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Abstract. We present an algorithm to factorize polynomials in several variables with integral 
coefficients that is polynomial-time in the degrees of the polynomial to be factored, for any fixed 
number of variables. Our algorithm generalizes the algorithm presented by Lenstra, Lenstra Jr. and 
Lovasz ( 1982) to factorize integral polynomials in one variable. 

1. Introduction 

The problem of factoring polynomials with integral coefficients remained open 
for a long time, i.e., no polynomial-time algorithm was known. The best known 
algorithms took exponential-time in the worst case; these algorithms had to consider 
a possibly exponential number of combinations of p-adic factors before the true 
factors could be found or irreducibility could be decided. In [I] it was proven that 
the problem of factorization in Z[X] belongs to NPnco-NP, which made its 
membership of P quite likely [2]. That this was indeed the case, was proven in [7] 
where a polynomial-time algorithm for factoring in Z[X] was given. This algorithm 
is based on three observations: 

( 1.1) The multiples of degree < m of a p-adic factor together form a lattice in zm. 
( 1.2) If this p-adic factor is computed up to a high enough precision, then the 

factor we are looking for is the shortest vector in the lattice. 
( 1.3) An approximation of the shortest vector in such a lattice can be found by 

means of the so-called basis reduction algorithm. 
In this paper we show that (1.1) and ( 1.2) can be generalized to polynomials in 

Z[Xi. X2, ••• , X,] in an elementary way, for any t~2. Combined with the same 
basis reduction algorithm as in (1.3), this leads to a polynomial-time algorithm for 
factoring in Z[X1, X 2 , ••• , X,]. In [8] the present author shows that the above three 
points can be applied to various other kinds of polynomial factoring problems as 
well (like multivariate polynomials over finite fields or over algebraic number fields). 

Another approach to multivariate integral polynomial factorization is given in 
[5]. There, the multivariate case is reduced in polynomial-time to the univariate 
case, and the univariate case is handled 0by the algorithm from [7]. 

For practical purposes we do not recommend any of these polynomial-time 
algorithms; their running time will be dominated by the rather slow basis reduction 
algorithm. For polynomials in Z[X1, X 2, ••• , X,] the algorithm from [l O] for instance 
is very useful, although it is exponential-time in the worst case. 
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We restrict ourselves in this article to integral polynomials in two variables; the 
multivariate case immediately follows from this. In Section 2 we present an important 
result from [7, Section I] concerning the basis reduction algorithm mentioned in 
( 1.3 ). The generalizations of ( 1.1) and ( 1.2) to polynomials in Z[X, Y] are described 
in Section 3, and in Section 4 we give an outline of the factoring algorithm, and we 

analyse its running time. 

2. The basis reduction algorithm 

The basis reduction algorithm from [7, Section I] makes it possible to determine 
in polynomial-time a reasonable approximation of the shortest vector in a lattice. 
We will not give a description of the algorithm here. It will suffice to summarize 

those results from [7, Section 1] that we will need here. 
Let b1, b2, ••• , bn El." be linearly independent. For our purposes we may assume 

that the n x n matrix having b1, b2, ••• , bn as columns is upper-triangular. The 

i-dimensional lattice L; c: l; with basis b1, b2, .•. , b; is defined as L; = I~=l lbi = 

{l:~=l ribi:riel}. We put L=Ln. 

2.1. Proposition (cf. [7, (1.11), (l.26), (1.37)]). Let Be'll.,,,, 2 be such that lbil 2 ~ Bfor 

1 ~j~ n, where II denotes the ordinary Euclidean length. The basis reduction algorithm 

as described in [7, ( 1.15)] determines a vector b E L such that b belongs to a basis for 
L, and such that lb\2 ~ 2"- 1\x\ 2 for every x EL, x i' O; the algorithm takes O(n4log B) 

elementary operations on integers having binary length O(n log B). Furthermore, 

during the first 0( i4 log B) operations (on integers having binary length 0( i log B) ), 
vectors b; EL; are determined such that \b;\ 2 ~ i- 11x;\2 for every X; e L;, X; i' 0, for 

I ~i~n. 

