A Barotropic Global Ocean Model
and Its Parallel Implementation
on Unstructured Grids

H. Oksiizoglu and A.G.M. van Hees
Faculty of Physics and Astronomy
Computational Physics Group
Utrecht University, the Netherlands

Abstract

Unstructured grids can represent the complex geometry of the ocean
basin with high fidelity. The lack of development tools supporting irregular
grid problems discourages the use of such grids on parallel architectures.
The state of the art ocean models are based on logically rectangular grids
which makes it difficult to fit the complex ocean boundaries. In this pa-
per,we demonstrate the use of unstructured triangular grids for solving
a barotropic ocean model in spherical geometry with realistic continental
boundaries. The model is based on the shallow water equations with a
Coriolis force. A realistic wind forcing and a simple bottom friction term
are also included. The numerical method is a cell based upwind finite
volume scheme with explicit time stepping. From a parallelization point
of view, that means there is only a nearest neighbour communication. A
heuristic domain partitioning method was employed to distribute the load
among processors. The resulting decomposition resembles 2D grid topo-
logy with some long distance communication paths. The model was im-
plemented using the PVM message passing library and tested on a cluster
of workstations and on an IBM SP2.

1 Introduction

Oceans play an essential role in shaping long term weather patterns. That is
because the heat capacity of the ocean is much larger than the atmosphere’s
heat capacity. The pole-ward heat transport by the ocean currents, for example,
makes the climate of the Northern Europe milder than it would be without this
extra source of heat. The understanding of ocean physics is an important factor
in predicting climate changes. The range of scales that need to be modelled
for a realistic simulation has been beyond the capacity of the fastest super-
computers. The recent developments in computer technology made it possible
to develop numerical ocean models that give a qualitative description of ocean

currents [1] [8] [11]. There is a need for faster computers and more sophistic-
ated numerical models for quantitative predictions. For a review of the recent
developments see [10] [7].

In this study, a numerical ocean circulation model has been developed to
run on parallel computers. This is a two dimensional wind driven ocean model
using unstructured triangulated grids. The use of this type of grid makes it
possible to describe the complicated geometry of the ocean boundaries efficiently,
and opens the possibility of local refinement in a very flexible way. The model
includes a free moving surface, the Coriolis force and a bottom friction term.
For a realistic simulation also salt and heat transport need to be added, which
requires a full three dimensional model. As far as parallelization is concerned, the
depth averaged two dimensional wind driven circulation is the most challenging
part of a numerical ocean model. After getting good performance on this two
dimensional version it is expected to be easier to have a three dimensional model
on a parallel computer.

2 Barotropic Ocean Model

The geometry of the ocean basin, which is thousands of kilometers wide and
a few kilometers deep, calls for a simplification of the equations of the fluid
dynamics. In the vertical direction gravity and in the horizontal direction the
Coriolis force dictates the flow characteristics. With these observations in mind,
it is possible to obtain a simplified set of equations that can model the wind
driven barotropic component of the ocean circulation [2].

The shallow water equations in vector notation are

[h } [Vv - (hU) } B [0

Wl TOv-UeU+ D] T | fARU -4

where U is the velocity vector, h = gH, H is the height, g is the gravitational
acceleration), I is the identity matrix, f is the Coriolis vector (normal to surface
and with a magnitude changing with latitude) , 7, is the bottom friction and
Tw represents the wind forcing. These equations express the conservation of
mass and momentum in the horizontal direction and can be derived from the
Navier-Stokes equations. They can be a building block for a more complete three
dimensional ocean model such as MICOM [1].

Since the molecular diffusion is far too small to be resolved on any reasonable
grid, its effects need to be modelled. The simplest approach is to add surface
friction terms as in the momentum equation above. A more realistic model
would also include a turbulent diffusion term.

This model has two slightly different interpretations. First, it can represent a
flat bottomed ocean with a free moving upper surface. Second, it can represent
a single layer on top of a motionless abyss with a slightly different density. The
interface between the layer and the abyss is free to move. The gravitational
acceleration is scaled with a dimensionless density difference, h = ApgH/p.
This is called a reduced gravity 1% layer model.

Since there is no horizontal diffusion in the equations, the lateral boundary
condition is that the normal velocity should be zero. But, the tangential velocity
can have any value. These equations form a hyperbolic system very similar to
the equations of isentropic compressible flow.

