
ar
X

iv
:c

s/
99

10
00

5v
1

 [
cs

.C
C

]
 1

 O
ct

 1
99

9

Query Order and the Polynomial Hierarchy

Edith Hemaspaandra∗

Department of Mathematics

Le Moyne College

Syracuse, NY 13214, USA

Lane A. Hemaspaandra†

Department of Computer Science

University of Rochester

Rochester, NY 14627, USA

Harald Hempel‡

Institut für Informatik

Friedrich-Schiller-Universität Jena

07740 Jena, Germany

May 27, 1998

Abstract

Hemaspaandra, Hempel, and Wechsung [HHW] initiated the field of query order, which
studies the ways in which computational power is affected by the order in which information
sources are accessed. The present paper studies, for the first time, query order as it applies to
the levels of the polynomial hierarchy. PC:D denotes the class of languages computable by a
polynomial-time machine that is allowed one query to C followed by one query to D [HHW]. We

prove that the levels of the polynomial hierarchy are order-oblivious: P
Σ

p

j
:Σ

p

k = P
Σ

p

k
:Σ

p

j . Yet, we
also show that these ordered query classes form new levels in the polynomial hierarchy unless
the polynomial hierarchy collapses. We prove that all leaf language classes—and thus essentially
all standard complexity classes—inherit all order-obliviousness results that hold for P.

1 Introduction

Query order was introduced by Hemaspaandra, Hempel, and Wechsung [HHW] in order to study
whether the order in which information sources are accessed has any effect on the class of problems
that can be solved. In the everyday world, the order in which we access information is crucial,
and the work of Hemaspaandra, Hempel, and Wechsung [HHW] shows that this real-world intuition
holds true in complexity theory when the information one is accessing is from the boolean hierarchy.
In particular, let PC:D denote the class of languages L such that, for some C ∈ C and some D ∈ D,
L is accepted by some P transducer M that on any input may make at most one query to C

followed by at most one query to D. Hemaspaandra, Hempel, and Wechsung show that, unless the
polynomial hierarchy collapses, query order always matters when C and D are nontrivial levels of

∗Supported in part by grant NSF-INT-9513368/DAAD-315-PRO-fo-ab. Work done in part while visiting Friedrich-
Schiller-Universität Jena. Email: edith@bamboo.lemoyne.edu.

†Supported in part by grants NSF-CCR-9322513 and NSF-INT-9513368/DAAD-315-PRO-fo-ab. Work done in
part while visiting Friedrich-Schiller-Universität Jena. Email: lane@cs.rochester.edu.

‡Supported in part by grant NSF-INT-9513368/DAAD-315-PRO-fo-ab. Work done in part while visiting Le Moyne
College. Email: hempel@informatik.uni-jena.de.

1

http://arxiv.org/abs/cs/9910005v1

the boolean hierarchy [CGH+88], except in two cases. In particular they prove that, for 1 ≤ j ≤ k,
PBHj :BHk = PBHk:BHj if

j = k or (j is even and k = j + 1),

and they prove that unless the polynomial hierarchy collapses these are the only cases (satisfying
1 ≤ j ≤ k) for which PBHj :BHk = PBHk:BHj .

The goal of the present paper is to study query order in the polynomial hierarchy. Section 3
shows that, in sharp contrast with the case of the boolean hierarchy, query order never matters

in the polynomial hierarchy: For any j and k, PΣp

j
:Σp

k = PΣp

k
:Σp

j . We prove this by providing for
“PC:D = PD:C” a sufficient condition, which also has applications in other settings.

Of course, if for j ≤ k, PΣp

j
:Σp

k = PΣp

k
[1], then our PΣp

j
:Σp

k = PΣp

k
:Σp

j theorem would be trivial.
Here, as is standard, PΣp

k
[1] denotes the class of languages that are computable via polynomial-

time 1-Turing reductions to Σp
k [LLS75]. In fact, the statement PΣp

j
:Σp

k = PΣp

k
[1], for j < k, might

on casual consideration seem plausible, as certainly a Σp
k oracle can simulate the Σp

j query (when

j < k) of PΣp

j
:Σp

k , can compute the answer to it, and then can based on the answer determine

the Σp
k query of PΣp

j
:Σp

k and can simulate it. (Footnote 1 explains why this argument fails to

establish PΣp

j
:Σp

k = PΣp

k
[1].) Nonetheless, we show that, unless the polynomial hierarchy collapses,

PΣp

j
:Σp

k = PΣp

ℓ
:Σp

m only if {j, k} = {ℓ,m}.
In Section 4, we show that all query order exchanges that hold for PC:D—not just all those we

prove but rather all that are true—are automatically inherited by all leaf language classes, and thus
by essentially all standard complexity classes. This shows that these classes allow at least as many
query order exchanges as P does. We also note that some of these classes—in particular NP—allow
(unless the polynomial hierarchy collapses) more order exchanges than P does.

2 Preliminaries

For standard notions not defined here, we refer the reader to any computational complexity textbook,
e.g., [BC93, BDG95, Pap94].

We say a set is trivial if it is ∅ or Σ∗, and otherwise we say it is nontrivial. A complexity
class is any collection of subsets of Σ∗. For each complexity class C, let coC denote {L | L ∈ C}.
The polynomial hierarchy is defined as follows: Σp

0 = Πp
0 = ∆p

0 = ∆p
1 = P and, for each i > 0,

Σp
i = NPΣp

i−1 , Πp
i = coΣp

i , and ∆p
i = PΣp

i−1 . Let A⊕B denote the disjoint union of the sets A and
B, i.e., A⊕B = {x0 |x ∈ A} ∪ {x1 |x ∈ B}, and let A×B denote the Cartesian product of the sets
A and B, i.e., A×B = {〈x, y〉 | x ∈ A and y ∈ B}.

