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1. A b s t r a c t  

Effective theorem provers are essential for automatic verification and generation of 
programs. The conventional resolution strategies, albeit complete, are inefficient. On the 
other hand, special purpose methods, such as term rewriting systems for solving word 
problems, are relatively efficient but applicable to only limited classes of problems. 

In this paper, a simple canonical set of rewrite rules for Boolean algebra is presented. 
Based on this set of rules, the notion of term rewriting systems is generalized to provide 
complete proof strategies for first order predicate calculus. The methods are conceptually 
simple and can frequently utilize lemmas in proofs. Moreover, when the variables of the 
predicates involve some domain that has a canonical system, that system can be incorporated 
as rewrite rules, with the algebraic simplifications being done simultaneously with the 
merging of clauses. This feature is particularly useful in program verification, data type 
specification, and programming language design, where axioms can be expressed as equations 
(rewrite rules). Preliminary results from our implementation indicate that the methods are 
space-efficient with respect to the number of rules generated (as compared to the number of 
resolvents in resolution provers). 

2. Introduct ion  

Given an equational theory E, a term rewriting system for E is a finite set of rewrite 
rules R.~--{li---*ri}~-_ 1 such that {l i=ri}~_ 1 and E are equivalent {i.e., s ~ t  is true in 
{lr 1 if and only if s = t  in E). A term t is reduced using rule I---.r if a subterm s of 
t, which is an instance of the left hand side l, is replaced by the corresponding instance of 
the right hand side r. A term s is reachable from t if t can be reduced to s after a finite 
number of reductions. A term is irreducible if no rule can be applied to it. We use t* to 
denote an irreducible form of t. We call a term rewriting system terminating if there is no 
infinite sequence of reductions from any term, and confluent if for any distinct terms t, r, 
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and s, if r and s are both reachable from t, then there is another term u which is reachable 
from both r and s. A rewriting system satisfying these two properties is called a canonical 
term rewriting system. It is easy to see that if R is a canonical term rewriting system, then 
every term has a unique irreducible form with respect to R. Thus, to check if equation 
s-----Et is valid, all that needs be done is to reduce both s and t to their irreducible forms and 
see if they are identical. 

A canonical system for an equational theory, if it exists, will not only have the same 
theoretical power as E, but can also eliminate the unmanageable search space often 
encountered in equational theorem proving. The reasons for such improvement are twofold: 
(1) the equations are used in one direction, so terms are "simplified" when rewrite rules are 
applied; (2) rules may be used in arbitrary order and no backtracking is needed (since all 
sequences of reductions lead to the same irreducible form). 

Knuth & Bendix ([KnBe70]) gave a necessary and sufficient condition for a terminating 
term rewriting system to be confluent (and therefore canonical). They also presented a 
completion procedure for extending a non-canonical system to a canonical one without 
changing the original theory (although the method does not always terminate successfully). 
Their idea has been generalized by Lankford & Ballantyne ([LaBa77]) and Peterson & Stickel 
([PeSt81]) to handle the case where some operators are commutative or associative and 
commutative. 

3. A Canonical System for Boolean Algebra 

Although very effective for solving word problems, the term rewriting method has been 
largely ignored by the theorem proving community on account of its relatively small problem 
domain. Therefore it would be desirable to extend this idea to handle the full first order 
theory. In order to achieve this goal, we need a canonical system for the logical connectives, 
Boolean algebra, and a complete strategy for the first order predicate calculus. 

Attempts to find a canonical system for Boolean algebra have been reported in [Hul80] 
and [PeStS1], where conventional axioms for Boolean algebra were converted into rewrite 
rule~ and the AC-Completion Algorithm was used. Some stronger axioms, such as the 
Absorption Law, have also been used ([Hul80]). The Completion Algorithm, nevertheless, 
failed to terminate in all experiments (i.e. generated infinitely many rules) due to the well- 
known fact that the prime implicant representation of Boolean terms is not unique. 

The problem of non-unique representation can be finessed, however, by choosing the 
right kind of operators. In our approach, we use "EXCLUSIVE-OR" in place of the usual 
operator "OR",  and construct a canonical system for Boolean algebra with the help of this 
operator. (A system that simplifies Boolean expressions using EXCLUSIVE-OR was also 
discussed in [WaCo80].) The notion of EXCLUSIVE-OR was discussed by Stone ([St36]), who 
defined a Boolean ring (B,+ ,*,0) to be a ring which is idempotent with respect to *, i.e. 
x * z = z  for all x in B. He proved the following: 
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Theorem (Stone): 

(1) Every Boolean ring is commutative (i.e. z ,y:--y ,z) .  

(2) Every Boolean ring is nilpotent with respect to + (i.e. z+ x=O). 