3 Numerical Method

The current implementation is a cell based upwind finite volume scheme for the
shallow water equations on a sphere and can be first or second order accurate
in space and time. Because of upwinding, the method is stable without any
artificial diffusion terms. For each triangle, mass and momentum conservation
is enforced. So, the flow variables are associated with the triangles and the fluxes
are associated with the edges. The time stepping scheme is explicit and there
is only a nearest neighbour dependence. This makes it easy to parallelize but
limits the time step size due to fast moving surface gravity waves.

sP sP

SP - SP
SP: South Pol e
NP: North Pole
--- Equator B

7

RIS AVAVA N
Vs aNAYAVAVAV N
Y /151> AVAVAVAVAVAVAY, 9 AN\
RO .
10N NNAVAVAVAVAVAVA I B
00NN AVAVANAVAYAVAVAYAYiviN AAPXAN

QAP W
e
A 7

AV AV AVAVE
SSsesete?

S K2
I e A Cawavava
N S e

Figure 1: Triangulation of the sphere

The most obvious way to generate a grid on the sphere is to use spherical
coordinates. The resulting mesh has a grid concentration near poles which is
undesirable from a numerical point of view. Smaller cells near the poles are
a waste of computational resources where high resolution is not needed. They
also severely limit the time step size for explicit time stepping. This type of
grid has been widely used despite its disadvantages. Instead of this conventional
approach, we make use of a nearly uniform triangulation of the sphere. We start
with a square (Figure 1). The center of the square corresponds to the north pole,

and the four corners correspond to the south pole. The dashed line is along the
equator. Then, we fold it along the dashed lines and stretch it to obtain an
octahedron. Next, we recursively subdivide the triangles until the desired level
of resolution is obtained. By mapping this onto a sphere we get a triangulation of
the sphere. The reason we picked the octahedron instead of the icosahedron, for
example, is its simplicity and symmetry properties. After including topography
information, we can get rid of land points. The resulting grid is unstructured
and is composed of triangles covering the sea points. The use of triangular grids
for barotropic models in spherical geometry was suggested before [12] and there
is a renewed interest in the use of irregular grids [5]. Another approach for
generating nearly uniform grids is to map a cube onto a sphere as presented
in [9] which is more suitable for atmospheric applications.

Here, we give an example solution with the second order accurate version.
For this example, we have used a realistic wind forcing dataset, which is an
average of the observations made between the years 1870-1976 [4]. The main
features of the wind driven surface currents have been captured (Figure 2).

Figure 2: The Antarctic Circumpolar Current and the Gulf-stream, Velocity
Vectors, 12280 vertices, 23397 triangles

4 Parallel Implementation

We have used a message passing paradigm for parallelization. The PVM message
passing library [3] was found suitable for a portable implementation. For the
partitioning of the domain, we start with the square mentioned in the grid
generation stage (Figure 1). We simply subdivide this square into smaller
rectangles to obtain the desired number of sub-domains. Sub-domains need to
communicate with the nearest neighbours except at the edges of the square,
where there is a long distance communication®. In Figure 3, a 2 x 2 partitioning

1Similar to periodic boundary conditions

SP: South Pole SP: South Pole
NP North Pole NP North Pole
-~ Equator --- Equator

Figure 3: Partitioning of the domain into four sub-domains

of the sphere is shown. In order to get 6 subdomains, for example, we could
divide the square into 3 X 2 or 6 X 1 rectangles.

MBSter A e bi sk Mster/ bi sk Mast er
LN N
1

N

N B

"o, PN e
A \ e

\

\

N -

[Di sk

Figure 4: Input, time stepping and output with four sub-domains

A master process reads the grid information and the initial data and dis-
tributes the relevant information to the slave processes for each sub-domain
(Figure 4). Then slaves start time stepping and exchange flux information at
the end of each time step. They also talk to the master to determine the time
step size to be taken. At the end of computation they all send the results to the
master and the master writes the output. For the first order accurate version,
only the fluxes that are associated with the edges need to be communicated. The
second order accurate version will need additional information to be exchanged
in order to construct piecewise linear functions for each cell. However, the par-
allel performance is expected to be similar to the first order case , because there
is more computation to be done per cell. The parallelization of the second order
version is under development.

