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Processes and a fair semantics for the ADA rendez-vous*) 

by 

**) J.W. de Bakker & J.I. Zucker 

ABSTRACT 

Processes are mathematical objects which are elements of domains in the 

sense of Scott and Plotkin. Process domains are obtained as solutions of 

equations solved by techniques from metric topology as advocated by Nivat. 

We discuss how such processes can be used to assign meanings to languages 

with concurrency, culminating in a definition of the ADA rendez-vous. An im­

portant intermediate step is a version of Hoare's CSP for which we describe 

a process semantics and which is used, following Gerth, as target for the 

translation of the ADA fragment. Furthermore, some ideas will be presented 

on a mathematically tractable treatment of fairness in the general framework 

of processes. 
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I. INTRODUCTION 

This paper presents a case study in the area of the semantics of concur­

rency. In the initial years of the theory of concurrency, most of the atten­

tion was devoted to notions such as composition and synchronization of paral­

lel processes - often established through suitably restricted interleaving 

of the elementary actions of the components, and mostly referring to a shared 

variable model. More recently there has been a considerable increase in the 

interest for communication between processes often referring to a model 

where the individual processes have disjoint variables which interact only 

through the respective communication mechanisms. Instrumental in this devel­

opment have been the studies of BRINCH HANSEN [6], HOARE [IO] and MILNER 

[IS], where a variety of forms. of communication was proposed and embedded in 

a language design or studied with the tools of operational and denotational 

semantics. The incorporation of the notions of tasking and rendez-vous in the 

language ADA ([I]) provides additional motivation for the study of communi­

cation, and it is the latter notion in particular which we have chosen as 

the topic of our investigation. 

The main purpose of our paper is firstly to provide a rigorous defini­

tion for the ADA rendez-vous with the tools of denotational semantics, and 

secondly to introduce a mathematically tractable approach to fairness which 

is applicable in general in various situations where choices have to be made 

on a fair basis, and in particular to the ADA rendez-vous definition. 

The general framework we apply in our paper was first outlined in 

DE BAKKER & ZUCKER [3], and later described in detail in DE BAKKER & ZUCKER 

[4]. In order to keep the present paper self-contained, we shall provide a 

summary description of the main points of the latter paper, without going 

into much mathematical detail. Our approach to the ADA rendez-vous and to 

fairness owes much to two contributions to ICALP 82. In GERTH [8] the idea 
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of translating the ADA fragment to a version of CSP was proposed; the same 

approach will be applied by us in section 6. In PLOTKIN [19], the fundamental 

idea of specifying a fair merge through suitable use of - essentially - an 

appropriate sucession of random choices was proposed and embedded in a cate­

gory - theoretic setting. (The suggestion of applying a version of such ran­

dom choice in the framework of processes arose in a discussion with Plotkin 

during an IFIP WG 2.2 meeting.) 

The structure of the paper is the following. After this introduction we 

present in section 2 an outline of the underlying semantic framework, though 

without most of the mathematics. In denotational semantics, language con­

structs are provided with mathematical objects (functions, operators, etc.) 

as their meanings. In the present paper, these meanings are so-called pro­

cesses (in our paper a technical term for certain mathematical objects rather 

than for -syntactic- components of a program). Processes are elements of do­

mains in the general sense as introduced by SCOTT [21,22]. Technically, do­

mains of processes are obtained as solutions of domain equations. The solu­

tion of such equations in a context with nondeterminacy and concurrency was 

first studied in detail by PLOTKIN [18] (see [4] for more recent references). 

We have based our solution techniques on completion methods in metric topol­

ogy (as advocated recently by Nivat and his school, see e.g [16]). In the ap­

pendix we summarize the topological definitions; the full story is given in 

[4]. Throughout our paper, we shall introduce a variety of processes, cor­

responding to a variety of programming concepts we encounter on the way to 

our understanding of the ADA rendez-vous. In section 2, processes are still 

simple. We call them uniform, and they bear a close resemblance to trees -

though there are also a few crucial differences. Section 2 further intro­

duces various operations upon processes - which will undergo successive re­

finements in later section. We moreover illustrate uniform processes by using 

them in the semantics of a very simple language with parallel merge as its 

only concurrent notion. In section 3 we use uniform processes as a vehicle 

to explain the key idea of our approach to fairness, viz. suitable alterna­

tion of random choices. (Ultimately, this idea may be traced back to the use 

of oracles to handle fairness. Fundamental studies of the semantics of fair­

ness were made by PARK [17]; proof - theoretic investigations are described, 

e.g., in [2,11,12,20].) Section 4 describes a number of ways of providing pro­

cesses with additional structure. Firstly, we enrich them with a synchroni­

zation mechanism in the sense of MILNER'S ports ([15]). We then obtain struc-
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tures which are close to his synchronization trees. Next, we add a functional 

flavor to uniform processes, and obtain objects which have PLOTKIN'S resump­

tions ([18]) as forerunners. Finally, we add a connnunication feature to pro­

cesses yielding a counterpart for Milner's communication trees ([15]). Where­

as in section 4 we introduce each extension independently, we need their com­

bination in section 5 to define the semantics of a language with both paral­

lel merge, (synchronization through) communication, and a version of Milner's 

restriction operator. This language is an abstraction of HOARE's CSP ([IO]), 

and we use it to provide a translation of the ADA fragment featuring its 

rendez-vouz concept ([I], chapter 9) in section 6. Section 7, finally, ex­

tends the fairness-definition ideas of section 3 to a situation with commu­

nication. We emphasize that the definitions in sections 6 and 7 concentrate 

solely on the concurrency and connnunication aspects of ADA - together with 

a few standard sequential concepts to render some verisimilitude to the ADA 

fragment. Accordingly, we omit all treatment of further ADA notions which, 

though interacting with the rendez-vous concept in the full language, would 

detract from the understanding of the central topic of our paper. Refer­

ences to operational approaches to the ADA rendez-vous include [9,13]. As 

final remark we add that the reader who is interested only in the ADA ren­

dez-vous without fairness considerations may just skip sections 3 and 7. 