In this paper we use oracles to represent databases that are queried. This does not mean that
this is a “relativized worlds” oracle construction paper. It is not. Rather we use relativization in
much the same way that it is used to build the polynomial hierarchy, namely, relativization by full,
natural classes.

We now present the definitions that will allow us to discuss the ways—order of access, amount
of access, etc.—that databases (modeled as oracles) are accessed. We use DPTM as a shorthand
for “deterministic polynomial-time (oracle) Turing machine.” Without loss of generality, we assume
that such machines are clocked with clocks that are independent of the oracle. MA(x) denotes the
computation of DPTM M with oracle A on input x. On occasion, when the oracle involved is clear
from context and we are focusing on the action of M , we may write M(x) and omit the oracle.

Definition 2.1 Let C and D be complexity classes.

2

1. [HHW] Let MA:B denote DPTM M restricted to making at most one query to oracle A

followed by at most one query to oracle B.

PC:D = {L ⊆ Σ∗ | (∃C ∈ C)(∃D ∈ D)(∃ DPTM M)[L = L(MC:D)]}.

2. Let M
(A,B)
1,1-tt denote DPTM M restricted to making simultaneously at most one query to oracle

A and at most one query to oracle B.

P
(C,D)
1,1-tt = {L ⊆ Σ∗ | (∃C ∈ C)(∃D ∈ D)(∃ DPTM M)[L = L(M

(C,D)
1,1-tt)]}.

3. Let MA,B denote DPTM M restricted to making at most one query to oracle A and at most
one query to oracle B, in arbitrary order. Similarly, let MA[1],B[poly] denote DPTM M making
at most one query to oracle A and polynomially many queries to B, in arbitrary order (it is
even legal for the query to A to be sandwiched between queries to B).

PC,D = {L ⊆ Σ∗ | (∃C ∈ C)(∃D ∈ D)(∃ DPTM M)[L = L(MC,D)]}.

PC[1],D[poly] =

{L ⊆ Σ∗ | (∃C ∈ C)(∃D ∈ D)(∃ DPTM M)[L = L(MC[1],D[poly])]}.

As has been noted by the authors elsewhere [HHH97b], part 2 of Definition 2.1 is somewhat
related to work of Selivanov [Sel94]. Independently of [HHH97b], Klaus Wagner [Wag] has made
similar observations in a more general form (namely, applying to more than two sets and to more
abstract classes) regarding the relationship between Selivanov’s classes and parallel-access classes.
For completeness, we repeat here, as the present paragraph, some text from [HHH97b] that presents
the basic facts known about the relationship between the classes of Selivanov (for the case of “△”s
of two sets; see Wagner [Wag] for the case of more than two sets) and the classes discussed in this
paper. Selivanov studied refinements of the polynomial hierarchy. Among the classes he considered,
those closest to the classes we study in this paper are his classes

Σp
i△Σp

j = {L | (∃A ∈ Σp
i)(∃B ∈ Σp

j)[L = A△B]},

where A△B = (A−B)∪(B−A). Note, however, that his classes seem to be different from our classes.
This can be immediately seen from the fact that all our classes are closed under complementation,
but the main theorem of Selivanov ([Sel94], see also the discussion and strengthening in [HHH97c])
states that no class of the form Σp

i△Σp
j , with i > 0 and j > 0, is closed under complementation

unless the polynomial hierarchy collapses. Nonetheless, the class Σp
i△Σp

j is not too much weaker

than P
(Σp

i
,Σp

j
)

1,1-tt , as it is not hard to see (by easy manipulations if i 6= j, and from the work of
Wagner [Wag90] and Köbler, Schöning, and Wagner [KSW87] for the i = j case) that, for all i and

j, it holds that {L | (∃L′ ∈ Σp
i△Σp

j)[L ≤p
1-tt L′]} = P

(Σp

i
,Σp

j
)

1,1-tt . Here, as is standard, ≤p
1-tt denotes

polynomial-time 1-truth-table reducibility [LLS75].
Let C be a complexity class. In the literature, ≤p

m denotes many-one polynomial-time reducibility.

Similarly, we write A ≤
p,C[1]
m B if and only if there is a (total) function f ∈ FPC[1] such that, for all

x, x ∈ A ⇐⇒ f(x) ∈ B.

3

3 Query Order in the Polynomial Hierarchy

3.1 Order Exchange in the Polynomial Hierarchy

We first state and prove a sufficient condition for order exchange. This condition will apply to a
large number of classes.

Theorem 3.1 If C and D are classes such that C is closed under disjoint union and C is closed

downwards under ≤
p,D[1]
m , then

PC:D = PD:C = P
(C,D)
1,1-tt.

Proposition 3.2 notes that for complexity classes that have complete sets, closure under disjoint
union follows from downward closure under many-one reductions. For most standard classes C this
proposition can be used, when applying various theorems of this section, to remove the condition
that C be closed under disjoint union.

Proposition 3.2 If C has ≤p
m-complete sets and C is closed downwards under ≤p

m-reductions, then
C is closed under disjoint union.

Before proving Theorem 3.1 we first prove some results that will be helpful in the proof. Also,
Theorem 3.4 may apply even in some cases where Theorem 3.1’s hypothesis does not hold.