5 Results and Conclusion

To test the parallel efficiency, we have run the PVM implementation of the first
order model on an IBM SP2 and a cluster of Hewlett-Packard 700 series of

workstations connected by an Ethernet network. We have used four problems
with different size to see the effect of the problem size on efficiency. The problems
have 1520, 5910, 23397 and 92713 triangles, respectively. = Timings are done

Speedup | 1 2 1 8] 16 32 64

1520 T | 1| 1.51 | 2.27 | 1.70 | 1.57
9910 T | 1 | 1.52 | 2.78 | 4.29 | 3.97
23397 T | 1| 1.20 | 2.53 | 4.72 | 8.85
92713 T | 1| 0.62 | 1.62 | 3.66 | 8.17 | 15.84 | 15.74

Table 1: Speedup on IBM SP2 using PVM3

Speedup | 1 2 4 8

1520 T | 1| 1.66 | 2.38 | 3.10
9910 T | 1 | 1.57 | 3.03 | 4.52
23397 T | 1] 155|294 | 5.20
92713 T | 1| 1.11 | 2,57 | 3.64

Table 2: Speedup on a cluster of HP workstations using PVM3

for 500 time steps to reduce the effect of initialization cost and input-output
operations have been excluded. The observation from that experiment is that
the best performance is near the diagonal (Table 1 and 2). This behavior can be
explained as follows. The cost of computation is proportional to the number of
triangles and the cost of communication is proportional to the square root of the
number of triangles. Computation scales with the domain area, communication
scales with the domain edge length. That means the communication cost will
eventually dominate with increasing number of processors when the problem
size is fixed. That explains the diminishing returns for the smaller problems.
The performance degradation for a fixed number of processors with increasing
problem size is due to the inefficient use of memory by the master process. When
there are n slaves running on n processors, the master is sharing the resources of
one processor. This can be fixed in the future implementations. For the largest
problem, the partitioning method which ignores the existence of continents shows
its weakness for large number of domains. For the 64 node case (Table 1), some
of the nodes have little or no work to do, because the corresponding domain is on
continents. A more balanced mesh partitioning may improve the performance.
Optimum partitioning of unstructured meshes for parallel computing is an active
area of research and several software packages are under development. This
simple domain partitioning strategy will be replaced by a general purpose mesh
partitioner like Metis [6]. In order to explain the difference in speedup figures
for the HP cluster and SP2, more detailed timings are needed.

Finally, we give the actual timings for the sequential code (Table 3). The

timings for the parallel case can be computed by dividing with the corresponding
speedup.

Timings | IBM SP2 | HP 712

1520 T 41 143
5910 T 159 943
23397 T 629 2118
92713 T 2519 8425

Table 3: Actual timings for 500 time steps for the sequential code (in Seconds)

6 Acknowledgements

This work was supported by FOM under MPR project and the computer re-
sources were provided by SARA. The authors would like to thank Cees Vreug-
denhil and Aad van der Steen for their support in various stages of this work.

References

[1] R. Bleck, S. Dean, M. O’Keefe, and A. Sawdey. A comparison of data-
parallel and message-passing versions of the miami isopycnic coordinate
ocean model. Parallel Computing, 21:1695-1720, 1995.

[2] B. Cushman-Roisin. Introduction to Geophysical Fluid Dynamics. Prentice
Hall, 1994.

[3] A. Geist, A. Beguelin, J. Dongarra, R. Manchek, W. Jaing, and V. Sun-
deram. PVM: A User’s Guide and Tutorial for Networked Parallel Com-
puting. MIT Press, 1994.

[4] S. Hellerman and M. Rosenstein. Normal monthly wind stress over the world
ocean with error estimates. Journal of Physical Oceanography, 13:1093—
1104, 1983.

[5] M. Iskandarani, D. B. Haidvogel, and J. P. Boyd. A staggered spectral
element model with application to the oceanic shallow water equations.
International Journal for Numerical Methods in Fluids, 20:393-414, 1995.

[6] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irreg-
ular graphs. Journal of Parallel and Distributed Computing, to appear.

[7] J. C. McWilliams. Modeling the ocean general circulation. Annual Review
of Fluid Mechanics, 28:215-248, 1996.

8]

R. J. Procassini, S. R. Whitman, and W. P. Dannevik. Porting a global
ocean model onto a shared-memory multiprocessor: Observations and
guidelines. The Journal of Supercomputing, 7:287-321, 1993.

C. Ronchi, R. Iacono, and P.R. Paolucci. Finite difference approxima-
tion to the shallow water equations on a quasi-uniform spherical grid. In
B. Hertzberger and G. Serazzi, editors, Lecture Notes in Computer Science
919. Springer-Verlag, May 1995. Proceedings of HPCN Europe 1995.

A. J. Semtner. Modeling ocean circulation. Science, 269:1379-1385, 1995.

R. D. Smith, J. K. Dukowicz, and R. C. Malone. Parallel ocean general
circulation modeling. Physica D, 60:38-61, 1992.

D. L. Williamson. Integration of the primitive barotropic model over a
spherical geodesic grid. Monthly Weather Review, 98:512-520, 1970.