2. UNIFORM PROCESSES AND A SIMPLE LANGUAGE WITH MERGE 

A uniform process is a variation on the notion of tree. It is used, 

e.g., to assign meaning to a program when one is primarily interested in 

the structure of the sequences of elementary actions generated during its 

execution, rather than in the relation between input and output states of 

the program. Processes (and trees) constitute a more refined tool than 

just sets of sequences: we distinguish between the two objects 

a(~a 
b IC 

which have the same associated sets of sequences {ab,ac}. Also, uniform 

processes are only the first on a list of gradually more complex constructs 

to be studied in subsequent sections. 

Let A be any alphabet; for the moment we do not care whether A is 
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fin:i.te or infinite. Let a,b, ••. be elements of A. Uniform processes p,q, ••• 

will be described as certain constructs over the alphabet A. 

We introduce 

I. The nil process Po· Roughly, its role is that of neutral element for 

various operations; also, it may be seen as label of the leaves of a pro­

cess in case this is viewed as a tree-like construct. 

2. The set of all finite processes P 4..f-· U P , where P , n = O, I, ••• , are 
w n n n 

given by 

= P(AxP) 
n 

and P (•) denotes all subsets of (•) 

Finite processes are for example p0,{<a,p0>,<b,p0>}, or 

{<a,{<b,p0>,<c,p0>}>} and {<a,{<b,p0>}>,<a,{<c,p0}>}. Note that these 

examples are elements of P0 ,P 1,P2 and P2 . Note also that the latter two 

processes correspond to the pictures at the beginning of the section. 

3. The set of all finite or infinite processes (over A) as solution of the 

domain equation 

(2. I) P = {p} u P (AxP) 
Q C 

We shall not give the full explanation here, but restrict ourselves to the 

following (more - though not all - details appear in the Appendix): We may 

introduce a distance or metr>ic don the space P of all finite processes, 
w 

and consider the completfon of P with respect to this metric (cf. Cantor's 
w 

completion of the set of rationals to that of the reals). Essentially, this 

amounts to adding to the space P all limits of so-called Cauchy sequences 
w 

00 

(sequences <p > 0 with p E:P, such that distances between elements get n n= n n 
arbitrarily small with increasing index). E.g., infinite objects such as 

{<a,{<a,{<a, ••• >}>}>} or {<a,{<a, ••• >,<b, ••• >}>,<b,{<a, ... >,<b, ..• >}>}, cor­

responding to the pictures 

a 

a b 
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belong to P. Furthermore, P {·) now stands for the collection of all closed 
r 

- with respect to the metric - subsets of{•), and one can show that for P 

the completion of P, it indeed satisfies equation (2.1). In sunnnary, each 
w 

proces is either finite and element of some P, or infinite and limit of a 
n 

Cauchy sequence <p > , with p E P. Throughout the paper, we shall pay n n n n 
little attention to the infinite case, not because we want to ignore it but 

rather since, based on the firm foundation of (2.1) - or similar equations 

below, the infinite case - e.g. for the operations to be defined below - al­

ways follows straightforwardly from the finite case. 

The reader should observe the difference between processes and trees. 

Firstly, in processes we have nor order. Trees a/\b and b;\a are different; 

as processes they are both equal to {<a,p0>,<b,p0>}. Secondly, processes 

have no multiple occurrences of elements. The trees la and aj\a are different, 

but as processes they coincide (non-nil processes are sets, not multisets). 

We continue with the definition of the main operations on processes. 

Throughout the paper, we shall distinguish the cases of the nil process p0 , 

finite processes p,q, .•. which are sets X,Y E P(AxP) for some n, and infi­
n 

nite processes lim p, with p E P. Observe that elements x,y of sets n n n n 
X,Y are pairs <a,p'>,<b,q'>, etc. We now define three important operations 

on processes. 

DEFINITION 2. I • 

a. Composition " 0 " is defined by 

p 0 po = p, p0 X = {p 0 xlx EX}, p0 <a,q> = <a,poq>, 

p 0 lim q = lim {p 0 q) 
n n n n 

b. Union "u" is defined by 

c. 

p u p0 = p0 up= p, and, for p,q # p0 , p u q is the set - theoretic 

union of the sets p,q 

Merge "II" is defined by 

X II Y = (Xll1Y) u (X IIRY), P 11 Po = Po 11 P = P, 

X II Ly = {x I I Y I X E X}' X 11 Ry = {X 11 y I y E Y}, 

<a,p> IIY = <a,p IIY>, X ll<b,q> = <b,X liq>, 

(lim.p.) II (lim.q.) = lim. (pkll qk) 
l.l. JJ k 

LEMMA 2.2. The above operations are all well-defined and associative, u, II 

are commutative, and they all have the usual continuity properties (see 

Appendix for definition). 