Definition 3.3 We say C “ands” (C,D) if (∀C ∈ C)(∀D ∈ D)[C ×D ∈ C].

Theorem 3.4 If C is closed under disjoint union, C “ands” (C,D), and C “ands” (C, coD), then
PC:D ⊆ PD:C.

Proof: Suppose L ∈ PC:D and let DPTM M , C ∈ C, and D ∈ D be such that L = L(MC:D).
Without loss of generality, let M always query each of C and D exactly once, regardless of the
answer of the first query (that is, even given an incorrect answer to the first query, M will always
ask a second query). We describe a DPTM N and a set C′ such that C′ ∈ C and L = L(ND:C′

).
Let C′ =

(
(C ×D)⊕ (C ×D)

)
⊕ C, i.e., C′ =

{〈y1, y2〉00 | y1 ∈ C and y2 6∈ D} ∪ {〈y1, y2〉10 | y1 ∈ C and y2 ∈ D} ∪ {y1 | y ∈ C}.

On input x, DPTM ND:C′

works as follows:

1. It determines the first and the two potential second queries of M(x). Denote the first query
by q0 and the two potential second queries by qy and qn, where qy is the query asked by M(x)
if the first query was answered “yes,” and qn the query asked if the first query was answered
“no.”

2. N queries qn to D.

3. N determines the truth-table of M(x) with respect to q0 and qy, with query qn answered
correctly. That is, let (X1, X2, X3), Xi ∈ {A,R}, where A stands for accept and R for reject,
be such that

(a) X1 is the outcome of M(x) if both q0 and qy are answered “yes” (recall that if q0 is
answered “yes” then M(x) asks qy as its second query),

(b) X2 is the outcome of M(x) if q0 is answered “yes” and qy is answered “no,” and

4

(c) X3 is the outcome of M(x) if q0 is answered “no” and qn is answered correctly.

4. There are eight different cases for (X1, X2, X3). We have to show that each case can be handled
in polynomial time with one query to C′. We will henceforward assume that there are more
Rs than As in (X1, X2, X3). (The remaining cases follow by complementation.) Depending on
the determined truth-table (X1, X2, X3), N does the following:

(a) (X1, X2, X3) = (R,R,R). In this case, N will of course reject.

(b) (X1, X2, X3) = (A,R,R). Then M accepts if and only if q0 ∈ C and qy ∈ D. This is the
case if and only if 〈q0, qy〉10 ∈ C′. So N queries 〈q0, qy〉10 to C′ and accepts if and only
if the answer is “yes.”

(c) (X1, X2, X3) = (R,A,R). Then M accepts if and only if q0 ∈ C and qy 6∈ D. This is the
case if and only if 〈q0, qy〉00 ∈ C′. So N queries 〈q0, qy〉00 to C′ and accepts if and only
if the answer is “yes.”

(d) (X1, X2, X3) = (R,R,A). Then M accepts if and only if q0 6∈ C. This is the case if and
only if q01 6∈ C′. So N queries q01 to C′ and accepts if and only if the answer is “no.”

It is clear from the construction that L(MC:D) = L(ND:C′

) and thus L ∈ PD:C, since C′ ∈ C by
the closure properties in the theorem’s hypothesis.

Corollary 3.5 If C and D are classes such that C is closed under disjoint union and C is closed

downwards under ≤
p,D[1]
m , then

PC:D ⊆ PD:C.

Proof: If C contains only trivial sets, i.e., C ⊆ {∅,Σ∗}, then PC:D = PD = PD:C and we are done.
So from now on we assume that C contains a nontrivial set. We will show that in this case we
can apply Theorem 3.4, i.e., we will show that C, which is closed under disjoint union, has also the
properties that C “ands” (C,D) and C “ands” (C, coD).

Let C ∈ C and D ∈ D. We need to show that C × D ∈ C and C × D ∈ C. If C 6= Σ∗, then

C × D ≤
p,D[1]
m C by f(〈x, y〉) = x if y ∈ D and some fixed element not in C if y 6∈ D. Since C is

closed under ≤
p,D[1]
m , it follows that C ×D ∈ C. Similarly, if C 6= Σ∗, then C ×D ∈ C.

If Σ∗ ∈ C, it remains to show that Σ∗ ×D and Σ∗ ×D ∈ C. Let C ∈ C be a nontrivial set (recall
that we earlier eliminated the case in which C lacks nontrivial sets), and let c ∈ C and ĉ 6∈ C. Then

Σ∗ ×D ≤
p,D[1]
m C by f(〈x, y〉) = c if y ∈ D and ĉ if y 6∈ D, and Σ∗ ×D ≤

p,D[1]
m C by f(〈x, y〉) = c if

y 6∈ D and ĉ if y ∈ D.
Proof of Theorem 3.1. Let C and D be classes such that C is closed under disjoint union and C is

closed downwards under ≤
p,D[1]
m . We have to show that PC:D = PD:C = P

(C,D)
1,1-tt. The containment

PC:D ⊆ PD:C follows from Corollary 3.5, and P
(C,D)
1,1-tt ⊆ PC:D is immediate from the definitions.

It remains to show that PD:C ⊆ P
(C,D)
1,1-tt. Suppose L ∈ PD:C and let DPTM M , C ∈ C, and D ∈ D

be such that L = L(MD:C). Without loss of generality, let M always query both D and C. We now

describe a DPTM N and a set C′ such that C′ ∈ C and L = L(N
(C′,D)
1,1-tt). Define

C′ = {x | the second query asked by MD:C(x) is in C}.

