
AFDEL I NG INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

J.W. DE BAKKER & J.I. ZUCKER

IW 212/82

PROCESSES AND A FAIR SEMANTICS FOR THE ADA RENDEZ-VOUS

Preprint

~
MC·

NOVEMBER

kruislaan 413 1098 SJ amsterdam

Pi!UOIHtEI(MATHEMATISCH CENTftUti
MiSTERDAM

P.1unte.d a.t :the. Ma.the.mCLtic.ai. Cen:ttc.e, 413 K1t1.U,6laan, A.m6:teJl.dam.

The. Ma.the.ma;tlc.ai. Ce.n:ttc.e. , 6ounde.d :the 11-:th 06 Fe.bJu.LaJr..y 1946, i6 a non­
pll.o oil ,ln1,;,Utu:ti,o n ,wn,lng a.t :the. pMmotio n a 6 pUJr.e. ma.the.mCLtiC-6 and m
appUc.a,ti,on1,. 1:t i6 -6pon1,01r.e.d by :the. Ne.:the.Jr.land6 Gove.Jr.nme.nt fuough :the
Ne.:the.Jr.lancu~ 01r.gan.lzCLtion 601r. :the. Advanc.e.me.nt a 6 PuJr.e. Ru e.a1r.c.h (Z .W. 0.) •

1980 Mathematics subject cl~ssi~ication: 68BIO, 68C05
------'---------

1982 CR. Categories: D.3.1, F.3.2, F.3.3.

Processes and a fair semantics for the ADA rendez-vous*)

by

**) J.W. de Bakker & J.I. Zucker

ABSTRACT

Processes are mathematical objects which are elements of domains in the

sense of Scott and Plotkin. Process domains are obtained as solutions of

equations solved by techniques from metric topology as advocated by Nivat.

We discuss how such processes can be used to assign meanings to languages

with concurrency, culminating in a definition of the ADA rendez-vous. An im­

portant intermediate step is a version of Hoare's CSP for which we describe

a process semantics and which is used, following Gerth, as target for the

translation of the ADA fragment. Furthermore, some ideas will be presented

on a mathematically tractable treatment of fairness in the general framework

of processes.

KEY WORDS & PHRASES: Concurrency, ADA rendez-vous,fairness, denotational

semantics, communicating processes, metric topology

*) This report has been submitted for publication elsewhere.

**)Department of Computer Science, State University of New York, Buffalo,

U.S. A.

I. INTRODUCTION

This paper presents a case study in the area of the semantics of concur­

rency. In the initial years of the theory of concurrency, most of the atten­

tion was devoted to notions such as composition and synchronization of paral­

lel processes - often established through suitably restricted interleaving

of the elementary actions of the components, and mostly referring to a shared

variable model. More recently there has been a considerable increase in the

interest for communication between processes often referring to a model

where the individual processes have disjoint variables which interact only

through the respective communication mechanisms. Instrumental in this devel­

opment have been the studies of BRINCH HANSEN [6], HOARE [IO] and MILNER

[IS], where a variety of forms. of communication was proposed and embedded in

a language design or studied with the tools of operational and denotational

semantics. The incorporation of the notions of tasking and rendez-vous in the

language ADA ([I]) provides additional motivation for the study of communi­

cation, and it is the latter notion in particular which we have chosen as

the topic of our investigation.

The main purpose of our paper is firstly to provide a rigorous defini­

tion for the ADA rendez-vous with the tools of denotational semantics, and

secondly to introduce a mathematically tractable approach to fairness which

is applicable in general in various situations where choices have to be made

on a fair basis, and in particular to the ADA rendez-vous definition.

The general framework we apply in our paper was first outlined in

DE BAKKER & ZUCKER [3], and later described in detail in DE BAKKER & ZUCKER

[4]. In order to keep the present paper self-contained, we shall provide a

summary description of the main points of the latter paper, without going

into much mathematical detail. Our approach to the ADA rendez-vous and to

fairness owes much to two contributions to ICALP 82. In GERTH [8] the idea

2

of translating the ADA fragment to a version of CSP was proposed; the same

approach will be applied by us in section 6. In PLOTKIN [19], the fundamental

idea of specifying a fair merge through suitable use of - essentially - an

appropriate sucession of random choices was proposed and embedded in a cate­

gory - theoretic setting. (The suggestion of applying a version of such ran­

dom choice in the framework of processes arose in a discussion with Plotkin

during an IFIP WG 2.2 meeting.)

The structure of the paper is the following. After this introduction we

present in section 2 an outline of the underlying semantic framework, though

without most of the mathematics. In denotational semantics, language con­

structs are provided with mathematical objects (functions, operators, etc.)

as their meanings. In the present paper, these meanings are so-called pro­

cesses (in our paper a technical term for certain mathematical objects rather

than for -syntactic- components of a program). Processes are elements of do­

mains in the general sense as introduced by SCOTT [21,22]. Technically, do­

mains of processes are obtained as solutions of domain equations. The solu­

tion of such equations in a context with nondeterminacy and concurrency was

first studied in detail by PLOTKIN [18] (see [4] for more recent references).