(3) Let  (B,+,*,O,1) be a Boolean ring with unit 1. Introduce the following 

operators : 

x V y - ~ x +  y+  x*y 

z A y = z * y  
" ~ x ~ x +  1 

then (B,A, V, -~,0,1) is a Boolean algebra. Conversely, given a Boolean 

algebra (B,A,V,-~,O,1), define 

a+ b =(a^-~b)V(-~aAb) 
a*b ---- aAb 

then the corresponding (B,+ ,*,O,1) is a Boolean ring. 

The operator ' + '  used by Stone later became XOR in switching theory. We use + for 
XOR, V for OR, * for AND, -~ for NOT, 1 for TRUE, and 0 for FALSE throughout this 
paper. We say a term s is a normal expression of a Boolean term t if s is 1, 0 or 
s~--Sl+ ...+ s, where all s; 's are distinct, non-zero products of distinct positive literals. For 
example, a normal expression of -~zVy is z , y +  z +  1. It is not hard to prove that the normal 
expression of a Boolean term is unique up to permutation of arguments ([Hs82]). 

A six-rule canonical system for Boolean rings can be obtained by executing the AC- 
Completion Algorithm (i.e. the Knuth-Bendix Completion Algorithm with a commutative- 
associative unification algorithm for finding critical pairs [PeSt81]) over the axioms of ring 
theory, the idempotenee of *, and the nilpotence of + .  By adding four more rules for 
transforming the usual Boolean connectives into Boolean ring forms, we have the following 
canonical term rewriting system for Boolean algebra: 

z V y  --* x , y +  x +  y R 1 

x D y  "* x , y +  z +  1 R 2  

z~--y ---, z +  y +  1 R 3  

~ x  --~ z +  1 R 4 

x+O ---+ z R 5  
BA z +  x ---* 0 R 6  

x* l  -* z R 7  

z*z ---, z R 8  

R 9  

R 10 
x*O ~ 0 

x* (y+  z) "--*.z'y+ z*z 

This system, like any canonical term rewriting system, yields very simple proofs for the 
word problems of the underlying theory (in this case, the propositional calculus). As an 
example, the absorption law (i.e. p V(p Aq)-~-p) can be easily proved by observing that 

pV(pAq)  ---, p*(p*q)+ p+ p*q --+ p ' q +  P+ P*q "" O+ p ---* p. 

The dual system, based on V and ~--- rather than h and + ,  is also canonical and can be 
used in a similar fashion. This reduction process actually gives us an effective method for 
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determining the validity problem of the propositional calculus. To be more precise, a Boolean 
term is valid if and only if its irreducible expression is 1; unsatisfiable if and only if its 
irreducible expression is 0; and satisfiable but not valid if and only if its irreducible 
expression is neither 1 nor 0. By the NP-completeness of the satisfiability problem ([Co71]), 
any systematic procedure for reducing Boolean terms to a canonical form requires exponential 
time in the worst case if P ~ N P .  

4. A Complete Clausal Strategy for First Order Predicate Calculus 

The "brute-force" reduction method described above is not the most convenient way of 
handling the validity problem for several reasons: 

(1) For complicated statements with a lot of implications and disjunctions, the sentences 
may be expanded into long expressions by the procedure (using R1-R4 and RI0) before 
most of the "simplification" reductions (using the rest of the rules) begin. 

(2) The method cannot be easily generalized to effectively handle first order predicate 
calculus. 

These problems can be circumvented by using a refutational proof technique. The 
scenario can be roughly described as follows: To prove that a first order sentence r is valid, 
we first skolemize its negation, convert it into clause form C I A . ' ' A C ~ ,  add a rule 
Ci+ 1 4 0  for each clause Ci, then run the AC-Completion Algorithm over this set of rules 
until i---*0 is generated. The canonical system BA is used throughout to keep Boolean terms 
always in their normal form. 

One potential problem with this approach is that both of the Boolean operators (+ and 
*) are AC and the unification algorithm used for finding critical pairs must deal with two AC 
operators at the same time. However, no AC-unification algorithm is presently known to be 
finite and complete (see [St81]). Fortunately, this problem does not arise in our method since 
we do not need to generate all critical pairs. In fact, by using the canonical system BA as 
inference rules, a new unification algorithm (BN-unification), which is considerably simpler 
than the AC-unification for one operator, can be achieved. Detail about this unification 
algorithm is in the appendices. The reader can treat the BN-unifications in the following 
definitions as AC-unifications and the results still hold. 

Defini t ion:  A Boolean term is an N - t e r m  i f  it is a conjunction of literals. A rule 

l--*0 is an N-ru le  i f  I is an N-term.  