Since C is closed downwards under ≤
p,D[1]
m , we clearly have C′ ∈ C.

Let N
(C′,D)
1,1-tt on input x work as follows: N

(C′,D)
1,1-tt (x) simulates MD:C(x) until MD:C(x) asks its

first query, call it q. Then N
(C′,D)
1,1-tt (x) queries “x ∈ C′?” and “q ∈ D?” N at this point has enough

5

information to simulate the final action of M . We make this completely rigorous and formal as
follows. Let SC′ be Σ∗ if x ∈ C′ and let SC′ be ∅ if x 6∈ C′. Let SD be Σ∗ if q ∈ D and let SD be ∅ if

q 6∈ D. N
(C′,D)
1,1-tt (x) accepts if and only if MSD:SC′ (x) accepts (which N(x) can easily determine given

the answers to N(x)’s two queries). It is clear from the construction that L(MD:C) = L(N
(C′,D)
1,1-tt),

and thus L ∈ P
(C,D)
1,1-tt.

In addition to leading to the “polynomial hierarchy is order-oblivious” results that this sec-
tion will obtain, and leading to Section 4’s applications to probabilistic and unambiguous classes,
Theorem 3.1 has also played an important role in distinguishing robust Turing and many-one com-
pleteness [HHH97b].

The next theorem shows that if C and D are closed under disjoint union and are order-oblivious
with respect to P transducers, then ordered access equals arbitrary-order access. Note that The-
orem 3.6’s hypothesis requires that both classes be closed under disjoint union, in contrast to the
hypothesis of Theorem 3.4.

Theorem 3.6 If C and D are complexity classes that are both closed under disjoint union, then

PC:D = PD:C ⇒ PC:D = PC,D.

Proof: Suppose that PC:D = PD:C. Since PC:D ⊆ PC,D, we have only to show that PC,D ⊆ PC:D.
Let L ∈ PC,D, and let DPTM M , C ∈ C, and D ∈ D be such that L = L(MC,D). Without loss of
generality, we assume that MC,D always queries each oracle exactly once. Define

L1 = {x ∈ L |MC,D(x) first queries C}.

L2 = {x ∈ L |MC,D(x) first queries D}.

Let N be a DPTM such that L1 = L(NC:D). Since clearly L2 ∈ PD:C, by our hypothesis there

exists a DPTM T , and sets C′ ∈ C and D′ ∈ D, such that L2 = L(TC′:D′

). Let Ĉ = C ⊕ C′ and

D̂ = D ⊕D′. We describe a DPTM S such that L = L(SĈ:D̂).
S on input x will work as follows: S(x) simulates (appropriately tagging a 0 or a 1 onto the end

of queries to address the appropriate part of the disjoint union) MC,D(x) until MC,D(x) makes its
first query. Then S(x) simulates NC:D(x) or TC′:D′

(x), depending on whether the first query of

MC,D(x) was asked to C or D, respectively. Note that clearly L = L(SĈ:D̂), and thus L ∈ PC:D.
From Theorem 3.1 and Theorem 3.6 we have the following.

Corollary 3.7 If C and D are classes such that C is closed downwards under ≤
p,D[1]
m and C and D

are closed under disjoint union, then

P
(C,D)
1,1-tt = PC:D = PD:C = PC,D.

Corollary 3.7 implies that query order does not matter in the polynomial hierarchy.

Corollary 3.8 1. For all j, k ≥ 0, PΣp

j
:Σp

k = PΣp

k
:Σp

j .

2. For all j, k ≥ 0 such that j 6= k, P
(Σp

j
,Σp

k
)

1,1-tt = PΣp

j
:Σp

k = PΣp

j
,Σp

k .

Proof: Note that for j = k the claim of part 1 is trivial. Assume j < k (the j > k case is similar).

It is immediately clear that Σp
k is closed downwards under ≤

p,Σp

j
[1]

m and it is well-known that Σp
j and

6

Σp
k are both closed under disjoint union. So we can apply Corollary 3.7. Thus, both parts of the

theorem are established.
Note that in part 2 of Corollary 3.8 we need j 6= k, since otherwise we would have included the

claim that two truth-table queries to Σp
k have as much computational power as two Turing queries.

However, that would imply that the boolean hierarchy over Σp
k collapses to the 2-truth-table closure

of Σp
k, which in turn would imply that the polynomial hierarchy collapses. The last implication

refers to the well-known fact that if the boolean hierarchy collapses then the polynomial hierarchy
collapses; this fact was first proven by Kadin [Kad88], and the strongest known collapse of the
polynomial hierarchy from a given collapse of the boolean hierarchy is the one recently obtained by
Hemaspaandra et al. [HHH98] and, independently, by Reith and Wagner [RW98].

We also have the following.

Corollary 3.9 1. For all k ≥ 0 and j > 0,

P
(∆p

j
,Σp

k
)

1,1-tt = P∆p

j
:Σp

k = PΣp

k
:∆p

j = PΣp

k
,∆p

j =

{
∆p

j if j > k

PΣp

k
[1],Σp

j−1
[poly] if j ≤ k.

2. For all j, k ≥ 0, P
(∆p

j
,Σp

k
∩Πp

k
)

1,1-tt =

P∆p

j
:Σp

k
∩Πp

k = PΣp

k
∩Πp

k
:∆p

j = PΣp

k
∩Πp

k
,∆p

j =

{
∆p

j if j > k

Σp
k ∩ Πp

k if j ≤ k.