We have based our solution techniques on completion methods in metric topol­

ogy (as advocated recently by Nivat and his school, see e.g [16]). In the ap­

pendix we summarize the topological definitions; the full story is given in

[4]. Throughout our paper, we shall introduce a variety of processes, cor­

responding to a variety of programming concepts we encounter on the way to

our understanding of the ADA rendez-vous. In section 2, processes are still

simple. We call them uniform, and they bear a close resemblance to trees -

though there are also a few crucial differences. Section 2 further intro­

duces various operations upon processes - which will undergo successive re­

finements in later section. We moreover illustrate uniform processes by using

them in the semantics of a very simple language with parallel merge as its

only concurrent notion. In section 3 we use uniform processes as a vehicle

to explain the key idea of our approach to fairness, viz. suitable alterna­

tion of random choices. (Ultimately, this idea may be traced back to the use

of oracles to handle fairness. Fundamental studies of the semantics of fair­

ness were made by PARK [17]; proof - theoretic investigations are described,

e.g., in [2,11,12,20].) Section 4 describes a number of ways of providing pro­

cesses with additional structure. Firstly, we enrich them with a synchroni­

zation mechanism in the sense of MILNER'S ports ([15]). We then obtain struc-

3

tures which are close to his synchronization trees. Next, we add a functional

flavor to uniform processes, and obtain objects which have PLOTKIN'S resump­

tions ([18]) as forerunners. Finally, we add a connnunication feature to pro­

cesses yielding a counterpart for Milner's communication trees ([15]). Where­

as in section 4 we introduce each extension independently, we need their com­

bination in section 5 to define the semantics of a language with both paral­

lel merge, (synchronization through) communication, and a version of Milner's

restriction operator. This language is an abstraction of HOARE's CSP ([IO]),

and we use it to provide a translation of the ADA fragment featuring its

rendez-vouz concept ([I], chapter 9) in section 6. Section 7, finally, ex­

tends the fairness-definition ideas of section 3 to a situation with commu­

nication. We emphasize that the definitions in sections 6 and 7 concentrate

solely on the concurrency and connnunication aspects of ADA - together with

a few standard sequential concepts to render some verisimilitude to the ADA

fragment. Accordingly, we omit all treatment of further ADA notions which,

though interacting with the rendez-vous concept in the full language, would

detract from the understanding of the central topic of our paper. Refer­

ences to operational approaches to the ADA rendez-vous include [9,13]. As

final remark we add that the reader who is interested only in the ADA ren­

dez-vous without fairness considerations may just skip sections 3 and 7.

2. UNIFORM PROCESSES AND A SIMPLE LANGUAGE WITH MERGE

A uniform process is a variation on the notion of tree. It is used,

e.g., to assign meaning to a program when one is primarily interested in

the structure of the sequences of elementary actions generated during its

execution, rather than in the relation between input and output states of

the program. Processes (and trees) constitute a more refined tool than

just sets of sequences: we distinguish between the two objects

a(~a
b IC

which have the same associated sets of sequences {ab,ac}. Also, uniform

processes are only the first on a list of gradually more complex constructs

to be studied in subsequent sections.

Let A be any alphabet; for the moment we do not care whether A is

4

fin:i.te or infinite. Let a,b, ••. be elements of A. Uniform processes p,q, •••

will be described as certain constructs over the alphabet A.

We introduce

I. The nil process Po· Roughly, its role is that of neutral element for

various operations; also, it may be seen as label of the leaves of a pro­

cess in case this is viewed as a tree-like construct.

2. The set of all finite processes P 4..f-· U P , where P , n = O, I, ••• , are
w n n n

given by

= P(AxP)
n

and P (•) denotes all subsets of (•)

Finite processes are for example p0,{<a,p0>,<b,p0>}, or

{<a,{<b,p0>,<c,p0>}>} and {<a,{<b,p0>}>,<a,{<c,p0}>}. Note that these

examples are elements of P0 ,P 1,P2 and P2 . Note also that the latter two

processes correspond to the pictures at the beginning of the section.

3. The set of all finite or infinite processes (over A) as solution of the

domain equation

(2. I) P = {p} u P (AxP)
Q C

We shall not give the full explanation here, but restrict ourselves to the

following (more - though not all - details appear in the Appendix): We may

introduce a distance or metr>ic don the space P of all finite processes,
w

and consider the completfon of P with respect to this metric (cf. Cantor's
w

completion of the set of rationals to that of the reals). Essentially, this

amounts to adding to the space P all limits of so-called Cauchy sequences
w

00

(sequences <p > 0 with p E:P, such that distances between elements get n n= n n
arbitrarily small with increasing index). E.g., infinite objects such as

{<a,{<a,{<a, ••• >}>}>} or {<a,{<a, ••• >,<b, ••• >}>,<b,{<a, ... >,<b, ..• >}>}, cor­

responding to the pictures

a

a b

5

belong to P. Furthermore, P {·) now stands for the collection of all closed
r

- with respect to the metric - subsets of{•), and one can show that for P

the completion of P, it indeed satisfies equation (2.1). In sunnnary, each
w

proces is either finite and element of some P, or infinite and limit of a
n

Cauchy sequence <p > , with p E P. Throughout the paper, we shall pay n n n n
little attention to the infinite case, not because we want to ignore it but

rather since, based on the firm foundation of (2.1) - or similar equations

below, the infinite case - e.g. for the operations to be defined below - al­

ways follows straightforwardly from the finite case.

The reader should observe the difference between processes and trees.

Firstly, in processes we have nor order. Trees a/\b and b;\a are different;

as processes they are both equal to {<a,p0>,<b,p0>}. Secondly, processes

have no multiple occurrences of elements. The trees la and aj\a are different,

but as processes they coincide (non-nil processes are sets, not multisets).

We continue with the definition of the main operations on processes.

Throughout the paper, we shall distinguish the cases of the nil process p0 ,

finite processes p,q, .•. which are sets X,Y E P(AxP) for some n, and infi­
n

nite processes lim p, with p E P. Observe that elements x,y of sets n n n n
X,Y are pairs <a,p'>,<b,q'>, etc. We now define three important operations

on processes.

DEFINITION 2. I •

a. Composition " 0 " is defined by

p 0 po = p, p0 X = {p 0 xlx EX}, p0 <a,q> = <a,poq>,

p 0 lim q = lim {p 0 q)
n n n n

b. Union "u" is defined by

c.

p u p0 = p0 up= p, and, for p,q # p0 , p u q is the set - theoretic

union of the sets p,q

Merge "II" is defined by

X II Y = (Xll1Y) u (X IIRY), P 11 Po = Po 11 P = P,

X II Ly = {x I I Y I X E X}' X 11 Ry = {X 11 y I y E Y},

<a,p> IIY = <a,p IIY>, X ll<b,q> = <b,X liq>,

(lim.p.) II (lim.q.) = lim. (pkll qk)
l.l. JJ k

LEMMA 2.2. The above operations are all well-defined and associative, u, II

are commutative, and they all have the usual continuity properties (see

Appendix for definition).