Defini t ion:  Le t  ll[t]--+O and 12---~0 be two rules converted from clauses C 1 and C 2. I f  

(1) 
(-~) 

then 

12--*0 is an N-rule, 

there is a (most  general} BN-uni f ier  a such that (u t )~=(v le )a  (where u 

and v are two extra variables in the BN-unif ication not in I l and lz), 

<(~q[0])~,0> 

is an N-critlcal pair of lv--,O and 12---~0 , with (ull[t])a as its superposition. 
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In the above definition, ll[t ] indicates that t is a nonvariable subterm of 11. Note that since 
unifications are done only between N-terms, no unification involves the operator + .  

The theorem proving strategy is the following: 

N - S t r a t e g y :  To prove that a sentence r is valid: 
Convert the (skolemized) negation of r into a set of clauses S; 
transform S into a set of rewrite rules R using BA; 
r e p e a t  

Find a nontrivial N-critical pair ~ t,O~ between rules in R; 
(< t,O> is nontrivial if t is irreducible w.r.t. BA and R, and t~O) 

Convert ( t,O~> into the rule t---~O; 
R := R u {t-.o}; 
Use t---*O to simplify and delete rules in R; 

unt i l  (no N-critical pair can be found) or (1---,0 is generated); 
if 1---+0 is generated then  r e t u r n  "proved" 

else r e t u r n  "consistent". 

The N-strategy is essentially the same as the Knuth-Bendix Completion Algorithm except 
that (1) it looks'only for N-critical pairs, and (2) it stops when a contradiction is generated. 
The canonical system BA is used throughout the process to reduce every term (such as the 
terms in the generated critical pairs) to its irreducible form. Like the Knuth-Bendix 
Completion Algorithm, the N-strategy can also produce different outcomes. It may: 

(1) generate 1 --~ 0: In this case, the input clauses are inconsistent. 

(2) generate finitely many rules and terminate: The clauses are consistent. 

(3) generate infinitely many rules, i.e. never stop: The clauses are consistent. 

Note that the case of abort (i.e. generation of a critical pair with incomparable terms) never 
happens in the N-strategy since one of the terms in any N-critical pair is always.0. 

The completeness of the N-strategy is stated by the following theorem: 

T h e o r e m  4.1: Given a set of clauses S in first order predicate calculus, S is incon- 
sistent if and only if 1---*0 can be produced using the N-strategy. 

We show how the strategy works by giving a proof for a verification condition of Hoare's 
FIND program: 

{ Vx ,y(x~_yVy<z)hj<ihm<_p~_q~_n 
A V x , y ( m ~ _ x < i A j < y ~ _ n D  A[x]~_A[y]) 
A V:v,y(m~_x~_y~_jD A[x]~_A[y]) 
A Vx ,y ( i<_z<y<nDA[x]<_A[y] )}  D A[p]<_A[q]. 

The first mechanical proof of this problem was reported in [SlNo73] where resolution and 
some special inference rules for partial ordering were used. The proof was completed after 62 
resolvents were generated. In [GrNaOrPI82], experiments using locking resolution and a 
certain version of natural deduction (a simplified problem reduction format) were reported. 
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Locking generated 173 resolvents and stopped without obtaining a proof, the natural 

deduction strategy found a proof after producing 223 suhgoals. Using the N-strate~y, the 
negation of the sentence is converted into 9 rules: 

d[p]<A[q] ---* 0 
q<n  ~ 1 
p<_q---* 1 
re<p---+ 1 
j < i  --~ 1 
(A [x]<_A [yl)(i<_x)(z<y)(y<_n)+ (i<_x)(z<_y)(y<_n) -., 0 
(A Ix] _<A [y])(m <_x)(x<_y)(y <_j)+ (m <_x)(x<y)(y <_j) --* 0 
(A [z]<_A [y])(m <x)(y <_n)(j <y)(x < i)+ (m <_x)(y <_n)(j <y)(x < i) .-, 0 
(x_<y) (y<x)+  ( x < y ) +  ( y < ~ )  - ,  a 

cl 
c2 

c3 

c4 

c5 

c6 

c7 
c8 

c9 

For convenience, we have omitted all the *'s between predicates. We have also moved all 

the l 's  to the right hand sides. The latter change will not increase the number of critical 
pairs since such rules are not N-rules. On the contrary, it will improve the efficiency, since 

occurrences of the corresponding left hand sides can now be replaced by 1, and each 

11 *12,... *l,--*l can be split into n new rules 11---1 , . . . ,  1~--~1. 