Proof. See [4]. • 
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Examples 

1. Let p = {<a,p0>,<b,p0>}, q = {<c,{<d,p0>,<e,p0>}>}. 

Then p 0 q = {<c,{<d,p>,<e,p>}>. In pictures we have 

0 = 

a 

2. {<a,{<b,po>}>} II { <c,{<d,po>}>} 

d 

. 
We next introduce the important notion of a so-called contracting map-

ping. A mapping T: P • P is called contracting whenever, for all 

p',p", d(T(p'),T(p")) $ cxd(p',p"), with O $ c < I. (The mapping T brings 

points closer to each other.) We have a classical theorem which will be very 

useful in the sequel: 

THEOREM 2.3. Let T be continuous and contracting, and let q be an arbitrary 

element of P. Then the sequence q, T(q), T2(q), •.. is a Cauchy sequence which 

converges to the unique fixed point of T. 

Proof. This is Banach's fixed point theorem. 

Remarks 

1. Observe that lim Tn(q) is independent of q. 
n 

D 

2. Convergence of the sequence q, T(q), ••• in cases where Tis not necessar-

ily contracting is studied in [SJ. 

We close this section with the introduction of a simple language with 

parallel composition (i.e. the merge "II") as its only non-sequential concept 

and we show how uniform processes can be used to define its semantics. More 



7 

specifically, the simple language L1 has elementary actions (for simplicity 

taken from the alphabet A), sequential composition, nondeterministic choice, 

merge, and (finite or infinite) iteration. In BNF like notation, its syntax 

is given in 

DEFINITION 2.4. Statements SE L1 are defined by 

Remark. We ignore possible syntactic ambiguities. 

Let T be a special element added to A (Milner would call it the unobser­

vable action), and let P1 solve the equation 

(2.2) 

We define the semantic mapping M: • 

DEFINITION 2.5. The mapping M: • P1 is given by 

M(a) = {<a,p0>}, 

M(s 1 ;s2) = M(s2) o 

M(S 1)jj M(s2), and 

M(s*) = lim. p., where 
1 1 

(pioM(S)) u {<T,po>}. 

Remarks 

= {<T,p0>}, 

M(s 1us2) = M(s 1) u M (s2), M(s 1 II s 2) = 

Po is the nil process and Pi+I = 

I. We see that the syntactic operations ;, u, II are mapped directly onto the 

semantic operations O , u, 11-

2. The definition of s* is explained by observing the intended equivalence 

s* = (S;s*) u skip. Semantically, we have, by theorem 2.3, for 

p dJ. lim. p., the fixed point property p = (p 0 H(S)) u{ <T, p0>}. 
1 1 

Examples. 

I. M(a 1;a2) = M(a2) 0 M(a 1) = {<a2,p0>} 0 {<a1,p0>} = 
{<al,{<a2,p0>}>} 

2. M(a1;<a2Ua3)) = {<a1,{<a2,Po>,<a3,Po>}>} f 

M((a 1;a2) u (a 1;a3)) 

* 3. M(a) = {<T,p0>,<a,{<T,p0>,<a, ••• >}>}. Cf. the picture 
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a(\: 
a/\T . 
(Note that,by closedness, we know that in this tree we have to "include" 

the infinite path aw!) 

The reader should observe that L1 could also be provided with a seman­

tics in terms of sets of sequences rather than of processes. In this case 

a 1;(a2ua3) and (a1;a2) u (a1;a3) - and also statements such as (aub)jj c and 

(ail c) u (bll c) - would obtain the same meaning. In subsequent applications 

we shall be able to profit from the more refined process structure, which is 

why we already used them for providing meaning to L1• 

3. FAIRNESS FOR UNIFORM PROCESSES 

We present a definition of fair merge for uniform processes which is 

based essentially on the well-known idea of implementing fair scheduling 

through systematic alternation of random choice (see [2] and, in particular, 

[19]). We first discuss the idea using a simple example (in which it is con­

venient to use sequences rather than processes). Consider the two infinite 
. w w 

sequences of actions a and b, and suppose we want to write a program sched-

uling their fair merge ailfb (which should therefore exclude sequences with 

almost all a's or almost all b's). Now this is achieved by the following 

program with random assignments - where x :=? means that xis assigned an 

arbitrary non-negative integer: 

X •= ?• X •= ?• I •• , 2 •. , 

1 1 : a; if x 1> 0 then x 1 := x1-1; goto 1 1 else x2 := ?; goto 1 2 fi 

u 

12 : b; if x2> 0 then x2 := x2-1; goto 12 else xi := ? ; goto LI fi 

Observe that 

subsequences 

this program determines aw I lfbw as 

of x (i) a's and then x (i) b's i 
I 2 ' 

an infinite sequence of either 
(i) (i) = 1,2, ••• , x 1 and x 2 

successive results of the random choices x 1 :=? and x2 :=?,or of a similar 

sequence of subsequences of x;j) b's and x 1 (j) a's, j = 1,2, ..•• 

In PLOTKIN [19], this idea was embedded in the settting of category 

theory. What we shall describe here is the same approach in the framework 
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of process theory. At first sight, the random assignment is an extraneous 

element for the process notion. However, there is a natural way to link it 

to the process framework. We start with the observation that the infinite 

union Up, for processes p E P, is,in general, not well-defined (techni-n n n 
cally, this is the case because the infinite union of a family of closed sets 

is not necessarily closed).What we can do, however, is to extend Pin the 

following way. Let lN be the set of natural numbers. Now instead of using 

equation (2.1) we take process domain Pf as solution of 

(3. I) 