So, we can find a reasonable approximation of the shortest vector in L in 
polynomial-time. But also we find, during this computation, approximations of the 
shortest vectors of the lattices L; without any time loss. 

3. Factors and lattices 

We describe how to generalize (1.1) and (1.2) to polynomials in Z[X, Y]. Let 
f E l[X, Y] be the polynomial to be factored; we may assume that f has no multiple 
factors, i.e., f is square-free. Furthermore we assume that f is primitive with respect 
to X, i.e., the greatest common divisor of the coefficients in Z[ Y] off equals one. 
We denote by Bxf and Bd the degrees off in X and Y respectively, and by lc(f) 
the leading coefficient off with respect to X. We put nx = 8xf and ny = Dyj. 

Suppose that we are given a prime number p, an integer s and a positive integer 
k. By (pk, S1) we denote the ideal generated by pk and ( Y-s)1+1, for some integer 
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/ ~ o. In Section 4 we will see how to find a polynomial h E l[X, Y] such that: 

i3.ll lc(h)=I, 
I 3.2) ( h mod( p\ Sn, ) ) divides (f mod( p', S,., ) ) in .l[X, Y]/ ( pk, Sn, ), 
(3.3) (h mod(p, S0 )) E (l/pl'.)[X] is irreducible in (l/pl)[X], 
(3.4) (h mod(p, S0))" does not divide (fmod(p, S0 )) in (l/pl)[X]. 

We put l = 8xh; so 0 < l ~ nx. 

209 

Let h0 El[ X, Y] be the up to sign unique irreducible factor of f for which 

( h mod( p, S0 )) divides (h0 mod( p, S0 )) in (Z/ pl)[X] (or equivalently 

( h mod( p k, Sn, ) ) divides ( h0 mod( pk, Sn, ) ) in l[X, Y]/ ( p\ Sn,), cf. [7, (2.5) ]) . 

(3.5). Let mx and mi' be two integers with I~ mx < nx and 0 ~ m"' ~ Oylc(j). We 

define L as the collection of polynomials g E l[X, Y] such that 

lil c5xg ~ mx, 
(ii) c5}·g ~ ny, 

(iii) 8} le( g) ~ m}·, 

(iv) (h mod(p\ Sn,)) divides (g mod(p\ Sn,.)) in .l[X, Y]/(p\ Sn,l· 

Putting M = mx ( ny + l) +my+ 1 it is not difficult to see that L is an M-dlmensional 

lattice contained in l.M, where we identify polynomials in L and M-dimensional 
. h I (" ""''- 1 "" viyj ""' X'" Y1 . . d "fi d . h vectors m t e usua way 1.e., L..i~o L..;,; 0 a,1.,.. + L..;~'<i amxi ' 1s 1 ent1 e wit 

(a_Olh Doi, •.. ' Don,. D1u, ... , am,1n,~ arn,,-0, ... ' amxm,.)). Because of (3.1) a basis for 
Lis given by 

{pkX;Y;: Q,;;: i <I, O~j ~ ny} u 

u { ( ( h mod( p\ Sn, )XHYi)mod( p\ Sn,,)):(/~ i < mx and o~ j~ ny) or 

(i=mx and O~j,;;:m}·)}. 

This generalizes (I. I) ( cf. (7, (2.6 )]). We now come to ( 1.2). The height gmax of a 

polynomial g is defined as the maximal absolute value of any of its integral 

coefficients. We prove that, if k and s are suitably chosen, then a vector of small 

height in L must lead to a factorization of J: 

3.6. Proposition. Suppose that g E L satisfies 

and 

x(l +(I +lsl)">+l)n,(nx+mx-ll_ 

Then h0 divides g, and in particular gcd(f, g) I" 1 in l[ X, Y]. 

Proof. Suppose that gcd(f, g) = 1. This implies that the resultant RE l.[ Y] off and 
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g is unequal to zero. Using the result from [ 4] we find that 

where IRI denotes the Euclidean length of the vector identified with R. Since 
(h mod(p\ S"J) divides both (f mod(p\ Sn)) and (g mod(pk, Snv)), the poly­
nomials f and g have a nontrivial common divisor in Z[X, Y]/(p', Snv), so that R 

must be zero modulo (p\ S"v ). The polynomial ( Y - s) "v+ 1 cannot divide R, because 
this would imply, with [9, Theorem l], that lsl"v+t::;;:; /R/, which is, combined with 
(3.9), a contradiction with (3.7). Therefore, (R mod(Y-s)"v+ 1) has to be zero 
modulo pk. Using induction on ny +I we prove that 

so that, with Rmax,.,;/R/ and (3.8), (R mod(Y-s)"v+ 1) cannot be zero modulo pk. 