By unifying p and q in cl with x and y in r we have a critical pair 
<(i < p)(p < q)(q < n) ,0> .  However, this critical pair is not irreducible since subterms p ~ q 

and q < n can be reduced to 1 by c3 and c2. Thus we produce a rule: 

i<p  ~ O. c10 

By the same token, cl and c7 yield a new rule 

q < j  --.. O, c l l  

while cl and c8 create 

(j < q)(p < i) --~ O. c12 

Now cl0, c11, and c12 are the N-rules we can use. The only nontrivial critical pair between 

c10 and the rest of the set is with c9. By unifying i and p with x and y, we get 

p < i  --~ 1. c13 

Rule c13 simplifies c12 into 

j < q  ~ O. c12' 

And c11, similar to c10, also produces a new rule with c9: 

j < q  --~ 1. c14 

A contradiction is reached immediately by c12' and c14. Note that the proof is obtained 

after producing only 6 rules (or 5 rules to be precise, since c12' is simplified from c12), and 
that this proof is exhaustive! 
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4.1. C o m p a r i s o n s  wi th  Reso lut ion  

The N-strategy is in itself similar to the all-negative resolution method (i.e. one of the 

parents of a resolvent must contain only negative literals). When the constant 1 is placed on 
the right hand side (as it was in the previous example), the method also contains some 
features of unit-resolution. Thus, our system works well in some cases, such as Horn clauses, 
where the all-negative strategy does not. In general, however, the efficiency of the N- 
strategy, as a purely syntactic method, should not be drastically different from that  of other 
resolution strategies. Nevertheless, the example we showed seems to reveal a dramatic gain 

in efficiency using the N-strategy over resolution or natural  deduction: achieving a proof after 
generating 6 rules as opposed to generating 173 resolvents without a proof (locking resolution) 
and generating 223 subgoals (natural deduction). The reason for such a surprising 

improvement is certainly worth investigating. 

The basic difference between N-strategy and other resolution strategies lies in the 

adoption of the rewriting (reduction) method. To be more precise, the rewriting method 
requires everything to be reduced as much as possible. For  example, when the critical pair 
<(i  <p)(p  < q)(q < n ) , 0 >  was generated, it was not converted immediately into a rule, since 

the first term can still be reduced using rules c2 and c3. When the critical pair was finally 
reduced to < i < p , O >  and made into a rule, all the possible intermediate "resolvents" (in 
this case, ( i~p)(p<q)(q<n)---*O,  (i<p)(p<q)--*O, and ( i<p)(q~n)- -+O)were  excluded. In 
a resolution strategy, however, all those resolvents are kept, and even if subsumption is 
included as part of the strategy,  the resolvents will not be deleted until some subsuming 
clause is generated. In a breadth-first implementation (which seems to be the most 

commonly used technique), such a subsuming clause usually will not be generated early. 
Subsequently, the more useful resolvents (such as cl0 in our example) are not generated until 

much later. 

5. A Non-Clausa l  Strategy  

Since the canonical system for Boolean algebra always gives us an irreducible form for 

any Boolean term, it seems superfluous to insist on converting sentences into clause form. In 
fact, by lifting the restriction of generating only N-critical pairs, non-clausal strategies can be 

obtained: 

A non-c lausa l  s trategy:  To prove a sentence r is valid: 

(1) Skolemize - ~ ;  assume that the result is M1AM2A �9 �9 �9 AM, (the M i's are not 

necessarily clauses). 

(2) Add rewrite rules M 1 ~ 1, M 2 ~ 1,..., M~----~I. 

(3) Run the A C  Is Completion algorithm on the set of rules, using BA 
as additional simplification rules, until no more critical pairs can be found or 
1---~0 is generated. 

(4) If 1---*0 is found, then return "proved"; otherwise return "consistent". 
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The AC-unification algorithm needed for finding critical pairs is, as in the N-strateooT, 
weaker than the full AC-unification, since no variable will appear as an argument of an AC- 
operator. Nevertheless, both AC-operators (* and + ) are still involved in the unification, and 
the completeness of such a restricted algorithm remains unknown at this moment. The 
method can be proven complete for first order predicate calculus (as a direct consequence of 
the Theorem in [HuHuS0]) once the completeness problem of the unification is resolved 

affirmatively. 

We demonstrate the use of the strategy by the following example. Let �9 be: 
Vz[A(z)=B(x)]D [VzA (x)~VzB(x)]. 