Within Pf we can define a new construct~ pn by the definition 

= { <n, p > I n E lN} n 

(In this expression, pO is some arbitrary process rather than the nil pro~ 

cess.) In a picture we have for Lip : 
n n 

which simulates a random choice between the p. It can be verified that 
n 

~ pn is a well-defined element of Pf (since by the definitions in the Appen-

dix, the only non-trivial Cauchy sequences must be wholly within some p ). 
n 

We are now sufficiently prepared for 

DEFINITION 3.1 (fair merge). Let p,q E Pf, and let, as usual, X,Y be finite 

processes. Let b range over B dJ • A u lN. We shall define p 11 f q in terms of a 

number of auxiliary constructs p II q, for a any of the subscripts of II oc-a 
curring in the clauses below. 

a. p llaPo = Po llaP = p 

b. X I lfY = (X 11 LY) u (X 11 RY) 

c. X I ILY = {<n,X IIL Y> I n E lN}, and similarly for X 11 RY ,n 

d. X 11 L Y = {x 11 L Y I x EX}, and similarly for X 11 R Y ,n ,n ,n 

e. <b,p> IIL,n+ly = <b,p IIL,nY>, and symmetric 

f. <b,p> IIL OY = <b,p II RY>, and symmetric 
' 

g. (limipi) llf (limjqj) = li~(pk 11 fqk) 
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LEMMA 3.2. The above definition of llf is -well-formed (e.g., if <p.>. and 
l. l. 

<qj>j are Cauchy sequences, then so is <pk llfqk>k' etc.) 

Proof. The proof is a reasonably straightforward extension of the results 

in Appendix B of [4], and omitted here. D 

Remark. The reader who has understood the program 1.n the beginning of this 

section will recognize that definition 3.1 is the exact counterpart of that 

program, with the random choice xi:=? ,i = 1,2, replaced by a choice 

<n, •.. > for some n E lN • 

We need additional study to link the notion of fair merge of two pro­

cesses to that of a "fair process". The following definitions and property 

seem plausible here (though we have no full supporting proofs): 

I. Let p E Pf' and let b range over B '!f • A u lN. A path for p is a (finite 

or infinite) sequence 

such that <b 1,p 1> E p, and <bi+I'Pi+l> E pi, i = 1,2, •.. 

2. bis enabled in(*) whenever, for some i and q,<b,q> E pi. 

b occurs in(*) whenever, for some i, b = b .• 
l. 

3. A path(*) is fair with respect to some B' c B whenever, for all b' EB', 

if b' is infinitely often enabled in(*), it infinitely often occurs 1.n 

(*). Process pis called fair with respect to B' whenever all its paths 

are fair with respect to B~ 

4. We conjecture that, for p,q fair with respect to A, p llfq 1.s fair with 

respect to A. 

The above ideas can be modified for regular processes. Without going 

into details, let us call a process regular whenever it has only finitely 

many different subprocesses. We expect that results extending the above can 

be obtained for regular processes, where the above definitions are replaced 

by conditions imposed upon "moves" of pairs <b,q> rather than simply of ele­

mentary actions b. 
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4. PROCESSES WITH ADDITIONAL STRUCTURE 

In this section, we discuss three ways in which to extend the uniform 

processes of section 2. We shall deal with 

- processes exhibiting synchronization 

- processes which are (also) functions 

- processes which conununicate. 

We begin with synchronization. (The ideas for this stem from MILNER's CCS 

[15]). Let r be a set of ports, the elements of which appear in pairs y,y, ••• 

(pairs are synunetric in the sense that y = y). We introduce processes with 

synchronization as elements of the set P which solves 
s 

( 4. I) P = {pO} u P ((Au{T} u r) x P ) 
S C S 

Let S range over Au {T} u r. We define the operations of section 2, together 

with the new operation of restriction p\y, in 

DEFINITION 4.1 

a. p0 pO, p0 X, p0 limp are as before, and p0 <S,q> = <S,p 0 q>. 
n n 

b. u is defined as before 

c. p II q is defined as before, except for the (central) clause 

X IIY = (XIILY) u (XIIRY) u (XII Y), where I 11 and 11 Rare as s 

X II y = {<.,p' II p">l<y,p'> E X, <y,p"> EY, for some pair 
s 

ding ports y,y} 

d. p\y is defined by: p \y = Po, (limp )\y = lim (p \y), and 
0 n n n n 

X \ y = {<S,p'\y> I <S,p'> EX, s I Y,Y} 

Remarks. 

in def. 2. I, and 

of correspon-

I. The definition of p II q is the essential new element for synchronizing 

processes. Succesful synchronization of p,q results from pairs <y,p'>, 

<y,p"> in p and q, respectively, and the outcome of composing these pairs 

yields an invisible T, followed by p' 11 p ". X 11 Y also includes the full 

merge (X 11 1 Y) u (X IIR Y) as introduced in definition 2 •. 1. Pairs <y, ... > 

and <y, •.. > in this full merge can be removed by applying the \y operation. 

(All this is extensively discussed in [15].) 

2. In [4] we discuss how the "\y" operation can be defined to model deadlock. 
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In our viE~w, this appears in situations where applying the "\y" operation 

would yield an empty set as outcome; in that case, the refined restric­

tion operator yields a "dead process" as result. We omit further discus­

sion of this. 

LEMMA 4. 2. The operations O , u , 11 , \ are well-defined., and satisfy (wher>e 

relevant) the usual properties such as associativity., continuity etc. 