Proof. See [4]. •

6

Examples

1. Let p = {<a,p0>,<b,p0>}, q = {<c,{<d,p0>,<e,p0>}>}.

Then p 0 q = {<c,{<d,p>,<e,p>}>. In pictures we have

0 =

a

2. {<a,{<b,po>}>} II { <c,{<d,po>}>}

d

.
We next introduce the important notion of a so-called contracting map-

ping. A mapping T: P • P is called contracting whenever, for all

p',p", d(T(p'),T(p")) $ cxd(p',p"), with O $ c < I. (The mapping T brings

points closer to each other.) We have a classical theorem which will be very

useful in the sequel:

THEOREM 2.3. Let T be continuous and contracting, and let q be an arbitrary

element of P. Then the sequence q, T(q), T2(q), •.. is a Cauchy sequence which

converges to the unique fixed point of T.

Proof. This is Banach's fixed point theorem.

Remarks

1. Observe that lim Tn(q) is independent of q.
n

D

2. Convergence of the sequence q, T(q), ••• in cases where Tis not necessar-

ily contracting is studied in [SJ.

We close this section with the introduction of a simple language with

parallel composition (i.e. the merge "II") as its only non-sequential concept

and we show how uniform processes can be used to define its semantics. More

7

specifically, the simple language L1 has elementary actions (for simplicity

taken from the alphabet A), sequential composition, nondeterministic choice,

merge, and (finite or infinite) iteration. In BNF like notation, its syntax

is given in

DEFINITION 2.4. Statements SE L1 are defined by

Remark. We ignore possible syntactic ambiguities.

Let T be a special element added to A (Milner would call it the unobser­

vable action), and let P1 solve the equation

(2.2)

We define the semantic mapping M: •

DEFINITION 2.5. The mapping M: • P1 is given by

M(a) = {<a,p0>},

M(s 1 ;s2) = M(s2) o

M(S 1)jj M(s2), and

M(s*) = lim. p., where
1 1

(pioM(S)) u {<T,po>}.

Remarks

= {<T,p0>},

M(s 1us2) = M(s 1) u M (s2), M(s 1 II s 2) =

Po is the nil process and Pi+I =

I. We see that the syntactic operations ;, u, II are mapped directly onto the

semantic operations O , u, 11-

2. The definition of s* is explained by observing the intended equivalence

s* = (S;s*) u skip. Semantically, we have, by theorem 2.3, for

p dJ. lim. p., the fixed point property p = (p 0 H(S)) u{ <T, p0>}.
1 1

Examples.

I. M(a 1;a2) = M(a2) 0 M(a 1) = {<a2,p0>} 0 {<a1,p0>} =
{<al,{<a2,p0>}>}

2. M(a1;<a2Ua3)) = {<a1,{<a2,Po>,<a3,Po>}>} f

M((a 1;a2) u (a 1;a3))

* 3. M(a) = {<T,p0>,<a,{<T,p0>,<a, ••• >}>}. Cf. the picture

8

a(\:
a/\T .
(Note that,by closedness, we know that in this tree we have to "include"

the infinite path aw!)

The reader should observe that L1 could also be provided with a seman­

tics in terms of sets of sequences rather than of processes. In this case

a 1;(a2ua3) and (a1;a2) u (a1;a3) - and also statements such as (aub)jj c and

(ail c) u (bll c) - would obtain the same meaning. In subsequent applications

we shall be able to profit from the more refined process structure, which is

why we already used them for providing meaning to L1•

3. FAIRNESS FOR UNIFORM PROCESSES

We present a definition of fair merge for uniform processes which is

based essentially on the well-known idea of implementing fair scheduling

through systematic alternation of random choice (see [2] and, in particular,

[19]). We first discuss the idea using a simple example (in which it is con­

venient to use sequences rather than processes). Consider the two infinite
. w w

sequences of actions a and b, and suppose we want to write a program sched-

uling their fair merge ailfb (which should therefore exclude sequences with

almost all a's or almost all b's). Now this is achieved by the following

program with random assignments - where x :=? means that xis assigned an

arbitrary non-negative integer:

X •= ?• X •= ?• I •• , 2 •. ,

1 1 : a; if x 1> 0 then x 1 := x1-1; goto 1 1 else x2 := ?; goto 1 2 fi

u

12 : b; if x2> 0 then x2 := x2-1; goto 12 else xi := ? ; goto LI fi

Observe that

subsequences

this program determines aw I lfbw as

of x (i) a's and then x (i) b's i
I 2 '

an infinite sequence of either
(i) (i) = 1,2, ••• , x 1 and x 2

successive results of the random choices x 1 :=? and x2 :=?,or of a similar

sequence of subsequences of x;j) b's and x 1 (j) a's, j = 1,2, ..••

In PLOTKIN [19], this idea was embedded in the settting of category

theory. What we shall describe here is the same approach in the framework

9

of process theory. At first sight, the random assignment is an extraneous

element for the process notion. However, there is a natural way to link it

to the process framework. We start with the observation that the infinite

union Up, for processes p E P, is,in general, not well-defined (techni-n n n
cally, this is the case because the infinite union of a family of closed sets

is not necessarily closed).What we can do, however, is to extend Pin the

following way. Let lN be the set of natural numbers. Now instead of using

equation (2.1) we take process domain Pf as solution of

(3. I)