We conclude that gcd(f, g) 7'=- 1. 
Suppose that h0 does not divide g. So h0 does not divide r = gcd(f, g ), so that 

(h mod(p\ Snv)) divides ((f/ r)mod(pk, Snv)). Because ff r divides f, we find from 
[3] that (f / r )max,.,; e"x+"v fmax. This implies that the above reasoning applies to f / r 
and the same polynomial g in L, and we find gcd(f / r, g) ~ I. This is a contradiction 
with r = gcd(f, g ), since f is square-free. 0 

3.10. Proposition. Suppose that sand k are chosen in such a way that (3.7) and (3.8) 
are satisfied with gmax replaced by 2(M-l)f2JM e"x+"vfmax· Let b be, as in Proposition 

2.1, the result of an application of the basis reduction algorithm to the M-dimensional 

lattice Las defined in (3.5). Then h0 E L if and only if (3.7) and (3.8) are satisfied 
with g replaced by b. 

Proof. To prove the 'if'-part, assume that (3.7) and (3.8) hold with gmax replaced 
by bmax· According to Proposition 3.6 this implies that h0 divides b, so that h0 EL. 

To prove the 'only if' -part, assume that h0 EL. Because h0 divides f, we find from 

[3] that (ho)max,.,;e"x+"vfmax· So there exists a nonzero vector in L with Euclidean 
length bounded by JM e"x+"vfmax· Application of (2.1) yields that bmax,.,; /bi,.,; 
2rM-t)l2JM e"x+"'fmax· Combined with the above choices of sand k, this implies 

that (3.7) and (3.8) hold with g replaced by b. 0 

4. Description of the algorithm 

In this section we present the polynomial-time algorithm to factorize f First we 
give an algorithm to determine the factor h0 , given p, s and h. After that, we will 
see how p and s have to be chosen. 

(4.1). Let p, sand h be as in Section 3, such that (3.1), (3.3), (3.4) and (3.2) with 
k replaced by 1 are satisfied. Assume that s satisfies the condition in Proposition 
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3.10, with mx and my replaced by nx - I and 8ylc(f) respectively: 

(4.2) lsl ny+I > ( e"x+ny f maxJ (nx +I)( ny + l)) "x-I 

x (2(M-l)/2J M e"x+"yfmaxJ nx (ny +I) )"x, 

where M=(nx-l)(ny+l)+Bv!c(f)+l. 
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We describe an algorithm that determines h0, the up to sign unique irreducible 

factor off such that ( h mod(p, S0)) divides (h0 mod( p, S0 )) in (Z/ pl)[X]. 

We may assume that I= 8xh < nx. Take k minimal such that the condition from 

Proposition 3.10 is satisfied, with rnx and my replaced by nx -1 and 8ylc(j) 
respectively: 

( 4.3) Pk> ( e"x+"yfmaxJ (nx + l)(ny + 1)) "x- 1 

x (2(M-1 )!2J M e"x+"'fmaxJ nx ( ny + 1)) "x(l + ( 1 + lsi) ny+l) 2n,.(nx-I ). 

Next modify h in such a way that (3.2) holds for this value of k; because of (3.4) 

this can be done by means of Hensel's lemma [11]. 

Apply Proposition 2.1 to the M-dimensional lattice L as defined in (3.5) for each 

of the values of M=l(nv+l)+l,l(ny+1)+2, ... ,l(ny+l)+8ylc(f)+l,(l+l) 

(ny+ 1)+ 1, ... , (nx -l)(ny+ 1)+8ylc(f)+ 1 in succession (so, for mx =I, l+ 

1, ... , nx -1 in succession and for every value of rnx the values my= 

0, I, ... , 8ylc(f) in succession). But stop as soon as a vector bis found satisfying 

(3.7) and (3.8) with g replaced by b. 