Proof. OmittE~d. D 

We continue with the treatment of functional processes. Let A,B be two 

(arbitrary) sets. We take Pfn as solution of 

( 4. 2) 

The various definitions of operations on Pfn are collected in the next defi­

nition (where we omit the standard cases when the operands are nil or infi­

nite). We use the laCTbda - notation Aa• ..• a ... for the function which maps 

a to ... a ... " 

DEFINITION 4 .. 3. 

a. poq = Aa .. (poq(a)), paX {pox I x E X}, po <b,q> <b,poq> 

b. puq = >-.a .. (p(a) u q(a)) 

c. p II q = Aa .. ((pll q(a)) u(p(a) 11 q) > 

xii q = {x 11 q I X E X}' p IIY={pllyl y E Y} 

<b,p> II q = <b,pll q>, p II <b' q> = <b' p II q> 

Remark. Note the (essential) difference between clauses band c, in that 

p 11 q is not defined as Aa. (p (a) 11 q (a)). 

LEMMA 4.4. The operations of definition 4.3 have the usual properties. 

Proof. Omitted. 

We conclude with the introduction of processes with communication. 

We take P 
C 

(4.b) 

as solution of 

P = {p0} u P ((BxP) u (B+P )) 
C C C C 

Let TI range over the set B + P. The operations on P are given in 
C C 

D 



DEFINITION q,. 5. 

a. poX = {po,x I X EX}, po<b,q> = <b,poq>, 

po1r = Ab. (po1r(b)) 

b. u is as usual 

c. X 11 y = (X 11 Y) 
L 

u (XI I Y) u (XII Y) 

X 11 Y, X 11 Y are as 
L R 

R C 

usual. Moreover, 

X II y = { 1T (b) II p I I 1T EX, <b,p'> E Y} u 
C 

{ p" II 1r(b) I <b,p"> E X, 1T E y}. 
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Remark. A process p may communicate with process q 1n case p contains some 

<b,p'>, and q some function 1T (or vice versa). The process 1r(b) is than used 

to continue the operation with the merge 1r(b) II p' (or symmetric). Applica­

tions of this idea (,.rhich we first saw 1n [ 14]) appear in the next section. 

The operations of definition 4.5 have the usual properties. 

5. A CSP LIKE LANGUAGE 

We introduce syntax and semantics of a CSP - like language (CSP for 

Hoare's Communicating Sequential Processes [JO]). In the next section we 

shall use this language as target for the translation of the ADA fragment 

containing the rendez-vous construct. In the CSP - like language L2 we ar­

ticulate the elementary actions of L1 to assignments and tests; in the next 

section we explain how tests are used 1n selection and while statements. 

L2 moreover has the same program-forming operations as in section 2 

(;,u, 11 ,*), and connnunication connnands c?x and c!s. Here c is a channel, 

c?x means that variable xis to receive a value from channel c, and c!s 

means that the current value of expressions is to be transmitted over the 

channel c. The actual "hand-shake" connnunication over the channel c takes 

place provided (i) c?x and c!s appear as substatements in the statements 

S I and s2 of some parallel composition S = S I II s2 , and (ii) in the execu­

tion of S, the flow of control 1n s 1 has arrived at c?x, and control in s2 

has arrived at c!s. The result of the communication is then equivalent to 

the assignment x:=s. Besides the communication connnands we also have in L2 

a restriction S\c which enables us to delete unsuccesful attempts at com­

munication from (the process which 1s the meaning of) S, and a special 

construct b => S which in case test bis true will initiate execution of S 

without allowing a possible interleaving action from some parallel S' 
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(which might change the value of b to false). 

The precise definition of the syntax of L2 is given in 

DEFINITION 5. I • 

a. Let x,y, .•• be variables in a set Var, s,t, .•• expressions, b, ..• boolean 

expressions, and c, ..• channels. (We omit specifying a syntax for bool­

ean) expressions.) 

b. Let (SE) L2 be the class of statements defined by 

s ::= x:=s jskipj b I s 1;s2 I s 1 u s2 I s 1 II s 2 I s*j 

c?x jc!s I S\c I b ~ S 

Remark. We hope no confusion will arise from our using x E Var in the syntax, 

and x EX in the semantics. 

We next turn to the semantics of L2 • Let V be a set of values (meanings 

of variables and expressions), and let a range over V. Let E =Var • V be 

the set of states, with elements a EE, and let o{a/x} be a state which is 

like o, but for its value in x which equals a. Let V,W be functions which for 

each s, band o determine values V(s)(o) EV, and W(b)(o) in {tt,ff} (the set 

of truth-values). We take P2 as solution of 

(5. I) 

In this process domain equation we recognize elements of the three types of 

extensions discussed separately in section 4. Firstly, terms r x •.. reflect 

synchronization ports (y Er will correspond to channels c in the syntax). 

Secondly, the E • Pc(•) term indicates that processes in P2 are functional. 

Thirdly, terms V x (ExP) combined with V +(ExP) correspond to terms BxP 

together with B • Pin the case of communicating processes treated previous­

ly. In fact, certain variations on equation (5.1) would also lead to a fea­

sible semantics. However, we have chosen the present from since it provides 

the best model for our fairness considerations in section 7. 

