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Abstract

In this paper we study the computational complexity of sets of different densities in NP. We
show that the deterministic computation time for sets in NP can depend on their density if and only if
there is a collapse or partial collapse of the corresponding higher nondeterministic and deterministic
time bonded complexity classes. We show also that for NP sets of different densities there exist com-
plete sets of the ccrresponding density under polynomial time Turing reductions. Finally, we show that
these results can be interpreted as results about the complexity of theorem proving and proof presenta-
tion in axiomatized mathematical systems. This interpretation relates fundamental questions about the
complexity of our intellectual tools to basic structural problems about P, NP, CoNP, and PSPACE,

discussed in this paper.
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Introduction

The general motivation for this work is the need and desire to understand what makes the solu-
tion of NP problems hard, provided P ¢ NP. The fundamental question is whether the deterministic
computation time required to solve NP problems could depend on the demsity of the set of problems
under consideration. In other words, is the problem of finding satisfying assignments for Boolean for-
mulas in conjunctive normal form, SAT, computationally hard because there are exponentially many
formulas up to size n and that no one single method can solve them all easily? Or is the satisfiability
problem still hard if we consider only “thinned out” sets of formulas whose density is much lower than
exponential?

It has been shown recently that the structural properties of lower density sets in NP are directly
determined by the relations between the corresponding higher deterministic and nondeterministic time
bounded complexity classes. We cite one such result next [Ha, HIS|.

A set S is said to be sparse if S contains only polynomially many elements up to size n, i.e.
|Sn(e+X)* | <n*+ k. Let

NEJG’TM=¢21NTM[2“] and E}G’TME=¢gl TIME[2°*].

Theorem A: There exist sparse sets in NP-P if and only if NEXPTIME # EXPTIME.
For related results about tally sets see [Boj.

In this paper we continue this study and show that the deterministic computation speed of sets in
NP can depend on their density if and only if the corresponding higher deterministic and nondeter-
ministic complexity classes have collapsed or partially collapsed.

We first show that there are sets of prescribed densities in NP and PSPACE which are complete
under polynomial time Turing reductions for all other sets of the same density in NP and PSPACE,
respectively. We cite one such resuit.

Theorem B: There exists a sparse set Sp in NP such that all other sparse sets in NP are in P>°.

This completeness result contrasts the well known results by Mahaney [Ma] and Karp-Lipton
[KL]. The first result asserts that if there exists a sparse, many-one complete set for NP then
P=NP. The Karp-Lipton result shows that if there exists a sparse set S such that NP C PS, then
the polynomial time hierarchy collapses to Ef . Our results show that as long as we restrict owselves
to sparse sets in /VP then there exist sparse complete sets. At the same time, it is interesting to note
that the same results do not seem to hold for Co/NP, or at least they do not hold for relativized CoNP
computations whereas the above results hold also for relativized computations [HIS]. We also show
that there are relativized computations for which there do not exist sparse sets in NP which are com-
plete for all other sparse sets in NP under many-one polynomial time reductions.

From Theorem B we immediately obtain a proof of the previously known Theorem A as well as
new results about the relation between partial collapse of higher deterministic and nondeterministic

computations and the recognition speed of sparse sets.
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Theorem C: All sparse sets in NP are in
U TIME[n¢om|
e21

if and only if
NEXPTIME C y l1'12\413[2"*’].
c—

Related results are derived for sets of other densities and computation times as well as for
PSPACE versus NP and PSPACE versus P.

From all these results we see that the deterministic time complexity of sets in NP can depend on
their density if and only if the corresponding higher deterministic and nondeterministic time classes
have suffered a collapse or partial collapse. Since it is our sincere conviction that the density of sets in
NP and PSPACE cannot affect their computation time, we are lead to the generalized complexzty
hypothesis. This conjecture asserts for NP (i.e. the generalized NP hypothesis) that SAT requires
roughly deterministic exponential time and that the deterministic recognition time of sets in NP does
not depend on their density. This clearly implies, because of our results, that the higher deterministic
and nondeterministic time classes have not even partially collapsed. For example, we conjecture that
there exist sets in NEXPTIME which require roughly double exponential deterministic recognition
time. The generalized PSPACE hypothesis versus P as well as NP is formulated similarly.