Within Pf we can define a new construct~ pn by the definition

= { <n, p > I n E lN} n

(In this expression, pO is some arbitrary process rather than the nil pro~

cess.) In a picture we have for Lip :
n n

which simulates a random choice between the p. It can be verified that
n

~ pn is a well-defined element of Pf (since by the definitions in the Appen-

dix, the only non-trivial Cauchy sequences must be wholly within some p).
n

We are now sufficiently prepared for

DEFINITION 3.1 (fair merge). Let p,q E Pf, and let, as usual, X,Y be finite

processes. Let b range over B dJ • A u lN. We shall define p 11 f q in terms of a

number of auxiliary constructs p II q, for a any of the subscripts of II oc-a
curring in the clauses below.

a. p llaPo = Po llaP = p

b. X I lfY = (X 11 LY) u (X 11 RY)

c. X I ILY = {<n,X IIL Y> I n E lN}, and similarly for X 11 RY ,n

d. X 11 L Y = {x 11 L Y I x EX}, and similarly for X 11 R Y ,n ,n ,n

e. <b,p> IIL,n+ly = <b,p IIL,nY>, and symmetric

f. <b,p> IIL OY = <b,p II RY>, and symmetric
'

g. (limipi) llf (limjqj) = li~(pk 11 fqk)

IO

LEMMA 3.2. The above definition of llf is -well-formed (e.g., if <p.>. and
l. l.

<qj>j are Cauchy sequences, then so is <pk llfqk>k' etc.)

Proof. The proof is a reasonably straightforward extension of the results

in Appendix B of [4], and omitted here. D

Remark. The reader who has understood the program 1.n the beginning of this

section will recognize that definition 3.1 is the exact counterpart of that

program, with the random choice xi:=? ,i = 1,2, replaced by a choice

<n, •.. > for some n E lN •

We need additional study to link the notion of fair merge of two pro­

cesses to that of a "fair process". The following definitions and property

seem plausible here (though we have no full supporting proofs):

I. Let p E Pf' and let b range over B '!f • A u lN. A path for p is a (finite

or infinite) sequence

such that <b 1,p 1> E p, and <bi+I'Pi+l> E pi, i = 1,2, •..

2. bis enabled in(*) whenever, for some i and q,<b,q> E pi.

b occurs in(*) whenever, for some i, b = b .•
l.

3. A path(*) is fair with respect to some B' c B whenever, for all b' EB',

if b' is infinitely often enabled in(*), it infinitely often occurs 1.n

(*). Process pis called fair with respect to B' whenever all its paths

are fair with respect to B~

4. We conjecture that, for p,q fair with respect to A, p llfq 1.s fair with

respect to A.

The above ideas can be modified for regular processes. Without going

into details, let us call a process regular whenever it has only finitely

many different subprocesses. We expect that results extending the above can

be obtained for regular processes, where the above definitions are replaced

by conditions imposed upon "moves" of pairs <b,q> rather than simply of ele­

mentary actions b.

I I

4. PROCESSES WITH ADDITIONAL STRUCTURE

In this section, we discuss three ways in which to extend the uniform

processes of section 2. We shall deal with

- processes exhibiting synchronization

- processes which are (also) functions

- processes which conununicate.

We begin with synchronization. (The ideas for this stem from MILNER's CCS

[15]). Let r be a set of ports, the elements of which appear in pairs y,y, •••

(pairs are synunetric in the sense that y = y). We introduce processes with

synchronization as elements of the set P which solves
s

(4. I) P = {pO} u P ((Au{T} u r) x P)
S C S

Let S range over Au {T} u r. We define the operations of section 2, together

with the new operation of restriction p\y, in

DEFINITION 4.1

a. p0 pO, p0 X, p0 limp are as before, and p0 <S,q> = <S,p 0 q>.
n n

b. u is defined as before

c. p II q is defined as before, except for the (central) clause

X IIY = (XIILY) u (XIIRY) u (XII Y), where I 11 and 11 Rare as s

X II y = {<.,p' II p">l<y,p'> E X, <y,p"> EY, for some pair
s

ding ports y,y}

d. p\y is defined by: p \y = Po, (limp)\y = lim (p \y), and
0 n n n n

X \ y = {<S,p'\y> I <S,p'> EX, s I Y,Y}

Remarks.

in def. 2. I, and

of correspon-

I. The definition of p II q is the essential new element for synchronizing

processes. Succesful synchronization of p,q results from pairs <y,p'>,

<y,p"> in p and q, respectively, and the outcome of composing these pairs

yields an invisible T, followed by p' 11 p ". X 11 Y also includes the full

merge (X 11 1 Y) u (X IIR Y) as introduced in definition 2 •. 1. Pairs <y, ... >

and <y, •.. > in this full merge can be removed by applying the \y operation.

(All this is extensively discussed in [15].)

2. In [4] we discuss how the "\y" operation can be defined to model deadlock.

12

In our viE~w, this appears in situations where applying the "\y" operation

would yield an empty set as outcome; in that case, the refined restric­

tion operator yields a "dead process" as result. We omit further discus­

sion of this.

LEMMA 4. 2. The operations O , u , 11 , \ are well-defined., and satisfy (wher>e

relevant) the usual properties such as associativity., continuity etc.

Proof. OmittE~d. D

We continue with the treatment of functional processes. Let A,B be two

(arbitrary) sets. We take Pfn as solution of

(4. 2)

The various definitions of operations on Pfn are collected in the next defi­

nition (where we omit the standard cases when the operands are nil or infi­

nite). We use the laCTbda - notation Aa• ..• a ... for the function which maps

a to ... a ... "

DEFINITION 4 .. 3.

a. poq = Aa .. (poq(a)), paX {pox I x E X}, po <b,q> <b,poq>

b. puq = >-.a .. (p(a) u q(a))

c. p II q = Aa .. ((pll q(a)) u(p(a) 11 q) >

xii q = {x 11 q I X E X}' p IIY={pllyl y E Y}

<b,p> II q = <b,pll q>, p II <b' q> = <b' p II q>

Remark. Note the (essential) difference between clauses band c, in that

p 11 q is not defined as Aa. (p (a) 11 q (a)).

LEMMA 4.4. The operations of definition 4.3 have the usual properties.