The Skolemized negation of �9 is: 
[A (z)~B(z)]h[A (z)VB(y)]A[~B(a)V--A (b)]h[B(a)D B(y)]A[A (b)D A (x)], 

where a and b are new Skolem constants. Since the first ~ remains intact, we can make use 
of the rule R4: x=_y---*x+ y:t-1 in BA. The formulas, when converted into rules, are as 
follows: 

A(z)+ B(z).--*O r l  
A (z)B(y)+ A (x)+ B(y)---+I r2 
B(a)A(b)---+O r3 
B(a)B(y)+ B(a)-.~O r4 
A(b)A(x)+A(b).--*O r5 

From rl  and r2, we have a superposition A(z)B(z)+A(z)+ B(z) by unifying both x and y 
with z, and a critical pair <A(z)B(z),l>. Since M l �9 �9 �9 M.----I can be split into equations 
M1~1,...,  M.----1, instead of converting the critical pair into one rule, we have: 

A (z)--~l r6 
B(z)-~]. r7 

Rules r6 and r7 mean that every instance of A(z) and B(z) in the set of rules can be replaced 
by 1. Therefore, all of the original five rules are deleted, and r3 becomes: 

1--*0, 
the contradiction. 

6. Comple te  Strategies  for First  Order Built- ln Theor ies  

In this section we generalize the previous results to a larger class of problems, namely, 
the first order calculus whose predicates involve some special domains. We further assume 
that there exist canonical term rewriting systems for such domains. Such problems are 
common in practice, such as theorems in group theory (or other algebraic structures), 
properties of data types, etc. The conventional method for dealing with such problems is to 
treat the axioms of the domain as extra clauses and equations, and use resolution and/or 
paramodulation. This method is very inefficient in general. Another possible solution is the 
following: since the rewriting method is very effective in manipulating terms, why not use 
resolution on the clauses and the rewriting method {with the canonical system for the theory) 
on the arguments? Feasible as it sounds, this approach is not complete ([La75]). Research 
along these lines has been conducted by Plotkin [P173], who merged the domain axioms into 
the unification algorithm (the same idea was adopted later by [PeStS1] and [LaBa77] for 
extending the Knuth-Bendix method), and Slagle [S174], Lankford [La75], and Lankford- 
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Ballantyne [LaBa79] who introduced the concept of "narrowing" to find useful instances of 
the arguments in the clauses. 

The problem can be easily solved, with the help of BA, by using only the term rewriting 
method. Henceforth, S stands for a set of rewrite rules converted from a set of clauses, and 
R stands for a (canonical} rewriting system for the domain theory T. 

Defini t ion:  l ~ r  is an R N - r u l e  if it is an N-rnle in S or it is a rule in R. 

Definition: Given a rule tl[s]---*0 in S and an RN-rule l---*r, if either 

(i} I--.*r is an N-rule and there is an N-critical pair < t 2 , 0 >  between the two 

rules, 
or (ii) l---*r is in R and there is a most general unifier a such that s a = l a  (let 

te=(tl[r])a), 

then < t2,0> is an RN-e r l t l e a l  pa i r .  

In the above definition, the subterm s in tl[s ] is a nonvariable subterm of an argument 
of one of the predicates in t 1. In case (ii), the most general unifier between an argument of a 
clause and a rule in R is obtained by applying whatever unification algorithm is appropriate 
for the theory T. The only difference between the making of an N-critical pair and an RN- 
critical pair is that in the latter, superposition is also allowed between a rule about the 
formulas and one about the domain axioms. The N-strategy can also be generalized to the 
RN-strategy by requiring the generation of RN-critieal pairs: 

RN-Strategy: 
Given sets S and t? as described above, 
r epea t  

Find a nontrivial RN-critical pair < t,O> between rules in R LJ S; 
Convert <t,O> into the rule t-*O; 
S := S u {t--.o}; 
Use t-*O to simplify and delete rules in S; 

unt i l  (no RN-critical pair can be found} or (1--.0 is generated}; 
if 1--*O is generated t h e n  r e t u r n  "proved" 

else r e t u r n  "consistent". 

The possible outcomes of the algorithm are similar to those for the N-strategy, and the 
method is also complete for its target problems: 

Theorem {i.1: Given a set of clauses S and a canonical system R, S U R is E- 
unsatisfiable if and only if 1---*0 can be produced from S U R using the RN-strategy. 

To demonstrate how RN-strategy works, we proof the following problem in group 
theory. To save space, we list only the first three rules of the ten-rule canonical system for 



340 

group theory ([KnBe70]) that is used in the proof. 

xe ---*x r l  
(xy)z~x(yz) r2 
xx-1---.+e r3 

P(a)---~O (i.e. ~P(a)) el 
P(xb-1)+ 1 4 0  (i.e. P(xb-1)) c2 

The RN-strategy found a proof after generating five rules. Among them, the following three 
derives the proof directly: 

P(x(yb-1))+ 1---*0 (r2 and c2) c3 
P(x)+ 1--~0 (c3 and r3) c4 
1 4 0  (c4 and cl) c5 

The other two generated rules are P(b-1)+ 1---+0 and P(e)+ 1-*0. 

The theorem (and method) can also be generalized to the case where R is an AC- 
canonical system (such as the theory of abelian groups). 