3. For all j, k ≥ 0, P
(Σp

j
∩Πp

j
,Σp

k
∩Πp

k
)

1,1-tt =

PΣp

j
∩Πp

j
:Σp

k
∩Πp

k = PΣp

k
∩Πp

k
:Σp

j
∩Πp

j = PΣp

k
∩Πp

k
,Σp

j
∩Πp

j = Σp

max(j,k) ∩ Πp

max(j,k).

Proof: We first prove part 1. If j > k, then a ∆p
j machine can simulate P∆p

j
,Σp

k , and it is

unconditionally immediate that P
(∆p

j
,Σp

k
)

1,1-tt contains ∆p
j . If 0 < j ≤ k, then Σp

k is closed under

≤
p,∆p

j
[1]

m and thus, by Corollary 3.7, P
(∆p

j
,Σp

k
)

1,1-tt = P∆p

j
:Σp

k = PΣp

k
:∆p

j = P∆p

j
,Σp

k . Since ∆p
j = PΣp

j−1 ,

PΣp

k
:∆p

j ⊆ PΣp

k
[1],Σp

j−1
[poly].

It remains to show that PΣp

k
[1],Σp

j−1
[poly] ⊆ PΣp

k
:∆p

j . Suppose L ∈ PΣp

k
[1],Σp

j−1
[poly] and let DPTM

M , A ∈ Σp
k, and B ∈ Σp

j−1 be such that L = L(MA[1],B[poly]). Without loss of generality, let M

ask all its queries to B before asking anything to A. (If M does not have the desired property,
replace it with a machine that, before asking anything to A, asks to B the queries M would ask
to B if the A query were answered “yes” and also asks to B the queries M would ask to B if the
A query were answered “no” and then queries A and uses the appropriate set of already obtained
answers to complete the simulation of the original M .) We will denote this with the notation
L = L(MB[poly]:A[1]). Also, without loss of generality assume that MB[poly]:A[1] on input x asks
exactly one query ax to A.

Now let us describe a DPTMN and sets A′ and C such that A′ ∈ Σp
k, C ∈ ∆p

j , and L(NA′:C) = L.

A′ = {x ∈ Σ∗ | ax ∈ A},

C = {x |MB[poly]:∅[1](x) accepts} ⊕ {x |MB[poly]:Σ∗[1](x) accepts }.

Note that the use of ∅ and Σ∗ in the definition of C is just a way to study the effect, respectively,
of “no” and “yes” oracle answers. Clearly we have A′ ∈ Σp

k and C ∈ ∆p
j . On input x, NA′:C will

7

work as follows: NA′:C(x) first queries “x ∈ A′.” If the answer to “x ∈ A′” is “yes,” then N accepts
if and only if x1 ∈ C and if the answer to “x ∈ A′” is “no,” then N accepts if and only if x0 ∈ C.

It is immediate that L(NA′:C) = L(MB[poly]:A[1]) and thus L ∈ PΣp

k
:∆p

j . This completes the proof of
part 1 of the corollary.

We now turn to proving part 2. First note that both ∆p
j and Σp

k ∩ Πp
k are trivially contained

in P
(∆p

j
,Σp

k
∩Πp

k
)

1,1-tt . The j > k case now follows from part 1, since PΣp

k
∩Πp

k
,∆p

j ⊆ PΣp

k
,∆p

j = ∆p
j . If

j ≤ k, then a Σp
k machine can simulate P∆p

j
,Σp

k
∩Πp

k . (This simulation is an easy variation of the

standard simulation showing that PΣp

k
∩Πp

k = Σp
k∩Πp

k, which itself is a straightforward generalization

of the early work [Sel74, Sel79] noting PNP∩coNP = NP ∩ coNP.) Since P∆p

j
,Σp

k
∩Πp

k is closed under

complement, it follows that P∆p

j
,Σp

k
∩Πp

k ⊆ Σp
k ∩Πp

k.

We now prove part 3. As in part 2, Σp
j∩Π

p
j and Σp

k∩Π
p
k are trivially contained in P

(Σp

j
∩Πp

j
,Σp

k
∩Πp

k
)

1,1-tt .

Also, a Σp

max(j,k) machine can (even if j = k) simulate PΣp

j
∩Πp

j
,Σp

k
∩Πp

k so, by complementation, we

have PΣp

j
∩Πp

j
,Σp

k
∩Πp

k ⊆ Σp

max(j,k) ∩Πp

max(j,k).

3.2 Query Order Classes Differ from Standard Polynomial Hierarchy Lev-

els and from Each Other

In Section 1 we mentioned that though PΣp

j
:Σp

k = PΣp

k
[1], 0 < j < k, might seem a tempting claim,1

the claim is false unless the polynomial hierarchy collapses. In fact, we will prove something much

stronger, namely that, unless the polynomial hierarchy collapses, PΣp

j
:Σp

k = PΣp

ℓ
:Σp

m if and only if
{j, k} = {ℓ,m}. The “if” direction is trivial. Theorem 3.10 establishes the “only if” direction.

Theorem 3.10 Let j, k, ℓ,m ≥ 0. If PΣp

j
:Σp

k = PΣp

ℓ
:Σp

m then {j, k} = {ℓ,m} or the polynomial
hierarchy collapses.

This theorem will follow from a result of this paper combined with the results and techniques
of [HHH97c]. The following proposition is a strong and counterintuitive downward translation result
that has recently been established.