Intuitively, the generalized NP hypothesis asserts that the computational difficulty of finding
assignments for Boolean formulas in SAT does not stem from the existence of the aggregate of such
formulas, but that the difficulty is inherent even in very sparse subsets of SAT.

We give an interpretation of these results in terms of the computational complexity of doing

mathematics. We assume that we are using Peano Arithmetic, . Let
L, = {THEOREM: “Statement of result”. PROOF: b* O | There is a proof of

length k or less of the stated theorem in F'}.

It is easily seen that L, is an NP complete set.

Similarly the set
Ly = {THEOREM: “Statement of result”. PRESENTATION OF PROOF:
5% O | There is a proof of the stated theorem in F which can be

presented on tape of length k}

is PSPACE complete. By presentation of proof we mean a formal writing down of the proof so that a
simple proof checker can guarantee that the theorem has a proof, but we can erase any part of the
proof not needed later. Thus, when the presentation is completed, the verifier knows that a proof
exists, but there may not be a complete proof written down.

Clearly, PSPACE 3 NP if and only if Ly ¢ NP and this happens if and only if in Peano
Arithmetic there are infinitely many theorems for which the difference in the length of the shortest
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proof and the space needed to present a proof is not polynomially bounded.

Similarly, the same relationship will hold for sparse subsets of L, which are in PSPACE, even if
we are allowed to design specialized proof systems for these restricted subsets, if and only if
EXPSPACE # NEXPTIME .

Corollary D: There exist sparse sets in PSPACE-NP if and only if EXPSPACE 7% NEXPTIME
(and the quantitative difference between proof length and length of proof presentation depends on the
quaatitative difference between EXPSPACE and NEXPTIME.)

Furthermore, we observe that the existence of sparse subsets of tautologies in CoNP-NP implies
that for these sparse subsets we cannot design special proof rules to prove in polynomial length that
they are tautologies. This is so because if a sparse subset ¢f TAUT is not in NP then we know that
there cannot exist a proof system which proves these formulas to be tautologies with polynomially long
proofs.

We prove the following resuit:

Theorem E: There exists a sparse set S in P such that
SnTAUT € CoNP-NP

if and only if

CoNEXPTIME # NEXPTIME .
Thus if and only if CoNEXPTIME 7 NEXPTIME can we find a syntactically restricied sparse sub-
set (a sparse set S in P) of Boolean formulas for which we cannot find a good proof system that would
yield polynomially long proofs for formulas in SN TAUT. Furthermore, the actual length of the possi-
ble (not polynomially bounded) proofs for SN TAUT is given by the disparity between CoNEXP-
TIME and NEXPTIME.

Using a similar method we show that EXPSPACE £ EXPTIME if and only if there exists a
language in PSPACE which is not in P, but has polynomial size circuits (i.e., is in the class P /Poly as
defined in [KL]). Formally:

Theorem F:
EXPSPACE # EXPTIME < PSPACE nP / Poly # P
As a corollary we get a “uniform upward separation” result for random polynomial time R and P (R
is called ZPP in [G]):
Corollary G:
R # P => EXPSPACE # EXPTIME.

Thus we show that a separation of two low uniform complexity classes implies a separation higher
up. This result is quite unique: usually separation above implies separation below, but whether in gen-
eral separation below implies separation above is open. For instance:

NEXPTIME 5 EXPTIME => NP # P

But it is not known whether the assumption NP 3£ P can force NEXPTIME 7 EXPTIME (see also
[BWX], Theorem §) or even the weaker separation EXPSPACE 5% EXPTIME.
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From the above comments we see that the classic problems about P=?NP={¢PTAPE,

NP=7?CoNP, etc., are really questions about the complexity of our intellectual tools, namely
-mathematics. Correspondingly, our work tries to address the fundamental question of what makes
these problems hard and whether restricting them to subsets of lower density can make them simpler to
compute. Our results show that the lower density problems can become computationally easier than
the unrestricted problem if and onmly if there is a partial collapse of the differences between the
corresponding higher complexity classes.

Sparse Complete Sets and the Structure of NP

In this section we show that the computational complexity of sets of different densities in NP and
PSPACE are completely determined by the relations between the corresponding higher complexity
classes.