We use P2 in the definition of the semantics for L2 : 



DEFINITION 5.2. The mapping M: L2 • P2 1.s defined by 

a. M(x:=s) = Aa.{<a{V(s)(a)/x},p0>} 

M (skip) == Ao. {<a, p 0>} 

M(b) = Ao0 • if W(b)(a) then {<a,p0>} else 0 fi 

b. M(s 1;s 2) = M(s 2) 0 M(s 1) 

M(s 1us 2) = M(s 1) u M(s2) 

M(s 1 II s 2) = M(s 1) II M(S2) , with II to be defined rn definition 5.3 

M(S*) = limi pi, with p0 as always, and pi+I = 

(pioM(S)) u Aa.{<a,p0>} 

c. M(c?x) = Aa.{<y, Aa. <a{a/x},p0>>} 

M(c!s) = Aa.{<y, V(s)(a),a,p0>} 

d. M(S\c) = M(S)\y, with\ to be defined 1.n definition 5.3 

M(b =>S) == Aa. if UJ(b) (a) then M(S) (a) else 0 fi 

Remarks. 

I. We use associativity of tupling, and identify constructs such as 

<1,2, <3,4>>, <1,2,3,4>, etc. 

2. In part c, note that M(c?x)(a) Er x (V • (ExP)), 

M(c!s)(a) E rxvxrxP. 
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3. The definition of M(b=>S) should be contrasted with the result of M(b;S): 

M(b;S) = Aa. if W(b)(a) then {<a,M(S)>} else 0 fi. The reader should 

ponder the reasons why the latter semantics indeed allows what amounts to 

an interleaving action at the 

for b => S. 

" . " , in b;S, contrary to what is the case 

Definition 5. 2 assumes the definition of II and \ 1.n (omitting the nil 

and infinite cases as usual): 

DEFINITION 5.3. 

a. 

b. 

p II q = ),a.((p(a) 11 q) u (pll q(a)) u (p(a) I lcq (a))) 

X II q {xii q Ix E X}, 1r II q = Aa. (1r(a) II q) 

<a,p> 11 ci = <a, PI I q > 

<y, a, a, p> 11 q = <y, a, a, p 11 q>, < Y, 1r> 11 q = <y, 7T 11 q> 

(and, for the last three lines, the symmetric cases) 

X llcY = {1r(a) II p' I <y,n> E X, <y,a,a,p'> E Y} u 

{p" II n(a) I <y,a,a,p"> E X, <y,1r> E Y} 

p\y = Acr. (p(a) \ y)' 1r \ y = Aa. (1r(a)\y), x\y = {x} \ Y' 

X\y = {<a,p'\y> I <a,p'> EX} u 

{ <y'' 7T \ y> I <y', TI> EX, y' f y ,y} u 

{<y',a,a,p'\y>l<y',a,a,p'> EX, y' i y ,y} 
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Example. We evaluate M( (c?x 11 c! I) \ c). We obtain 

M(c?x llc!s) dJ. p = 

).cr.{<y, ).a.<cr{a./x},po»}II ).cr.{<y, I, a, Po>}= 

).cr.{<y, ••• >,<y, ••• >, ).a.(<cr{a/x},p0>)(1) llp0} = 

Acr.{<y, ••• >,<y, ••• >, cr{l/x},po II Po>}. 

Hence, M(c?xllc!l)\c) = p\y = ).cr.{<cr{l/x},p0>}, which is, indeed, the same 

process as M(x:=l). 

Note that in the above definitions the role of a in fourtuples 

<y,a,cr,p> is in fact superfluous. However, we have included it to facilitate 

the definition of path in section 7. 

6. THE ADA RENDEZ-VOUS 

We consider an ADA fragment which centers around the notion of rendez­

vous between (calls and accepts of) entries occurring in ADA tasks, and we 

exhibit a denotational semantics for the fragment by establishing a trans­

lation to L2 • We begin with the syntax: 

DEFINITION 6.1. 

a. (programs formed from tasks). Programs SE LA are defined by 

S ··= .. 
b. (tasks). Tasks Tare defined by 

T ··= .. 

Remarks. 

x:=s I skip I if b then T1 else T2 fi I while b do Tod 

e(s,z) I T1; T2 I 

accept e(x,y) do - Tend I 

select b + accept el(xl,yl) do T1 ' end; T II • ... • 1 1 
b • accept e (x ,y) do T ' end; T II 

n n n n - n n 
end 

1. e(s,z) is an entry call statement, with actual parameters sand z. Also, 

accept e(x,y) do Tend is an entry accept statement. At the moment of a 

(succesful) rendez-vous, statement Tis executed with actuals sand z 

corresponding to the formals x,y. The "hand-shake" cormnunication follows 

the CSP principle. The select statement allows a nondeterministic choice 

between the guarded accept branches as listed. 
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2. To avoid problems of naming and scope, we assume a fixed number of dis-

tinct entry names e1,···,es occurring in the tasks T1 , •.. ,Tm of program s. 
Thus, we ignore the notion of entry declarations; neither do we deal with 

the selected component notation T. .e. 
i 

3. In entry calls e(s,z) we encounter - for simplicity's sake - only two 

actual parameters, viz. expressions and variable z. We also ignore com­

plications arising from parameter passing, and concentrate our interest 

on cases where the parameter mechanism is equivalent to call-by-value for 

sand to call-by-value-result - the definition of which is implied by the 

clauses in part c of definition 6.2 - for the parameter z. 