Proposition 3.11 (Special case of [HHH97c, Theorem 2.3]) Let 0 < j and j < k. If ∆p
j△Σp

k =
Σp

j△Σp
k, then Σp

k = Πp
k = PH.

For all j and k, it holds that PΣp

j
:Σp

k ⊆ ∆p
j+1△Σp

k. Why? For j ≥ k it is immediate as in

that case PΣp

j
:Σp

k ⊆ PΣp

j
[2]. For j < k it follows essentially by the technique of the proof of [HHH,

Lemma 2.3]. So, for all j and k we have PΣp

j
:Σp

k ⊆ ∆p
j+1△Σp

k ⊆ Σp
j+1△Σp

k ⊆ PΣp

j+1
:Σp

k , and thus we
have the following corollary.

Corollary 3.12 Let 0 ≤ j and j < k − 1. If PΣp

j
:Σp

k = PΣp

j+1
:Σp

k , then Σp
k = Πp

k = PH.

We note the strength of this collapse. The conclusion obtains a collapse of the hierarchy to a
level that is generally thought to be lower (a priori) than the level of either of the classes whose

1The reason the tempting proof implicitly sketched in the introduction is not valid is that, though Σp

k
indeed can

simulate Σp

j
, j < k, Σp

k
can neither pass an extra bit of information back to the “base” P machine nor—in the crucial

case in which the base P machine uses the answer to the Σp

j
query to decide whether to treat the Σp

k
answer via the

strictly positive truth-table or the strictly negative truth-table—can it complement itself (as that seemingly requires
Σp

k
= Πp

k
). That is, the tempting claim fails due to a 1-bit information-passing bottleneck.

8

Σp
3

PNP[1]

PΣp

2
[1]

PNP:Σp

2

PΣp

2
[2]

PΣp

3
[1]

PNP:Σp

3

PΣp

2
:Σp

3

PΣp

3
[2]

coNPNP

Πp
2Σp

2

Πp
3

Figure 1: All the classes shown are distinct, unless the polynomial hierarchy collapses (see Theo-
rem 3.10).

9

equality was assumed in the hypothesis. That is, this is an actual downward translation of equality,
in contrast with the far more common behavior of upward translation of equality (see, e.g., [Wag87,
Wag89, RRW94], for examples and discussion).

We now can prove Theorem 3.10.

Proof of Theorem 3.10. Suppose that PΣp

j
:Σp

k = PΣp

ℓ
:Σp

m and that (without loss of generality in light
of Corollary 3.8) j ≤ k and ℓ ≤ m. Suppose that either k < m or (k = m and j < ℓ). First note

that if k < m, then PΣp

j
:Σp

k ⊆ Σp
m ⊆ PΣp

ℓ
:Σp

m . Since PΣp

j
:Σp

k = PΣp

ℓ
:Σp

m , it follows immediately that

Σp
m = Πp

m = PH. So suppose that k = m and j < ℓ. Then PΣp

j
:Σp

k = PΣp

j+1
:Σp

k . If j < k − 1, then
Σp

k = Πp
k = PH by Corollary 3.12. Finally, suppose that j = k − 1. Then the class of sets that

2-truth-table reduce to Σp
k sets equals the class of sets that 2-Turing reduce to Σp

k sets, which itself

is well-known ([Kad88], see also [HHH98, RW98]) to imply that PH collapses.
So it is clear from Theorem 3.10 that query order classes do not equal standard “bounded query”

classes but rather form new intermediate levels in the polynomial hierarchy, unless the polynomial
hierarchy collapses (see Figure 1).

We conclude this section by mentioning some very recent related work that was inspired by the
present paper. In this paper, our basic model is of ordered access to two sets. Wagner [Wag] and
Beigel and Chang [BC97] build on the work of the current paper by studying machines that have
ordered access to truth-table groups of queries and they show that in that case too order does not
matter. We consider this work to be important and interesting, and to broaden the range of models
to which the questions of this paper can be applied. We also mention that the work is not strictly
stronger than our work as Beigel and Chang discuss only sets from the polynomial hierarchy and
Wagner has somewhat different hypotheses than we do on the classes involved, especially regarding
our intermediate results that separate out exactly what hypotheses imply what conclusions. Also,
in contrast to the key hierarchy collapse result of the present paper, which guarantees and proves
a downward translation of equality, the analogous hierarchy collapses of those papers obtain from
weaker hypotheses weaker collapses (namely, the collapse results of those papers related to query-
order-based language classes merely assert that the hierarchy collapses, and they rely either on the
upward-equality-translation work of Selivanov or make no specific collapse-level claim at all). Finally,
as we will discuss later in more detail, the work of Section 4 applies fully to the cases discussed in
these papers. A survey paper by Hemaspaandra et al. [HHH97a] provides a detailed overview of
query order.

4 Base Classes Other Than P

We show that a wide variety of classes inherit all order exchanges that hold for P. For example, if
PC:D ⊆ PD:C then PPC:D ⊆ PPD:C . Thus order exchanges proven for P—such as those of Section 3.1
of this paper and those of Hemaspaandra, Hempel, and Wechsung [HHW]—can immediately be
applied to many other classes.

We prove our result in a very general form, and then state some corollaries and applications to
make the meaning of the theorem more concrete. For classes D1 and D2 for which relativization has
been defined, we say that D1 is robustly contained in D2 if, for each A, DA

1 ⊆ DA
2 . D

C[1] will mean
that each path of the base machine makes at most one call to C. DC1:C2 will mean that each path of
the base machine makes at most one call to C1 followed by at most one call to C2.