6.1.  E x t e n s i o n s  and Di scuss ions  

The RN-strategy will improve the efficiency (as 
paramodulation type provers) in at least the following ways: 

(1) 

compared with resolution and 

The clauses for describing the axioms of the domain are eliminated; thus, the number of 
clauses and resolvents is reduced. 

(2) Replacements of terms in the literals using the equational axioms are done strictly in one 
direction, and no elaborate arrangement of choice of proper subterms is needed since 
every term has a unique irreducible form; thus, the search space is reduced considerably. 

(3) Once a canonical system for the domain theory is found, it can be reused each time a 
theorem is to be proved, and no more work on the domain need be done. The savings 
are most significant when several theorems are to be proved at the same time. In 
resolution (paramodulation) theorem proving, however, resolvents among the axioms as 
well as those between the axioms and the similar clauses in the theorems will usually be 
generated every time. 

(4) The useful lemmas for T that are generated by the Completion Algorithm are fully 
utilized. 

Experiments comparing the performance of RN and N strategies have been conducted 
([HsJo82]). As an example, for the problem: 

If S is a nonempty subset of a group and x,yeSDxy-leS, then xeSD x-leS, 

the N-strategy generated 18 rules while the RN-strategy only generated 6. (For comparison, 
the locking resolution generated 76 resolvents and the simplified reduction format, SPRF, 
generated 52 subgoals [GrNaOrP182].) This seems to show that the method is more efficient 
when used with a canonical system for the domain theory. 
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The RN-strategy can also be modified into a non-clausal strategy in the same fashion as 
in the previous section. As before, the completeness of the strategy also depends on the 
finiteness and completeness of the employed unification algorithm. 

The RN-strategy does not apply when a canonical system for the domain theory does 
not exist. This requirement can be relaxed somewhat ([Hs82]) by generating RN-critical pairs 
and critical pairs between rules in R (a noncanonical system for the domain theory) 
simultaneously. Such a strategy is called the RN+-strategy, and it is a complete strategy as 
long as no incomparable critical pair between rules in R can be produced. A method 
suggested by Lankford ([La75]) for (partially) handling incomparable critical pairs can be 
incorporated into RN +-strategy and increases its power to some extent. These extensions, 
however, are still weaker than resolution+ paramodulation since they cannot always handle 
equations in non-unit clauses. An obvious remedy is to employ the modification method of 
Brand ([Br75]) for non-unit equations. Unfortunately, this trivial solution will undoubtedly 
increase the search space considerably and thus destroy the major advantage we gained by 
using the rewrite method. Finding an effective way to deal with equations in non-unit clauses 
is something worth looking into. 
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8. Appendix 

8.1. BN-Unificatlon 

The unification problem for Boolean terms is considerably simpler than AC-unification 
since (1) a Boolean term is a sum of products of predicates and different predicates symbols 
cannot unify with each other, and (2) identical predicates never appear twice in a term (from 
the idempotenee of *). However, in order to achieve completeness for the N-strategy, a 
variable needs to be attached to each term (similar treatment is also needed for obtaining 
canonical systems for AC-theories, see [PeSt81]). Since the N-strategy only requires 
unifications between N-terms, we may reformulate the unification problem into the following: 

Given two (irreducible)Boolean N-terms s' and t', find the complete set of most general 
unifiers between s=us '  and t--~vt', where u and v are new variables. 

We call this process BN-unification. 

We now give a straightforward BN-unification algorithm. The algorithm has as inputs 
] and /~ , which are two seperated (i.e. they do not share common literals) N4erms. The 
output of the algorithm is ~, the complete set of most general unifiers. For simplicity of 
notation, we always assume that the variables in the predicates are properly renamed before 
substitution. 



343 

P r o e  UNIFY(s ', t'): 
:= r 

s :--~ us'; /*u and v are the extra variables ~/ 
t := vt'; 
cal l  UN[FYI(s,t,r 
r e t u r n  ~,. 

P r o e  UNIFYl(s,t ,  unifier): 
separate s and t, assume that the resulting terms are: 

s~--USl...s n and t----vtl...trn; 
:----~ + unifierU {u~-'wtl. . . tm,w--wsl.. .sn}; 

for  i = l  to  n do 

for  j = l  to  m do 
i f  ~a s.t. sia~----tia /~  ~r is a unifier between literals */ 

t hen  UNIFYl(scr, ta, unif  ierUa). 

The unifier " a "  in the algorithm is a most general unifier between the target literals, and 
is not a unifier between the N-terms. One way to reduce the number of loops is to sort the 

literals in the terms beforehand. Then literals with the same predicate symbols will be 
grouped together and most of the useless unification at tempts  between different predicates 
will be eliminated. 