The main tool in this study will be the existence of sparse sets in NP which are complete for all
other sparse sets in NP.
Theorem 1: There exists a tally set Sy in NP, SgC 1°, such that all sparse sets in NP are polyno-
mial time Turing reducible to Sy, i.e.

{S | S sparse and in NP} C P
Proof: Let A be a complete set of NEXPTIME under many-one linear time reductions and let
So= TALLY(A)={1"|n€lA}.
Let S be a sparse set in NP, say
|Sa(e+I)* | <nko+ k.
Then the set
B = {(n,r)| |Sn(e+Z)|>r}isin NEXPTIME,
since for n and r represented in binary one has enough nondeterministic time to guess r strings in S,
r< nko4 ko, and verify that they are in S. Hence, B is many-one linear time reducible to A, and the
corresponding set
B! ={(1*,17)||Sn(e+Z)* | >r}
is polynomial iime many-one reducible to Sy. Hence, B’ € P%. Since P is closed under complement
we see that
B'' = {(1*,1")| | Sn(€+Z)* |=r,} is in P*.

Thus in P° we can compute the exact number of elements in S up to size n, namely r,.

Furthermore, the set
C = {(n,0,5,k,d)| (32, <2< <=7 < 9y <Y2< < ;)
[ly;/<nand z, 5, €S for 1<r<i and 1<t <5
and |z |=n and the k** digit of z is d]}

is in NEXPTIME since in nondeterministic time 2°® one can guess the appropriate strings, verify that
they satisfy the required conditions and are in S. But then the corresponding set C'' obtained by
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replacing (n,f,7,k,d) by (1",1",1",1",d) is in Ps", by the same argument used to show that
B' € P%. Since B'' isin P, for any z such that | z| =n we can compute r, and then, using C'’,
check for 1<i<r,, 1<j<r, such that 1+ j=r,, whether z=z; for z; in S. Therefore we con-
clude that
SeP%,

as was to be shown. O

Later in this paper we will investigate the possibility that there exists an Sq C 1° which is many-
one complete for all sparse sets in NP, and show that there exist relativized computations for which
this is not true (though Theorem 1 holds for relativized computations). ‘

From the first theorem we immediately obtain a known result about the collapse of higher deter-
ministic and nondeterministic time bounded complexity classes [Ha, HIS], as well as a set of new resuits
about partial collapse of these classes.

Corollary 2: EXPTIME=NEXPTIME if and only if there are no sparse sets in NP-P.

Proof: If EXPTIME =NEXPTIME then a complete set A of NEXPTIME is in EXPTIME and
therefore TALLY(A)=Sy is in P. But then all sparse sets in NP are in P.

Conversely, if a sparse set S is in NP-P then Sy is not in P hence A ¢ EXPTIME and there-
fore EXPTIME £ NEXPTIME. O

We say that a set S is P—printable if and only if for input 1* in polynomial time we can print all
the elements of S up to size n. Clearly, every P-printable set is sparse.

Similarly, we define a set S to be NP-printable if and only if there exists a nondeterministic
polynomial time machine such that for input 1* there exists a computation which prints exactly all the
elements of S of length at most n, and every computation either prints exactly those elements or halts
with indication of failure to print.

It is easily seen that the proofs of the previous resuits yield the following.

Corollary 3: EXPTIME=NEXPTIME if and only if every sparse set in VP is P-printable.

Next we show that the upward separation method yields necessary and sufficient conditions also
for NP-printability.

Theorem 4: NEXPTIME =CoNEXPTIME if and only if every sparse set in NP is NP-printable.
Proof: Assume NEXPTIME =CoNEXPTIME, let S be a sparse set in NP and define
L ={(n,5)| |Sn(e+Z)* |21},

where n and ¢ are represented in binary. Clearly, for any (n,s) in nondeterministic exponential time a
machine can guess ¢ different strings up to size n and verify that they are in S. Therefore, L is in
NEXPTIME and since NEXPTIME=CoNEXPTIME we can use a nondeterministic exponential
time machine to check if (n,i) is in L. Clearly i,=|Sn(€+X)*| is given by (n,5,)€L and
(n,i,+ 1)€ L. Thus we see that

L' ={(n,,)||Sn(e+Z)*|=:s,}e NEXPTIME

and therefore
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L' = {(1%, 1,)| |Sn(e+E)* | =i} e NP.