Definition 4.1 Let D be a complexity class for which relativization is defined. We say that D is
sane if

(∀C1, C2)[D
C1:C2 = D(PC1:C2)[1]].

10

The important point to note is that essentially all standard complexity classes within the realm
of potentially feasible computation (classes from P to PSPACE) are sane. In particular, bringing
work of Bovet, Crescenzi, and Silvestri into notational analogy with more recent terminology, let us
say that a relativizable complexity class D is leaf-definable if D “admits a C-Class representation” in
the formal sense (which we will not repeat here) defined by Bovet, Crescenzi, and Silvestri ([BCS92],
see also [BCS95]) and the representation itself holds also in all relativized worlds (under the natural
extension of their work to ordered oracle access, following exactly their discussion of relativization).
Bovet, Crescenzi, and Silvestri [BCS92] prove that essentially all standard classes in the realm of
potentially feasible computation “admit C-Class representations,” they observe that these represen-
tations all relativize, and we comment that their observation clearly holds also for ordered access.
The reason this is relevant is that it is easy to see that all leaf-definable classes are sane. Thus, the
following result says that essentially all standard complexity classes inherit every order exchange
possessed by P.

Theorem 4.2 Let D1 and D2 be sane complexity classes, and let C1, C2, C3, and C4 be complexity
classes. If D1 is robustly contained in D2 and PC1:C2 ⊆ PC3:C4 , then

DC1:C2

1 ⊆ DC3:C4

2 .

Proof: The theorem holds via the following inclusion chain:

DC1:C2

1

a

⊆ D
(PC1:C2)[1]
1

b

⊆ D
(PC3:C4)[1]
1

c

⊆ D
(PC3:C4)[1]
2

d

⊆ DC3:C4

2 .

Inclusion (b) follows from the assumption that PC1:C2 ⊆ PC3:C4 and inclusion (c) follows from the
assumption that D1 is robustly contained in D2. Inclusions (a) and (d) hold via the fact that the
classes are sane.

Corollary 4.3 Let D be any sane complexity class. If PC1:C2 ⊆ PC2:C1 then

DC1:C2 ⊆ DC2:C1 .

We give some examples of how this can be applied. BHj will denote the jth level of the boolean
hierarchy [CGH+88], and as is standard DP [PY84] denotes the second level of the boolean hierarchy.
Note that Bovet, Crescenzi, and Silvestri [BCS92] have proven that BPP, UP, and PP are leaf-
definable classes. Thus, these classes are sane.

Example 4.4 1. PPNP:Σp

2 = PPΣp

2
:NP.

2. BPPBH50:BH25 ⊆ BPPBH80:BH10 = BPPBH10:BH80 ⊆ BPPBH25:BH38 .

3. UPDP:BH3 = UPBH3:DP = UPNP:BH3 .

Parts 2 and 3 of the example hold due to Corollary 4.3 in light of [HHW], which proves that
the class of languages computable via a polynomial-time machine given one query to the jth level
of the boolean hierarchy followed by one query to the kth level of the boolean hierarchy equals
Rp

j+2k−1-tt(NP) if j is even and k is odd, and equals Rp
j+2k-tt(NP) otherwise, where R

p
ℓ-tt(NP) equals

the class of languages that ℓ-truth-table reduce to NP sets. Part 1 follows, as an application of
Corollary 4.3, from Corollary 3.8.

Though Theorem 4.2 says that all order exchanges of P apply to essentially all standard com-
plexity classes, it of course remains possible that certain path-based classes may possess additional
order exchanges. For example, though Section 3.2 showed that P ordered query classes create new
intermediate polynomial hierarchy levels unless the polynomial hierarchy collapses, this clearly is
not the case for NP or Σp

k.

11

Theorem 4.5 If i ≥ 1 and j, k ≥ 0, then

(Σp
i)

Σp

j
:Σp

k = (Σp
i)

Σp

k
:Σp

j = Σp

i+max(j,k).

Proof: Without loss of generality, suppose j ≤ k. Then Σp

i+max(j,k) = Σp
i+k = (Σp

i)
Σp

k = (Σp
i)

Σp

k
[1]

is clear in light of the quantifier characterization of the levels of the polynomial hierarchy [Wra77,

Sto77]. Furthermore, (Σp
i)

Σp

k
[1]

⊆ (Σp
i)

Σp

j
:Σp

k ⊆ (Σp
i)

Σp

k = Σp
i+k and similarly (Σp

i)
Σp

k
[1]

⊆ (Σp
i)

Σp

k
:Σp

j ⊆

(Σp
i)

Σp

k = Σp
i+k.

Relatedly, classes may also trivially exhibit certain equalities based on class-specific features.
For example, it follows trivially from NP ⊆ PP and the (nontrivial) result of Fortnow and Rein-
gold [FR96] regarding the ≤p

tt closure of PP that PP = PPNP:PP = PPPP:NP.
Finally, as we mentioned earlier, other papers have suggested varying the model of this paper to

include multiple queries to many oracles in various patterns of truth-table and ordered access. We
note that the approach of this section applies completely to such cases (modifying the definitions of
sanity and leaf-definability to reflect whatever access model one is using).

Acknowledgments

We thank Gerd Wechsung for his warm encouragement, and we thank Lance Fortnow, Maren Hin-
richs, Leen Torenvliet, and Gerd Wechsung for valuable conversations and suggestions. We thank
anonymous referees for many helpful suggestions.