As an example, terms < d  ,t ~ > ~-~ < P ( x , y ) P ( y , z ) P ( z , x ) , P ( a , b ) >  have the following 
four most general unifiers: {u . , - - -wP(a ,b) ,w-wP(x ,y )P(y , z )P(z , z )} ,  
{ x * - a , y , - b  ,u*-w,v* . -wP(b,z )P(z ,a)} ,  { y , - - a , z ~ b , u §  and 
{z*-a , z*- -b ,u~- -w,w-wP(b ,y )P(y ,a )} .  Note that in this example there are actually two 
types of variables and two kinds of unifications. The variables u, v, and w are Boolean 
variables; x, y, and z are variables in the arguments of the predicates, and the unification 
between the predicates is the conventional unification. 

The extra  variable w, which is added to achieve the most general unifiers, will always be 
replaced by 1 when used in the theorem proving strategies. 

8.2. P r o o f s  o f  T h e o r e m s  

In order to present the proofs effectively, we use equations l = 0  instead of rules l ~ 0 .  
We also need a modified notion of the semantic tree ([Ro65], [KoHa69]) for the proof. 

Def in i t ion:  The E - a t o m  se t  of a set of clauses S is the set 
{P(a 1 ..... a,)=O,P(al,...,an)----1 : a i is in the Herbrand universe of S and P is a posi- 
tive literal in 5'}. 
The elements in the E-atom sets are called the E - a t o m s .  

For example, the E-atom set of {P(a),-~Q(fx)}  is 

{P(a )= O,P (a )= l ,Q(a )=O,Q(a ) - - -1 ,P ( fa )=O,P( fa )= l , . . . } .  
An E-semantic tree over a set of clauses S is a conventional semantic tree except that  the two 
arcs of a node are labelled with complementary E-atoms from the E-atom set of S (i.e. L = 0  

and L = 1  instead of L and -~L). A node N of an E-semantic tree is a failure node if there is 
a ground instance G----0 of C*=O (where C is a clause in S, and C* is the irreducible form 
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of C with respect to BA), whose normal expression becomes 1-----0 when each literal L in G is 
replaced by 0 (resp. 1) if L = 0  (resp. L ~ 1 )  labels an arc on the path from the root to N. An 
E-semantic tree is closed if every leaf is a failure node. Other definitions concerning the 
semantic tree follow in a similar way. The Herbrand Theorem is also true for the new 

definitions: 

T h e o r e m  ( H e r b r a n d ) :  A set of clauses S is unsatisfiable if and only if every complete 
E-semantic tree of S has ~ finite closed subtree. 

8.3. Comple teness  of  N-s tra tegy  

We now prove the completeness of the N-strategy (Theorem 4.1). The 'if' part  is easy 

since every reduction step is sound. We prove the 'only if' part  by induction on the size of 
the closed E-semantic tree. For  the simplicity of notation, we prove only the propositional 
case. The proof can be generalized to first order predicate calculus without difficulty. 

Induction basis: If the E-semantic tree has only one node, then the node must be 
1 = 0  and we are done. 

Induction step: We order the closed E-semantic tree in such a way that the right arc 

is always positive, i.e. L ~-0/~kL = 1  . Since each leaf (failure node) of the closed E-semantic 
tree is an instance of the canonical form of a clause in S, the rightmost leaf must be an 
equation with an N-term as the left hand side (which corresponds to an all-negative clause in 

S). Let LL1 . . .L ,=O be the leaf of the rightmost path with L~---1 as the last arc (see Figure 

1). If every leaf in its neighboring subtree does not contain the literal L ,  the last fork 
labelled with L can be eliminated and the E-semantic tree will be "shrunk" to become Figure 
2 (with D' the same as D). Then by the induction hypothesis, we are done. So the problem 

lies in the case where some of the leaves in D do contain L .  Let 
L * s l +  L , s o +  .. .+ L*sm+ t -~0 be such a leaf where s; 's are N-terms and t does not contain 

L.  By the BN-unification, L*s 1 and LL1...L ~ have a most general unifier which unifies the 

1 

D~k ILL1 . Ln 0 I 

Figure 1 

The E-semantic tree 

Figure 2 
The E-tree after deleting the L branch 
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extra variable v of L*s 1 with part  of L1...L . (or with all of L1...L . if none of the L~.'s occur 

in Sl). Without  loss of generality, we assume that only the literals Lt+ i through L~ appear- 

in Sl, and V is unified with L1...L ~. We then have a superposition 

LL1. . .Lt*sl+. . .+LL1. . .Lt*s ,~+LI. . .Lt*t  , and a new equation (from the corresponding 

critical pair) LLl...Li*s2+...+LL1...Li*sm+L1...Lt*t----O. Note that  (1) this step is a 

legitimate rule-generating step in the N-strategy, and (2) the first subterm L*s 1 has been 

eliminated. It is not hard to show that  it takes at most n superpositions to eliminate the 
literal L completely from this leaf and that  the new failure node thus becomes L~C..Lti*t---O 

for some j and il,... , ij. After applying the above process to every equation in D with literal 

L ,  the subtree D becomes a new tree D' without the occurrence of L in any of its leaves. 
The fork labelled with L can then be eliminated and the E-semantic tree is also shrunk 
accordingly (as shown in Figure 2). By the induction hypothesis, we are done. 