But then a nondeterministic polynomial time machine for input 1* can print
7)<23<...<7;<...<z,, for 1< <4y, | 2| <n, 2; €S,

by first guessing ¢, and verifying that it is a correct guess and then guessing i, distinct strings of S of

length at most n and printing them if the guess is verified (if not the machine fails to print). Thus S

is NP-printable.

Assume that every sparse set in NP is NP-printable and let A be a set in NEXPTIME. Then
TALLY(A)={1"|n€1A} is a sparse set in NP and therefore NP-printable, but then TALLY(A)
is also in NP and we see that A is in NEXPTIME. But then CoNEXPTIME C NEXPTIME and

therefore

CoNEXPTIME =NEXPTIME. O
From Theorem 4 we can obtain a further characterization of the NEXPTIME = CoNEXPTIME

collapse.
Corollary §: NEXPTIME=CoNEXPTIME if and only if for all sparse sets S in NP J is in NP.

Proof: Since NEXPTIME =CoNEXPTIME implies that S in NP is NP-printable by Theorem 4
we immediately see that 3 is in NP.

Conversely, if for every sparse set T in NP T is also in NP then we see that for any sparse set
S in NP the set
L'" ={(1*,4,)||Sn(e+Z)*|=i,}isin NP

and therefore S is NP-printable. Therefore
NEXPTIME =CoNEXPTIME
by Theorem 4. O

The above completeness results for sparse sets in NP can be easily extended to PSPACE versus
NP and PSPACE versus P. Furthermore, with an additional uniformity assumption these results
generalize to denser sets in NP and without the uniformity assumption to denser sets in PSPACE.

For a discussion of uniformity conditions on /NP sets see [HIS].

Next we show that a partial collapse of the higher deterministic and nondeterministic complexity
classes directly determines the computation time of the lower density sets in NP and PSPACE. We

first prove, as an example, a special case of our general result.
Theorem 8: NEXPTIME C v TIME[2¢*'] if and only if all sparse sets in NP are in
c-
U TIME[nc(oss)'™,
e21

Proof: If NEXPTIME C ngWE'[2“'] then for a complete set A of NEXPTIME

TALLY(A)=Sy is in TIME[2¢(*)"|= TIMEn 4(losn)*"],
But then by Theorem 1 every sparse set S in NP is in PS5 and
SePSC y TIME [n <o),
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Conversely, if every sparse set of NP is in

y TIME|[neUor)"]
e21

then so is Sy and we see that
A e TIME[2™'],
for some r. But then

NEXPTIME C Y lrmz[zﬂ‘]. a]
c-

Related results can easily be derived for PSPACE versus NP and PSPACE versus P.
We now state without proof the generalization to any well behaved computation times.
Theorem 7: Let f(n)>n be nondecreasing and fully-time-constructible. Then:
(1) NEXPTIME C dgl TIME[2¢U/(#+4)] it and only if every sparse set in NP is in

U TIME[24U/ (degn+ d)).
i1

(2) C’aNE)G’TME c ngN TIME[24(/ (dn+ ‘”] if and only if the complement of every sparse set in
NPisin y NTIME[2¢U 4o+ 9], g

Results about sets of higher than polynomial density are correspondingly related to higher com-

plexity classes below exponential time.
We say that a set S has density o(n) if
|Sn(e+E)* | <a(n).
Theorem 8: There are no o(n)=n'"% dense sets in

PSPACE-NP
if and only if

U SPACE[2¢V*|= u NTIME[2:V*].
c21 e21
We can derive similar results for NP if we assume that our lower density sets are uniformly distri-
buted. (For a more detailed discussion of uniform distributions see [HIS]).
Theorem 9: There are no o(n)=n/"9® uniformly dense sets in NP-P if and only if
u TIME[2¢V™|= u NTIME[2¢V*],
e21 e21
and in this case

SATe Y lTzz\ﬂ«:[zﬂ/? ]

Finally, we list an illustrative result about partial collapse of subexponential complexity classes.
Theorem 10: g lSP ACE [2c\/-;] - gl TIME [2""] if and only if all o(n)=n'"%" dense sets of
c2 c2

PSPACE are in
U TIME[n¢Uosm)'™],
e21
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On Many-One Complete Sparse Sets
The existence of a tally set Sy in NP such that all other sparse sets in NP are in P> raises the

question whether there exists a tally set which is many-one polynomial time complete for all sparse sets

in NVP.