References

[BC93] D. Bovet and P. Crescenzi. Introduction to the Theory of Complexity. Prentice Hall,
1993.

[BC97] R. Beigel and R. Chang. Commutative queries. In Proceedings of the 5th Israeli Sym-
posium on Theory of Computing and Systems, pages 159–165. IEEE Computer Society
Press, June 1997.

[BCS92] D. Bovet, P. Crescenzi, and R. Silvestri. A uniform approach to define complexity classes.
Theoretical Computer Science, 104(2):263–283, 1992.

[BCS95] D. Bovet, P. Crescenzi, and R. Silvestri. Complexity classes and sparse oracles. Journal
of Computer and System Sciences, 50(3):382–390, 1995.

[BDG95] J. Balcázar, J. Dı́az, and J. Gabarró. Structural Complexity I. EATCS Texts in Theo-
retical Computer Science. Springer-Verlag, 2nd edition, 1995.

[CGH+88] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wagner, and
G. Wechsung. The boolean hierarchy I: Structural properties. SIAM Journal on Com-
puting, 17(6):1232–1252, 1988.

[FR96] L. Fortnow and N. Reingold. PP is closed under truth-table reductions. Information and
Computation, 124(1):1–6, 1996.

[HHH] E. Hemaspaandra, L. Hemaspaandra, and H. Hempel. A downward collapse within the
polynomial hierarchy. SIAM Journal on Computing. To appear.

12

[HHH97a] E. Hemaspaandra, L. Hemaspaandra, and H. Hempel. An introduction to query order.
Bulletin of the EATCS, (63):93–107, 1997.

[HHH97b] E. Hemaspaandra, L. Hemaspaandra, and H. Hempel. RSN
1-tt(NP) distinguishes robust

many-one and Turing completeness. In Proceedings of the 3rd Italian Conference on
Algorithms and Complexity, pages 49–60. Springer-Verlag Lecture Notes in Computer
Science #1203, March 1997. Final version appears in Theory of Computing Systems,
v. 31, pp. 307–325, 1998.

[HHH97c] E. Hemaspaandra, L. Hemaspaandra, and H. Hempel. Translating equal-
ity downwards. Technical Report TR-657, Department of Computer Science,
University of Rochester, Rochester, NY, April 1997. Available on-line at
http://www.cs.rochester.edu/trs/theory-trs.html.

[HHH98] E. Hemaspaandra, L. Hemaspaandra, and H. Hempel. What’s up with down-
ward collapse: Using the easy-hard technique to link boolean and polynomial hi-
erarchy collapses. Technical Report TR-682, Department of Computer Science,
University of Rochester, Rochester, NY, February 1998. Available on-line at
http://www.cs.rochester.edu/trs/theory-trs.html.

[HHW] L. Hemaspaandra, H. Hempel, and G. Wechsung. Query order. SIAM Journal on Com-
puting. To appear.

[Kad88] J. Kadin. The polynomial time hierarchy collapses if the boolean hierarchy collapses.
SIAM Journal on Computing, 17(6):1263–1282, 1988. Erratum appears in the same
journal, 20(2):404.

[KSW87] J. Köbler, U. Schöning, and K. Wagner. The difference and truth-table hierarchies for
NP. RAIRO Theoretical Informatics and Applications, 21:419–435, 1987.

[LLS75] R. Ladner, N. Lynch, and A. Selman. A comparison of polynomial time reducibilities.
Theoretical Computer Science, 1(2):103–124, 1975.

[Pap94] C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[PY84] C. Papadimitriou and M. Yannakakis. The complexity of facets (and some facets of
complexity). Journal of Computer and System Sciences, 28(2):244–259, 1984.

[RRW94] R. Rao, J. Rothe, and O. Watanabe. Upward separation for FewP and related classes.
Information Processing Letters, 52(4):175–180, 1994.

[RW98] S. Reith and K. Wagner. On boolean lowness and boolean highness. Technical Report
TR 195, Institut für Informatik, Bayerische Julius-Maximilians-Universität Würzburg,
Würzburg, Germany, March 1998.

[Sel74] A. Selman. On the structure of NP. Notices of the AMS, 2:A–498, 1974. Erratum in
Volume 2, page 310.

[Sel79] A. Selman. P-selective sets, tally languages, and the behavior of polynomial time re-
ducibilities on NP. Mathematical Systems Theory, 13:55–65, 1979.

[Sel94] V. Selivanov. Two refinements of the polynomial hierarchy. In Proceedings of the 11th An-
nual Symposium on Theoretical Aspects of Computer Science, pages 439–448. Springer-
Verlag Lecture Notes in Computer Science #775, February 1994.

13

[Sto77] L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3:1–22,
1977.

[Wag] K. Wagner. A note on parallel queries and the symmetric-difference hierarchy. Informa-
tion Processing Letters. To appear.

[Wag87] K. Wagner. Number-of-query hierarchies. Technical Report 158, Institut für Mathematik,
Universität Augsburg, Augsburg, Germany, October 1987.

[Wag89] K. Wagner. Number-of-query hierarchies. Technical Report 4, Institut für Informatik,
Bayerische Julius-Maximilians-Universität Würzburg, Würzburg, Germany, February
1989.

[Wag90] K. Wagner. Bounded query classes. SIAM Journal on Computing, 19(5):833–846, 1990.

[Wra77] C. Wrathall. Complete sets and the polynomial-time hierarchy. Theoretical Computer
Science, 3:23–33, 1977.

14

