓t∩H−t

= (⊗{φ′
h|h ∈ H−t})⊗ φ′

t
↓t∩b

.

Thus,

φ↓∪H−t ⊗ (
φ′

t

φ′
t
↓t∩b) = (⊗{φ′

h|h ∈ H−t}) ⊗ φ′
t
↓t∩b ⊗ (

φ′
t

φ′
t
↓t∩b) = φ.

Since φ′
t = p(t|t ∩ b), we obtain

φ′
t
↓t∩b

= 1.

It follows:
φ′

t

φ′↓t∩b
= p(t|t ∩ b) =

p(t)

p(t ∩ b)
=

φ↓t

φ↓t∩b
.

12

therefore, φ can be written as:

φ = φ↓∪H−t ⊗ φ↓t

φ↓t∩b
= φ↓∪H−t ⊗′ φ↓t.

Also, we have:
φ↓∪H−t

= ⊗{φ′
h|h ∈ H}.

We can immediately apply the same procedure to φ↓∪H−t
for further reduction. Thus,

by applying this procedure recursively, we obtain the desired result. 2

References

[1] C.K. Chow and C.N. Liu. Approximating discrete probability distributions with
dependence trees. IEEE Transactions on Information Theory, (14):462–467, 1968.

[2] G.F. Cooper and E. Herskovits. A bayesian method for the induction of proba-
bilistic networks from data. Machine Learning, (9):309–347, 1992.

[3] M. Henrion and M.J. druzdzel. Qualitative propagation and scenario-based ap-
proaches to explanation of probabilistic reasoning. In Proc. Sixth Conference on
Uncertainty in Artificial Intelligence, pages 10–20, Cambridge, Mass., 1990.

[4] F.V. Jensen. Junction tree and decomposable hypergraphs. Technical report,
JUDEX, Aalborg, Denmark, February 1988.

[5] F.V. Jensen, S.L. Lauritzen, and K.G. Olesen. Bayesian updating in causal prob-
abilistic networks by local computations. Computational Statistics Quarterly,
(4):269–282, 1990.

[6] S.L. Lauritzen and D.J. Spiegelhalter. Local computation with probabilities on
graphical structures and their application to expert systems. Journal of the Royal
Statistical Society, Series B, (50):157–244, 1988.

[7] D. Maier. The Theory of Relational Databases. Computer Science Press, 1983.

[8] R.E. Neapolitan. Probabilistic Reasoning in Expert Systems. John Wiley and Sons,
1990.

[9] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, 1988.

[10] D.J. Spiegelhalter, R.C.G. Franklin, and K. Bull. Assessment, criticism and
improvement of imprecise subjective probabilities for a medical expert system.
In Proc. Fifth workshop on uncertainty in artificial intelligence, pages 335–342,
Windsor, Ontario, 1989.

13

[11] W.X. Wen. From relational databases to belief networks. In B. D’Ambrosio,
P. Smets, and P.P. Bonissone, editors, Proc. Seventh Conference on Uncertainty
in Artificial Intelligence, pages 406–413. Morgan Kaufmann, 1991.

[12] Y. Xiang, M.P. Beddoes, and D. Poole. Sequential updating conditional proba-
bility in bayesian networks by posterior probability. In Proc. 8th Biennial Conf.
Canadian Society for Computational Studies of Intelligence, pages 21–27, Ottawa,
1990.

[13] Y. Xiang, D. Poole, and M. P. Beddoes. Multiply sectioned bayesian networks and
junction forests for large knowledge based systems. Computational Intelligence,
9(2):171–220, 1993.

14