We now present a translation from the statements (and tasks) in LA to 

those in L2 • (The idea of such a translation is due to GERTH [8]; the main 

difference between our approach and [8] is that the latter paper ultimately 

considers an operational rather than a denotational semantics.) For SE LA 
a o 

and tasks T we define their translation S , T E L2 • Compared to L2 as intro-

duced in section 5 we have, in fact, a few minor amendments. We use e rather 

than c for channels (to stick more closely to the convention for entries in 

LA); moreover, we use a version of simultaneous restriction S\{e 1, ... ,es} 

with the obvious meaning. Furthermore, we introduce an error statement I::, 

to be used to indicate failure when all guards in a select statement have 

the value false. The meaning oft:, is given by M(ti) = Acr.{<o,p0>}, where 

a special dead state (to be accompanied by natural definitions such as 

M(x:=s)(o) = {<o,po>}, etc.). The translation from LA to L2 is given in 

DEFINITION 6.2. 

a. (x:=s) 
0 

a a 
b. (if b ther:~ T1 else T2 fi) = (b;T 1) 

a a * 7 (while b ~lo T od) = (b;T ) ; b 

a 
c. e(s,z) = e!s; e!z; e?z 

a o 
(accept e(x,y) do Tend) - e?x; e?y; T; e!y 

a 
(select ... end) -

n a 
( ? ? (T!) i~l bi =a> ei. xi; ei. yi; i e. ! 

i 

II O 
y. ; (T. ) ) 

i i 

u 
7 7 . ( b A ••• A b ), I::, 

I n 

d. So= (T; IJ , .. IIT:) \{el, ... ,es} 

8 is 

where e 1, ... ,es are all names of entries appearing in the tasks T1, ... Tm. 
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The reader will be able to convince himself that, indeed, the trans­

lation results in elements of L2• Since L2 obtained a denotational semantics 

in section 5, we have now established a denotational semantics - situated 

in the process framework - for the ADA fragment as well. What remains to be 

done is to develop a fair semantics, and this we shall present in the next 

section. 

7. A FAIR SEMANTICS FOR THE ADA RENDEZ-VOUS 

This section brings the final result of the paper: a fair semantics for 

the ADA rendez-vous concept. Since the ADA reference manual does not mention 

the word fair, let us explain why we are interested in such a semantics. We 

distinguish two aspects concerning the proper execution of a number of ADA 

tasks. Firstly, following the argument from PNUELI & DE ROEVER [20], such 

execution should be what they call just, i.e., it should satisfy the require-
' ment that every task which is continuously enabled from a certain point in 

the computation should move infinitely often in that computation. (For the 

notions "enabled" and "move" cf. our notions of "enabled" and "occur" de­

scribed in section 3; refinements for the present context follow soon.) It 

is this justice property which is achieved by the fair merge schedule to be 

defined below. Basically, it is motivated by the idea that modelling simul­

taneous execution of a number of parallel processors by an interleaving of 

their constituent individual actions should imply that each process should 

contribute eventually each of its enabled moves to this interleaving. Se­

condly, the manual stipulates a scheduling which honours different calls for 

the same entry in their order of arrival. Now one of the benefits of our 

treatment is that this requirement is met automatically. The crucial property 

here is that interleavings of the elementary actions where the synchroniza­

tion does not fit - which in an operational approach leads to extension of 

the queue of calls for the entry concerned - in the denotational approach 

disappear through the restriction operator; hence, no special measures to 

impose the right queuing discipline are in order. 

We proceed with the definition proper of T1 llfT2- which is all that re­

mains for the fair semantics of the ADA rendez-vous. Firstly, we have to ex­

tend the process domain in a fashion similar to the construction in section 

3: we add a suitable :N x ( ••• ) term: 



19 

PA= {p0 } u (E+Pc((ExPA) u (rxvxrxPA) u (rx(V+ExPA)) 

u :Nx((ExPA) u (fxVxExPA) u (rx(V+ExPA))))) 

Next, we give the definition of Pllfq for p,q EPA. 

DEFINITION 7.1. As before, we define p 11 8 q, for Bas encountered below, and 

we omit treatment of the nil and infinite cases. 

a. P llfq = (p ll1q) u (p IIRq) 

b. p llq = An.((p(n)ll1 q) u (p(n)Jlfq(n))) 

p 11 1 q =An.((p(n)ll1 q) u (p(n)llfq(n))) ,n ,n 

c. X ll 1 q = {<n, xlJ1 ,nq> Ix EX, n E :N} 

X II L q = { X II L q I X E X} ,n , n 

d. <a,p> 111,n+l q = <a, P 111,nq>,<a,p> 111,0q = <a,pJJRq> 

<y,a,a,p> 111,n+l q = <y,a,a,pJIL,nq>,<y,a,a,pJJL,0 q = <y,a,a,pJJRq> 

e. <y ,'IT> 111,n q = <-y ,'IT II q> 
'L,n 

<m,x> 111 n q = <m,xll L q> 
' 

,n 

'IT 111 nq =),_a.(TI(a)IJL q) 
' 

,n 

f. X JJfy = h(a)llfq <y,'IT> EX, <y,a,a,q> E Y} u 

{q llf'IT (a) I <y,a,a,q> EX, <y,TI"> E Y} 

<a' p> llf q = <a' P llfq> 

(We omit symmetric clauses for II R and JI R,n •) 

We see that the definition is based on the same L/R alternation of ran­

dom choices, but now embedded in a more complex setting due to the increased 

complexity of PA. 