Proof. Omitted.

We conclude with the introduction of processes with communication.

We take P
C

(4.b)

as solution of

P = {p0} u P ((BxP) u (B+P))
C C C C

Let TI range over the set B + P. The operations on P are given in
C C

D

DEFINITION q,. 5.

a. poX = {po,x I X EX}, po<b,q> = <b,poq>,

po1r = Ab. (po1r(b))

b. u is as usual

c. X 11 y = (X 11 Y)
L

u (XI I Y) u (XII Y)

X 11 Y, X 11 Y are as
L R

R C

usual. Moreover,

X II y = { 1T (b) II p I I 1T EX, <b,p'> E Y} u
C

{ p" II 1r(b) I <b,p"> E X, 1T E y}.

13

Remark. A process p may communicate with process q 1n case p contains some

<b,p'>, and q some function 1T (or vice versa). The process 1r(b) is than used

to continue the operation with the merge 1r(b) II p' (or symmetric). Applica­

tions of this idea (,.rhich we first saw 1n [14]) appear in the next section.

The operations of definition 4.5 have the usual properties.

5. A CSP LIKE LANGUAGE

We introduce syntax and semantics of a CSP - like language (CSP for

Hoare's Communicating Sequential Processes [JO]). In the next section we

shall use this language as target for the translation of the ADA fragment

containing the rendez-vous construct. In the CSP - like language L2 we ar­

ticulate the elementary actions of L1 to assignments and tests; in the next

section we explain how tests are used 1n selection and while statements.

L2 moreover has the same program-forming operations as in section 2

(;,u, 11 ,*), and connnunication connnands c?x and c!s. Here c is a channel,

c?x means that variable xis to receive a value from channel c, and c!s

means that the current value of expressions is to be transmitted over the

channel c. The actual "hand-shake" connnunication over the channel c takes

place provided (i) c?x and c!s appear as substatements in the statements

S I and s2 of some parallel composition S = S I II s2 , and (ii) in the execu­

tion of S, the flow of control 1n s 1 has arrived at c?x, and control in s2

has arrived at c!s. The result of the communication is then equivalent to

the assignment x:=s. Besides the communication connnands we also have in L2

a restriction S\c which enables us to delete unsuccesful attempts at com­

munication from (the process which 1s the meaning of) S, and a special

construct b => S which in case test bis true will initiate execution of S

without allowing a possible interleaving action from some parallel S'

14

(which might change the value of b to false).

The precise definition of the syntax of L2 is given in

DEFINITION 5. I •

a. Let x,y, .•• be variables in a set Var, s,t, .•• expressions, b, ..• boolean

expressions, and c, ..• channels. (We omit specifying a syntax for bool­

ean) expressions.)

b. Let (SE) L2 be the class of statements defined by

s ::= x:=s jskipj b I s 1;s2 I s 1 u s2 I s 1 II s 2 I s*j

c?x jc!s I S\c I b ~ S

Remark. We hope no confusion will arise from our using x E Var in the syntax,

and x EX in the semantics.

We next turn to the semantics of L2 • Let V be a set of values (meanings

of variables and expressions), and let a range over V. Let E =Var • V be

the set of states, with elements a EE, and let o{a/x} be a state which is

like o, but for its value in x which equals a. Let V,W be functions which for

each s, band o determine values V(s)(o) EV, and W(b)(o) in {tt,ff} (the set

of truth-values). We take P2 as solution of

(5. I)

In this process domain equation we recognize elements of the three types of

extensions discussed separately in section 4. Firstly, terms r x •.. reflect

synchronization ports (y Er will correspond to channels c in the syntax).

Secondly, the E • Pc(•) term indicates that processes in P2 are functional.

Thirdly, terms V x (ExP) combined with V +(ExP) correspond to terms BxP

together with B • Pin the case of communicating processes treated previous­

ly. In fact, certain variations on equation (5.1) would also lead to a fea­

sible semantics. However, we have chosen the present from since it provides

the best model for our fairness considerations in section 7.

We use P2 in the definition of the semantics for L2 :

DEFINITION 5.2. The mapping M: L2 • P2 1.s defined by

a. M(x:=s) = Aa.{<a{V(s)(a)/x},p0>}

M (skip) == Ao. {<a, p 0>}

M(b) = Ao0 • if W(b)(a) then {<a,p0>} else 0 fi

b. M(s 1;s 2) = M(s 2) 0 M(s 1)

M(s 1us 2) = M(s 1) u M(s2)

M(s 1 II s 2) = M(s 1) II M(S2) , with II to be defined rn definition 5.3

M(S*) = limi pi, with p0 as always, and pi+I =

(pioM(S)) u Aa.{<a,p0>}

c. M(c?x) = Aa.{<y, Aa. <a{a/x},p0>>}

M(c!s) = Aa.{<y, V(s)(a),a,p0>}

d. M(S\c) = M(S)\y, with\ to be defined 1.n definition 5.3

M(b =>S) == Aa. if UJ(b) (a) then M(S) (a) else 0 fi

Remarks.

I. We use associativity of tupling, and identify constructs such as

<1,2, <3,4>>, <1,2,3,4>, etc.

2. In part c, note that M(c?x)(a) Er x (V • (ExP)),

M(c!s)(a) E rxvxrxP.

15

3. The definition of M(b=>S) should be contrasted with the result of M(b;S):

M(b;S) = Aa. if W(b)(a) then {<a,M(S)>} else 0 fi. The reader should

ponder the reasons why the latter semantics indeed allows what amounts to

an interleaving action at the

for b => S.