8.4. Completeness of RN-strategy 

Now we prove Theorem 6.1. The 'if' part  is true since all the reduction steps are sound. 
For the 'only if' part,  we proceed by induction on the size of the E-semantic tree. As in the 
proof of the completeness of the N-strategy, we use equations instead of rules. First,  let us 

look at the case of ground formulas. Let  B={t[al,...,a,~]---O } b e  an inconsistent set of 

ground instances of rules in S, where a I to a m are all the arguments in the literals of t. We 
may convert B into ' * * * B={t[al , . . . ,am]=O } where a t is the irreducible form of a;. (The 

reductions can be done by finding RN-crit ical pairs between rules in R and rules in B. Note 
that at* is unique since R is canonical.) By Theorem 4.1 we know that  1=0  can be derived 

from B' using BA. Let Figure 3 be an E-semantic tree corresponding to such a proof. We 
assume, as in the proof of Theorem 4.1, that the right branch of a node is always positive. 

Let L 1L2...L~P(a~,...,a,~)=O be the leaf of the rightmost path in the E-semantic tree. Take 

all the leaves of its neighboring subtree D that contain P(a~,...,a,~) and perform 

D~ [LLI '"L~P(a; '""a~)=O 

Figure 3 Figure 4 
The E-semantic tree The E-tree after deleting the P(a~,...,a~) branch 
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superpositions between each of these leaves and LIL2...L~P(a~,...,a~)-~-O as in the proof of 
Theorem 4.1. Then the literal P(a~,.. . ,a*) will be eliminated from the tree D, and the 
branch labelled P(a~,.. . ,a*) can be eliminated (see Figure 4) accordingly. Then by the 
induction hypothesis, we are done. 

The following problem, however, may appear when lifting the above argument to the 
corresponding nonground formulas of B': There might be some P(b~,.. . ,b~)tl+ t2--~0 where 
b~a~*, but b i~a  i. To be more precise, if P(sw. ,sm ) is the nonground literal corresponding 
to P(bw.. ,bm) and P(tw. . , tm)  is the one corresponding to P(aw. . ,am) , then 

a 1 ,...,am) does not guarantee that s; and t i are unifiable. This is exactly the P(b; , . . . , b*)=P(  * * 
difficulty for which Slagle and Lankford devised additional techniques (such as narrowing). 

We claim that by superimposing rules in R on P(tw.. , t ,n ) (i.e., finding RN-critical pairs 
between rules in R and S}, some P( t  ~ l,...,t~m) which has P(a~,... ,a*) as an instance will 
eventually be generated. If this is true, let P(/~ 1,...,/~ m) and P ( ]  l,...,o a m), corresponding to 
P(a~ ..... a~) and P(b~,...b*) respectively, be such generated literals. They can certainly 
unify with each other and produce the corresponding critical pair we desire. Thus, it remains 
only to prove the claim. 

For simplicity, we use P(tl,...,t,~)---*O as a rule. 

L e m m a  6.2: Given a canonical system R and an extra rule P(tl,...,tm)---*O with 
P(al,...,am)---*O as a ground instance, by performing the RN-strategy on R L) 
{P(tw..,tm)--*O}, we will generate a rule P(~ 1,...,~ ,n)--*O which has P(a;,...,a*m) as a 
ground instance. 

Proof." We proceed by induction on the total number (n) of steps needed to reduce all a t to 
hi*. If n----O, nothing need be proved. 

If ai~ai*, there must be a subterm c of a i which is a ground instance of the left 
hand side of some rule l--*r in R. We denote this a; by ai[c ] and the corresponding 
nonground term by t;[l ~] (where l" is an instance of l). P( t  1 ..... ti[l~],...,tm)--~O and l--~r will 
produce a critical pair <P(tl , . . . , t i[d ],...,tm),O> and, thus, a new rule 
P ( t w . , t i [ d  ],...,tm)--~O. Since the corresponding ground instance of ti[d ] is at least one 
reduction step closer to hi* than a;, by the induction hypothesis, we are done. 

We thus have completed lifting the argument to the nonground case and finished the 
proof of Theorem 6.1. 