If such a vector b is found for a certain value of M(mx = mxo and my= my0 ), 

then we know from Proposition 3.10 that h0 E L. Since we try the values of M in 

succession, this implies that 8xho = mxo and 8ylc(h0 ) = my0 . By Proposition 3.6, h0 

divides b, so that 8 xb = mxo and oy le( b) = my0 • So b = ch0 for some c E Z, but h0 E L 

and b belongs to a basis for L, so b = ± h0 • 

Ifwe did not find such a vector b, then Proposition 3.10 implies that 8xh0 > nx -1, 

so that h0 = f, because f is primitive. 

This finishes the description of algorithm (4.1). 

4.4. Proposition. Denote by mx0 = Bxho the degree in X of the irreducible factor h0 

off that is found by algorithm ( 4.1). Then the number of arithmetic operations needed 

by algorithm (4.1) is O(rnx 0(nin~ + n~nt log(fmax) + nint log(lsi) + n~nt log p )) 

and the integers on which these operations have to be performed each have binary 

length O(n~n~+ n~ny log(fmax) + n~nt. log(lsl) + nxny log p ). 

Proof. Let M 1 be the largest value of M for which Proposition 2.1 is applied; so 

M 1 = O(mx 0 ny ). It follows from Proposition 2.1 that the number of operations 

needed for the applications of the basis reduction algorithm for l(nv + 1) + 1 ~ M ~ 

M 1 is equal to the number of operations needed for M = M 1 only. Assuming that 

the coefficients of the initial basis for Lare reduced modulo p\ we find, using ( 4.3), 
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that the following holds for the bound B on the length of these vectors: 

log B = O(ninv + nx log(fmax) + nxn~ log(jsj) +log p ). 

With M 1 = 0( mxonv) and Proposition 2.1 this gives the estimates in Proposition 4.4. 
The verification that the same estimates are valid for the application of Hensel's 

lemma is straightforward [ 11]. D 

We now describe how s and p have to be chosen. First, s must be chosen such 
that (fmod(Y-s))=f(X,s) remains square-free, and such·that (4.2) holds. The 
resultant R off and its derivative f' with respect to X is a nonzero polynomial in 
Z[Y] of degree ""nv(2nx -1). Therefore, we can find in O(nxnv) trials the minimal 
integer s such that s is not a zero of R, and such that ( 4.2) holds. It is easily verified 

that log(jsi) = O(ni + nx log(fmax)). 
Next we choose p as the smallest prime number not dividing the resultant of 

f(X, s) and f'(X, s ). Since log(f(X, s )max) = 0( ninv + nxnv logUmax) ), it follows 
as in the proof of[7, (3.6)] that p = O(n~ny + ninv log<Jmax)). 

The complete factorization of (f mod( p, S0)) can be determined by means of 
Berlekamp's algorithm [6, Section 4.6.2]; notice that (3.4) holds for every factor 
(h mod(p, S0 )) of (f mod(p, S0)), because of the choice of p, and that this factoriz­
ation can be found in polynomial-time, because of the bound on p. The algorithm 
to factorize f completely now follows by repeated application of algorithm ( 4.1 ). 
The above bounds on log(jsj) and p, combined with Proposition 4.4 and the fact 
that a factor g off satisfies log( gmax) = O( nx + ny + log(f max)) [3], yields the follow­
ing theorem. 

4.5. Theorem. The number of arithmetic operations needed to factorize f completely is 
O(n1'n;,+ n~n;, log(fmax)). and the integers on which these operations have to be 
performed each have binary length O(n~n3v+ n~n~ logUmax)). 

5. Conclusion 

We have shown that basically the same ideas that were used for the polynomial­
time algorithm for factoring in Z[X], lead to a polynomial-time factoring algorithm 
in Z[X, Y] (Theorem 4.5). Our method can be generalized to polynomials in 
Z[Xi. X2, ... , X,] for any fixed t > 2. The evaluation Y = s is then replaced by 
(X2 = s2, X3 = S3, . •• , X, = s, ), where the si E Z have to satisfy conditions similar to 
(4.2). It will not be surprising that in this case the estimates become rather compli­
cated [8]. 
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