Our results show that there exist relativized computations for which no tally set Sy can be com-
plete for all sparse sets in NP under many-one reductions. At the same time, it is easily seen that
Theorem 1 hoids for relativized computations and therefore for any oracle A there exists a sparse set
complete for all other sparse sets in NP4 under Turing reducibility.

Let S; and < ﬁ denote, respectively, polynomial time Turing and many-one reductions. Let 2,-5
denote the X-levels of the exponential hierarchy, i.e.

LE=EXPTIME, TE=NEXPTIME,
S F=NEXPTIME® = NEXPTIMESAT | etc.

We first prove a technical result which shows that for some oracle A there do not exist tally sets
which are < };-complet.e for all sparse sets in NP4.

Lemma 11: Let SoC1° and assume that for all sparse S in NP we have S<fS, Then
NEXPTIME =L implies that
NEXPTIME=EXPTIME.
Proof (outline): We first observe that it is sufficient to show that every set S of the form
S=TnSAT,
where T is a sparse set in P, must be in P, since then by [HIS| NEXPTIME=EXPTIME. The

assumption
Sf=EF=NEXPTIME
implies that for any sparse set S=T NSAT, T sparse and in P, the set
{(F;, z;)| F; € S and z; is the minimal solution of F;}
is also in NP. For F; in S let F} denote F; with its first k variables, 0<k<| 7|, filled in with the
values of its minimal solution Z; (we choose our syntax so that | F¥|=|F;|). Then
§' = {FF|F; €S and 0<k< |3}
is seen to be a sparse set in NP.

Note that S does not necessarily have the self reducibility property but that S’ has a weak form
of this property, sufficient for the following proof.

IfsS'< ﬂSo C 1° then for any F in T in polynomial time we can find the minimal satisfying
assignment of F' if F;=F or determine that F is not in S. This is done by searching the tree of func-
tions generated by F' by partial assignments of variables (as in P. Berman's proof [Be, Ma]). We can
discard any subtree which is assigned a string not in 1° by the reduction. For subtrees with the same
labels in 1* we always pick the leftmost subtree to find z; if F;=F. Since there are only polynomially
many labels in 1° the reduction can assign, we see that the search is completed in polynomial time,

either yielding the minimal solution or showing that F' is not in S. O
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Corollary 12: There exists an oracle A such that no tally set can be < f-complete for all sparse sets

in NP4,
Proof: Since there exists an oracle A [S] such that
EXPSPACEA=..=LFA)=pE4) £ T E4)
a relativized version of the previous lemma implies that there cannot exist a tally set < ‘q-complete for
all sparse sets of NP4. O

Furthermore, from Theorem 12 in [HIS] it follows that there exists an oracle A such that no tally
set can be even < ;;complete for all sparse sets in CoNP4.

The Computational Complexity of Mathematics

It is well known that the sets of provable theorems of sufficiently rich, axiomatized mathematical
systems form complete sets for the recursively enumerable sets under recursive reductions. Thus, intui-
tively, we can say that the provable theorems in Peano Arithmetic form a set which is computationally
as hard as any recursively enumerable set. Unfortunately, this interpretation dos not yield any real
insight about the computational complexity of doing mathematics.

We believe that the proper formulation for the study of the computational complexity of
mathematics and therefore the study of the computational complexity of our intellectual tools in gen-
eral, is by investigating the difficulty of proving theorems by bounding the length of the desired proof.
If we do this then, as will be shown below, the questions about the computational complexity of the
process of doing mathematics — finding proofs and presenting proofs — become questions about P, NP,

-and PSPACE.

Assume that we have an axiomatized formal system F, which could be Peano Arithmetic, and
that we have given a ‘‘natural” definition for the length of proofs and related concepts.

Then it is easily seen that the set
L, = {THEOREM: “Statement of result”. PROOF: b* O | There is a proof of
length & or less of the stated theorem in F'}

is NP complete.