Next, we make some remarks on the question - again generalizing section 

3 - as to wh,ether fair merge preserves fair processes. The following defini­

tions and properties seem plausible here: 

1. Let a, a' EE, p,p' EPA. We say that the relationship 

<a,p> • <,:,-' ,p'> holds whenever one of the following four cases applies: 

(i) <a' ,p'> E p(a) 

(ii) <y,c1.,a' ,p'> E p(a), for some y,a 

(iii) <y,rr> E p(a), and <a',p'> E TI(a), for some y,TI,a 
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(iv) <n,x> E p(cr) for some n, and <cr',p'> can be derived from x accor­

ding to (i) to (iii) above. 

Note how clause (ii) is only meaningful due to the presence of a' in the 

fourtuple on the left-hand side. 

2. Let a EE, p EPA. A path for panda is a (finite or infinite) sequence 

(*) <cr1,P1>,<cr2,P2>, ••• 

such that <a 1,p 1> = <cr,p>, and <cr.,p.> + <a. 1,p. 1>, i = 1,2, •.• i i i+ i+ 
3. Let$ EE+ E. We say that$ is enabled in(*) whenever there exist i,cr 

and p such that <cr.,p.> + <cr,p>, and a is $(a.). i i i 
4. We call a path(*) fair with respect to$ whenever, if$ is infinitely 

often enabled in(*), it infinitely often occurs in(*). We say that pis 

fair with respect to a collection~ of functions$ whenever, for all a 

and$ E ~. all paths for a and pare fair with respect to$. 

Now we conjecture that 

5. If p,q are fair with respect to~ then so is p llfq. 

6. (The meaning of) each program S of the ADA fragment (with syntax as in 

definition 6.1) is fair with respect to the collection of functions~ 

defined as follows: (i) ~ contains the identity function AO.a and the 

error function AO.a. (ii). For each x := s occurring in S, ~ contains 

the function Aa.cr{V(s)(cr)/x}. (iii). For each (syntactically) matching 

pair e?y, e!t occurring in S,~ contains the function Acr.a{V(t)(cr)/y}. 

By way of final remark let us add that the fairnees notion appearing in 

ADA is only one out of a large number of variations on the theme of fairness. 

We have some ideas on how to apply techniques resembling those of sections 

3 and 7 to, e.g., fair iteration in a framework of guarded commands ([2]) 

or fair connnunication as discussed in KUIPER & DE ROEVER ([II]). We hope to 

describe these techniques in a future publication. 
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APPENDIX 

We list some definitions and theorems concerning the topological back­

ground of the processes introduced above. Proofs are omitted; they can all 

be found in [4]. We assume known the notions of metric space, Cauchy sequen­

ces and limits in a metric space, closed sets, and completion of a metric 

space, (see, e.g., DUGUNDJI [7]). We shall only be concerned with metrics 

with values in [O,I]. 

DEFINITION A.I. Let (M,d) be a metric space, and let X,Y _'.:. M. 

We define 

a. d(x,Y) = inf {d(x,y) I y E Y} 

b. d(X,Y) = max {sup{d(x,Y)jx EX}, sup {d{y,X)I y EY}) 

The distance between sets in definition Al is the so-called Hausdorff dis­

tance. By convention, inf~= I, sup~= O. 

LEMMA A2. Let (M,d) be a metric space, and Zet P {M) be the coZZection of 
C 

aZZ closed subsets of M. Then (P (M), d) is a metric space, ford the 
C 

Hausdorff distance on P (M). 
C 

THEOREM A3. (Hahn). If (M,d) is a compete metric space, then so is (P {M),d). 
C 

Now let A be any set, and pO some object not in A. We define 

DEFINITION A4. PO= {pO}, Pn+l = {pO} u P (AxPn). dO is defined by 

d0 (p',p") = 0 for p',p" E P0 . dn+l is defined by: dn+l(p0 ,p) = dn+l(p,p0) = 

I for p -:/- pO, dn+l (pO,pO) = O, and, for p' ,p" -:/- pO, dn+l (p' ,p") is the 

Hausdorff distance between the sets p',p" (subsets of AxP) induced by the 
n 

d . t b t II • t II d (< > < ) . b is ance e ween poin s n+l a 1,p1 , a 2,p2> given y 

{
I, a 1 -:f,. a 2 

dn+l(<al,pl>,<a2,Pz>) = 
½dn(P1,Pz), al= a2 

LEMMA AS. (P ,d) is a metric space for each n. 
n n 

DEFINITION A6. Let P =UP, d = U d (with the natural meaning for U d ). 
w nn nn nn 

Let (P,d) be the completion of (P ,d). 
w 

THEOREM A7. P ~ { pO} U Pc (AxP) 

(Here~ means isometry between lhs and rhs.) 
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DEFINITION AS.A mapping T: P • P is called continuous if, for each Cauchy 

sequence <p.>., we have that <T(p.)>. is again a Cauchy sequence, and 
1 1 1 1 

T(lim.p.) = lim. T(p.). Similarly we define continuity inn~ I arguments. 
1 1 1 1 

LEMMA A9. The operations 0 , IJ, II are continuous in both arguments. 

The above definitions and results can be extended in a natural way to pro­

cesses with additional structure. Take, e.g., the case of process domain 

equation (4.2). We take P0 = {p0}, Pn+I = {p0} U (A • P(BxPn)), and define 

dn+I (p',p"), for p',p",; p0, by dn+I (p',p") = supaEA dn+l(p'(a),p"(a)), 

where p'(a),p"(a) are sets to which the Hausdorff distance definition ap­

plies. 
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