" . " , in b;S, contrary to what is the case

Definition 5. 2 assumes the definition of II and \ 1.n (omitting the nil

and infinite cases as usual):

DEFINITION 5.3.

a.

b.

p II q =),a.((p(a) 11 q) u (pll q(a)) u (p(a) I lcq (a)))

X II q {xii q Ix E X}, 1r II q = Aa. (1r(a) II q)

<a,p> 11 ci = <a, PI I q >

<y, a, a, p> 11 q = <y, a, a, p 11 q>, < Y, 1r> 11 q = <y, 7T 11 q>

(and, for the last three lines, the symmetric cases)

X llcY = {1r(a) II p' I <y,n> E X, <y,a,a,p'> E Y} u

{p" II n(a) I <y,a,a,p"> E X, <y,1r> E Y}

p\y = Acr. (p(a) \ y)' 1r \ y = Aa. (1r(a)\y), x\y = {x} \ Y'

X\y = {<a,p'\y> I <a,p'> EX} u

{ <y'' 7T \ y> I <y', TI> EX, y' f y ,y} u

{<y',a,a,p'\y>l<y',a,a,p'> EX, y' i y ,y}

16

Example. We evaluate M((c?x 11 c! I) \ c). We obtain

M(c?x llc!s) dJ. p =

).cr.{<y,).a.<cr{a./x},po»}II).cr.{<y, I, a, Po>}=

).cr.{<y, ••• >,<y, ••• >,).a.(<cr{a/x},p0>)(1) llp0} =

Acr.{<y, ••• >,<y, ••• >, cr{l/x},po II Po>}.

Hence, M(c?xllc!l)\c) = p\y =).cr.{<cr{l/x},p0>}, which is, indeed, the same

process as M(x:=l).

Note that in the above definitions the role of a in fourtuples

<y,a,cr,p> is in fact superfluous. However, we have included it to facilitate

the definition of path in section 7.

6. THE ADA RENDEZ-VOUS

We consider an ADA fragment which centers around the notion of rendez­

vous between (calls and accepts of) entries occurring in ADA tasks, and we

exhibit a denotational semantics for the fragment by establishing a trans­

lation to L2 • We begin with the syntax:

DEFINITION 6.1.

a. (programs formed from tasks). Programs SE LA are defined by

S ··= ..
b. (tasks). Tasks Tare defined by

T ··= ..

Remarks.

x:=s I skip I if b then T1 else T2 fi I while b do Tod

e(s,z) I T1; T2 I

accept e(x,y) do - Tend I

select b + accept el(xl,yl) do T1 ' end; T II • ... • 1 1
b • accept e (x ,y) do T ' end; T II

n n n n - n n
end

1. e(s,z) is an entry call statement, with actual parameters sand z. Also,

accept e(x,y) do Tend is an entry accept statement. At the moment of a

(succesful) rendez-vous, statement Tis executed with actuals sand z

corresponding to the formals x,y. The "hand-shake" cormnunication follows

the CSP principle. The select statement allows a nondeterministic choice

between the guarded accept branches as listed.

17

2. To avoid problems of naming and scope, we assume a fixed number of dis-

tinct entry names e1,···,es occurring in the tasks T1 , •.. ,Tm of program s.
Thus, we ignore the notion of entry declarations; neither do we deal with

the selected component notation T. .e.
i

3. In entry calls e(s,z) we encounter - for simplicity's sake - only two

actual parameters, viz. expressions and variable z. We also ignore com­

plications arising from parameter passing, and concentrate our interest

on cases where the parameter mechanism is equivalent to call-by-value for

sand to call-by-value-result - the definition of which is implied by the

clauses in part c of definition 6.2 - for the parameter z.

We now present a translation from the statements (and tasks) in LA to

those in L2 • (The idea of such a translation is due to GERTH [8]; the main

difference between our approach and [8] is that the latter paper ultimately

considers an operational rather than a denotational semantics.) For SE LA
a o

and tasks T we define their translation S , T E L2 • Compared to L2 as intro-

duced in section 5 we have, in fact, a few minor amendments. We use e rather

than c for channels (to stick more closely to the convention for entries in

LA); moreover, we use a version of simultaneous restriction S\{e 1, ... ,es}

with the obvious meaning. Furthermore, we introduce an error statement I::,

to be used to indicate failure when all guards in a select statement have

the value false. The meaning oft:, is given by M(ti) = Acr.{<o,p0>}, where

a special dead state (to be accompanied by natural definitions such as

M(x:=s)(o) = {<o,po>}, etc.). The translation from LA to L2 is given in

DEFINITION 6.2.

a. (x:=s)
0

a a
b. (if b ther:~ T1 else T2 fi) = (b;T 1)

a a * 7 (while b ~lo T od) = (b;T) ; b

a
c. e(s,z) = e!s; e!z; e?z

a o
(accept e(x,y) do Tend) - e?x; e?y; T; e!y

a
(select ... end) -

n a
(? ? (T!) i~l bi =a> ei. xi; ei. yi; i e. !

i

II O
y. ; (T.))

i i

u
7 7 . (b A ••• A b), I::,

I n

d. So= (T; IJ , .. IIT:) \{el, ... ,es}

8 is

where e 1, ... ,es are all names of entries appearing in the tasks T1, ... Tm.

18

The reader will be able to convince himself that, indeed, the trans­

lation results in elements of L2• Since L2 obtained a denotational semantics

in section 5, we have now established a denotational semantics - situated

in the process framework - for the ADA fragment as well. What remains to be

done is to develop a fair semantics, and this we shall present in the next

section.

7. A FAIR SEMANTICS FOR THE ADA RENDEZ-VOUS

This section brings the final result of the paper: a fair semantics for

the ADA rendez-vous concept. Since the ADA reference manual does not mention

the word fair, let us explain why we are interested in such a semantics. We

distinguish two aspects concerning the proper execution of a number of ADA

tasks. Firstly, following the argument from PNUELI & DE ROEVER [20], such

execution should be what they call just, i.e., it should satisfy the require-
' ment that every task which is continuously enabled from a certain point in

the computation should move infinitely often in that computation. (For the

notions "enabled" and "move" cf. our notions of "enabled" and "occur" de­

scribed in section 3; refinements for the present context follow soon.) It

is this justice property which is achieved by the fair merge schedule to be

defined below. Basically, it is motivated by the idea that modelling simul­

taneous execution of a number of parallel processors by an interleaving of

their constituent individual actions should imply that each process should

contribute eventually each of its enabled moves to this interleaving. Se­

condly, the manual stipulates a scheduling which honours different calls for

the same entry in their order of arrival. Now one of the benefits of our

treatment is that this requirement is met automatically. The crucial property

here is that interleavings of the elementary actions where the synchroniza­

tion does not fit - which in an operational approach leads to extension of

the queue of calls for the entry concerned - in the denotational approach

disappear through the restriction operator; hence, no special measures to

impose the right queuing discipline are in order.