Similarly the set
L, = {THEOREM: “Statement of result”. PRESENTATION OF PROOF:
b* o | There is a proof of the stated theorem in F' which can be

presented on tape of length k}

is PSPACE complete. By presentation of proof we mean a formal writing down of the proof so that a
simple (polynomial time) proof checker can guarantee that the theorem has a proof, but we can erase
any part of the proof not needed later. Thus, when the presentation is completed, the verifier knows

that a proof exists, but there may not be a complete proof written down.
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Clearly, PSPACE 3 NP if and only if Ly is not in NP acd this happens if and only if in

Peano Arithmetic there are infinitely many theorems for which the difference in the length of the shor-
test proof and the space needed to present a proof is not polynomially bounded.

The fundamental question is whether finding proofs of theorems in mathematics is hard because of
the existence of the aggregate of all provable theorems so that no one method can prove them all easily
or is it because “individual” theorems are hard to prove. Since we cannot give precise mathematical
meaning to ‘‘computational complexity” of finding proofs for individual theorems, we replace this ques-
tion by questions about sparse or supersparse subsets of the sets L, and L,. Clearly this brings us
right back to the main topic of this paper and shows that questions about sparse subsets of NP-P,
PSPACE-NP and PSPACE-P are actually fundamental questions about the nature of mathemat-

.ics. For example, we easily obtain the following result.
Corollary 13: There exists a sparse set S in P such that L,n S ¢ NP if and only if
EXPSPACE £ NEXPTIME.

In the study of proof techniques special attention has been given to proving a Boolean formula a
tautology. Let

TAUT={F | F Boolean formula in DNF such that (Vz)[F(z)=1]}.

‘Clearly, TAUT is a complete set for CoNP and the question whether some decision problem in
CoNP is not in NP when restricted to some sparse domain S in P can be shown to be equivalent to
the question whether for some sparse set S in P we cannot design special proof rules with which in
polynomial length will prove for any tautology in S that it is indeed a tautology. The following result
gives necessary and sufficient conditions for this to be impossible.

Theorem 14: The following conditions are equivalent.

(1) CoNEXPTIME # NEXPTIME

(2) For some set L in Co/NP and some sparse set S in P, L nS € CoNP-NP.
(3) For some P-printable set S, TAUT NS € CoNP-NP.

Proof: It can easily be seen that if S€EP and L NS € CoNP-NP then I'nS is a sparse set in
NP-CoNP. Thus, by Corollary 5, (2) implies (1). Clearly (3) implies (2). We now outline a proof
that (1) implies (3): If (1) holds then there exists a tally set T in CoNP-NP. There exists a 1-1
length increasing polynomial time reduction ¢ from T to TAUT [BH|. Then g(1°) is che desired S in
(3). O

The above theorem can be generalized to any well behaved computation times (rather than
NEXPTIME and NP) in a fashion similar to Theorem 7. We omit the details.

A Uniform Upward Separation

There are known separation results about uniform complexity classes of the form: “If two high
uniform complexity classes are unequal then two corresponding lower uniform complexity classes are

unequal”, (a downward separation). For instance, if NEXPTIME 7 EXPTIME then NP % P. We

use our techniques to prove a quite unique upward separation of uniform complexity classes. Let R be
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random polynomial time. We prove

Theorem 18: R # P implies EXPSPACE # EXPTIME.
Before we prove this theorem, we need a lemma.
Let P/Poly be the class U PS [KL]. By a result due to Meyer (see [KL]), P /Poly is equal

S sparse
to the class of languages having polynomial size circuits.

Lemma 18: EXPSPACE 7 EXPTIME if and only if PSPACE n P [Poly 3 P.

Proof: If EXPSPACE 7 EXPTIME then there exists a tally set T €PSPACE-P. Clearly
T eP/Poly. Conversely, let L € PSPACE-P be in P /Poly. Then it can be shown that the family
.of minimal circuits {C,} for L can be computed in space polynomial in 5. {C,} can be encoded by a
sparse set S which is in PSPACE such that L €PS, hence S¢P. By [HIS],
EXPSPACE 5 EXPTIME follows. O

Theorem 15 now follows since R C PSPACE, and also by [A| R < P /Poly.
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