We proceed with the definition proper of T1 llfT2- which is all that re­

mains for the fair semantics of the ADA rendez-vous. Firstly, we have to ex­

tend the process domain in a fashion similar to the construction in section

3: we add a suitable :N x (•••) term:

19

PA= {p0 } u (E+Pc((ExPA) u (rxvxrxPA) u (rx(V+ExPA))

u :Nx((ExPA) u (fxVxExPA) u (rx(V+ExPA)))))

Next, we give the definition of Pllfq for p,q EPA.

DEFINITION 7.1. As before, we define p 11 8 q, for Bas encountered below, and

we omit treatment of the nil and infinite cases.

a. P llfq = (p ll1q) u (p IIRq)

b. p llq = An.((p(n)ll1 q) u (p(n)Jlfq(n)))

p 11 1 q =An.((p(n)ll1 q) u (p(n)llfq(n))) ,n ,n

c. X ll 1 q = {<n, xlJ1 ,nq> Ix EX, n E :N}

X II L q = { X II L q I X E X} ,n , n

d. <a,p> 111,n+l q = <a, P 111,nq>,<a,p> 111,0q = <a,pJJRq>

<y,a,a,p> 111,n+l q = <y,a,a,pJIL,nq>,<y,a,a,pJJL,0 q = <y,a,a,pJJRq>

e. <y ,'IT> 111,n q = <-y ,'IT II q>
'L,n

<m,x> 111 n q = <m,xll L q>
'

,n

'IT 111 nq =),_a.(TI(a)IJL q)
'

,n

f. X JJfy = h(a)llfq <y,'IT> EX, <y,a,a,q> E Y} u

{q llf'IT (a) I <y,a,a,q> EX, <y,TI"> E Y}

<a' p> llf q = <a' P llfq>

(We omit symmetric clauses for II R and JI R,n •)

We see that the definition is based on the same L/R alternation of ran­

dom choices, but now embedded in a more complex setting due to the increased

complexity of PA.

Next, we make some remarks on the question - again generalizing section

3 - as to wh,ether fair merge preserves fair processes. The following defini­

tions and properties seem plausible here:

1. Let a, a' EE, p,p' EPA. We say that the relationship

<a,p> • <,:,-' ,p'> holds whenever one of the following four cases applies:

(i) <a' ,p'> E p(a)

(ii) <y,c1.,a' ,p'> E p(a), for some y,a

(iii) <y,rr> E p(a), and <a',p'> E TI(a), for some y,TI,a

20

(iv) <n,x> E p(cr) for some n, and <cr',p'> can be derived from x accor­

ding to (i) to (iii) above.

Note how clause (ii) is only meaningful due to the presence of a' in the

fourtuple on the left-hand side.

2. Let a EE, p EPA. A path for panda is a (finite or infinite) sequence

(*) <cr1,P1>,<cr2,P2>, •••

such that <a 1,p 1> = <cr,p>, and <cr.,p.> + <a. 1,p. 1>, i = 1,2, •.• i i i+ i+
3. Let$ EE+ E. We say that$ is enabled in(*) whenever there exist i,cr

and p such that <cr.,p.> + <cr,p>, and a is $(a.). i i i
4. We call a path(*) fair with respect to$ whenever, if$ is infinitely

often enabled in(*), it infinitely often occurs in(*). We say that pis

fair with respect to a collection~ of functions$ whenever, for all a

and$ E ~. all paths for a and pare fair with respect to$.

Now we conjecture that

5. If p,q are fair with respect to~ then so is p llfq.

6. (The meaning of) each program S of the ADA fragment (with syntax as in

definition 6.1) is fair with respect to the collection of functions~

defined as follows: (i) ~ contains the identity function AO.a and the

error function AO.a. (ii). For each x := s occurring in S, ~ contains

the function Aa.cr{V(s)(cr)/x}. (iii). For each (syntactically) matching

pair e?y, e!t occurring in S,~ contains the function Acr.a{V(t)(cr)/y}.

By way of final remark let us add that the fairnees notion appearing in

ADA is only one out of a large number of variations on the theme of fairness.

We have some ideas on how to apply techniques resembling those of sections

3 and 7 to, e.g., fair iteration in a framework of guarded commands ([2])

or fair connnunication as discussed in KUIPER & DE ROEVER ([II]). We hope to

describe these techniques in a future publication.

REFERENCES

[I] ADA, The Programming Language ADA, Reference Manual, LNCS 106, Springer,

1981.

[2] APT, R.R. & E.R. OLDEROG, Proof rules dealing with fairness, Proc.

Logic of Programs 1981 (D. Kozen,ed.), 1-9, LNCS 131, Springer,

1982.

[3] DE BAKKER, J.W. & J.I. ZUCKER, Denotational semantics of concurrency,
th Proc 14 ACM Symp. on Theory of Computing, pp. 153-158, 1982,

21

[4] DE BAKKER, J. w •. & J. I. ZUCKER, Processes and the denotational semantics

of concurrency, Report lW 209/82, Mathematisch Centrum, 1982.

[5] BERGSTRA, J.A. & J.W. KLOP, Fixed point semantics in process algebras,

Report IW 206/82, Mathematisch Centrum, 1982.

[6] BRINCH-HANSEN, P., Distributed processes: a concurrent programming con­

cept, C. ACM 21 (1978), 934-941.

[7] DUGUNDJI, J., Topology, Allen & Bacon, 1966.

[8] GERTH, R., A sound and complete Hoare-Zike axiomatization of the ADA

rendez-vous, Proc. 9th ICALP CM.Nielsen & E.M. Schmidt,eds.),

252-264, LNCS 140, Springer, 1982.

[9] HENNESSY, M.& W.LI, Translating a subset of Ada into CCS, Proc. IFIP

Working Conference on Formal Description of Progrannning Concepts

II (D.Bj~rner,ed.), North-Holland, to appear.

[JO] HOARE, C.A.R., Communication sequential processes, C. ACM 21 (1978),

666-677.

[II] KUIPER, R. & W.P. DE ROEVER, Fairness assumptions for CSP in a temporal

logic framework, Proc. IFIP Working Conference on Formal Descrip­

tion of Progrannning Concepts, II (D. Bj~rner,ed.), North-Holland,

to appear.

[12] LEHMANN, D. A.PNUELI & J. STAVI, Impartiality, justice and fairness:

the ethics of concurrent termination, Proc. sth ICALP (S. Even

& O. Kariv, eds.), 264-277, LNCS 115, Springer, 1981.

[13] LI, w., An operational semantics of tasking and exception handling in

ADA, Proc. ACM ADA Tee and Tutorial Conference, to appear.

[14] MILNE, G. & R. MILNER, Concurrent processes and their syntax,

J. ACM~ (1979), 302-321.

[15] MILNER, R., A Calculus for Communicating Systems, LNCS 92, Springer,

1980.

[16] NIVAT, M., Infinite words, infinite trees, infinite computations,

Foundations of Computer Science III.2 (J.W. de Bakker & J. van

Leeuwen, eds.) 3-52, Mathematical Centre Tracts 109, 1979.

22

[17] PARK, D., On the semantics of fair parallelism, in Abstract Software

Specifications (D. Bj,rner,ed.), pp. 504-526, LNCS 86, Springer,

1980.

[18] PLOTKIN, G.D., A power domain construction, SIAM J. on Comp. 5 (1976),

452-487.

[19] PLOTKIN, G.D., A power domain for countable nondeterminism, Proc. 9th

ICALP (M. Niel~en & E.M. Schmidt, eds.), 418-428, LNCS 140,

Springer, 1982.

[20] PNUELI, A. & W.P. DE ROEVER, Rendez-vous with ADA, a proof theoretical

view, Proc. ACM ADA Tee and Tutorial Conference, to appear.

[21] SCOTT, D.S., Data types as lattices, SIAM J. on Comp., 5 (1976),

522-587.

[22] SCOTT, D.S., Domains for denotational semantics, Proc. 9th ICALP

(M. Nielsen & E.M. Schmidt, eds.), 577-613, LNCS 140, Springer,

1982.

23

APPENDIX

We list some definitions and theorems concerning the topological back­

ground of the processes introduced above. Proofs are omitted; they can all

be found in [4]. We assume known the notions of metric space, Cauchy sequen­

ces and limits in a metric space, closed sets, and completion of a metric

space, (see, e.g., DUGUNDJI [7]). We shall only be concerned with metrics

with values in [O,I].

DEFINITION A.I. Let (M,d) be a metric space, and let X,Y _'.:. M.

We define

a. d(x,Y) = inf {d(x,y) I y E Y}

b. d(X,Y) = max {sup{d(x,Y)jx EX}, sup {d{y,X)I y EY})

The distance between sets in definition Al is the so-called Hausdorff dis­

tance. By convention, inf~= I, sup~= O.

LEMMA A2. Let (M,d) be a metric space, and Zet P {M) be the coZZection of
C

aZZ closed subsets of M. Then (P (M), d) is a metric space, ford the
C

Hausdorff distance on P (M).
C

THEOREM A3. (Hahn). If (M,d) is a compete metric space, then so is (P {M),d).
C

Now let A be any set, and pO some object not in A. We define

DEFINITION A4. PO= {pO}, Pn+l = {pO} u P (AxPn). dO is defined by

d0 (p',p") = 0 for p',p" E P0 . dn+l is defined by: dn+l(p0 ,p) = dn+l(p,p0) =

I for p -:/- pO, dn+l (pO,pO) = O, and, for p' ,p" -:/- pO, dn+l (p' ,p") is the

Hausdorff distance between the sets p',p" (subsets of AxP) induced by the
n

d . t b t II • t II d (< > <) . b is ance e ween poin s n+l a 1,p1 , a 2,p2> given y

{
I, a 1 -:f,. a 2

dn+l(<al,pl>,<a2,Pz>) =
½dn(P1,Pz), al= a2

LEMMA AS. (P ,d) is a metric space for each n.
n n

DEFINITION A6. Let P =UP, d = U d (with the natural meaning for U d).
w nn nn nn

Let (P,d) be the completion of (P ,d).
w

THEOREM A7. P ~ { pO} U Pc (AxP)

(Here~ means isometry between lhs and rhs.)

24

DEFINITION AS.A mapping T: P • P is called continuous if, for each Cauchy

sequence <p.>., we have that <T(p.)>. is again a Cauchy sequence, and
1 1 1 1

T(lim.p.) = lim. T(p.). Similarly we define continuity inn~ I arguments.
1 1 1 1

LEMMA A9. The operations 0 , IJ, II are continuous in both arguments.

The above definitions and results can be extended in a natural way to pro­

cesses with additional structure. Take, e.g., the case of process domain

equation (4.2). We take P0 = {p0}, Pn+I = {p0} U (A • P(BxPn)), and define

dn+I (p',p"), for p',p",; p0, by dn+I (p',p") = supaEA dn+l(p'(a),p"(a)),

where p'(a),p"(a) are sets to which the Hausdorff distance definition ap­

plies.

36466

l
' {)

ONTVANGEH O 7 DEC~ 1982

