
Evaluation of Two Compiler-Based Approaches
for the Parallelisation of an MPEG-2 Decoder

Arnaud Laffitte, Rizos Sakellariou and John R. Gurd

Department of Computer Science, University of Manchester,
Oxford Road, Manchester M13 9PL, U.K.

Abstract. In this paper, we evaluate two different approaches for the
compiler-based parallelisation of a C program for MPEG-2 decoding. The
first approach experiments with a commercial auto-parallelising compiler
for exploiting coarse-grain parallelism on a Silicon Graphics Power Chal-
lenge, while the second approach experiments with a simple assembly
code scheduler for exploiting instruction-level parallelism. Results ob-
tained through the high-level auto-parallelisation of the code are disap-
pointing, far from those that can be achieved through manual paralleli-
sation. On the other hand, better results are achieved when exploiting
instruction-level parallelism; the corresponding compiler technology ap-
pears to be more efficient.

1 I n t r o d u c t i o n

In recent years, research developments into producing digital representations of
audiovisual information have led to a whole spectrum of new needs and possi-
bilities; applications such as Digital Television have already become a practical
reality. An enabling factor towards this aim has been the standardisat ion of video
coding. MPEG-2 is the most famous of a series of adopted standards, but its
computat ional complexity still limits its widespread use. This is particularly im-
por tant for decoding, which must be performed in real-time. Although hardware
solutions are available, software decoding offers greater flexibility.

In this paper, we examine the extent to which general-purpose approaches for
compiler-based parallelisation of codes can lead to performance improvements of
an MPEG-2 software decoder. Two architectural models are examined. After a
short overview of the MPEG-2 decoder, the results are given in the next sections.

2 T h e M P E G - 2 V i d e o D e c o d i n g C o d e c

The M P E G video coding standards define a compression technique which ex-
ploits spatial and temporal correlation to achieve high compression ratios.
MPEG-2 [4] targets primarily professionM video and Digital Television applica-
tions and has rapidly become popular. MPEG-2 video s t reams present a layered
structure, with the following hierarchy: The Video Sequence is the highest layer
and consists of Groups of Pictures (GOP) each of which groups a number of
adjacent pictures. The Picture is the pr imary coding unit of a video sequence
and can be encoded into one of three types. Pictures are subdivided into slices,
each of which corresponds to a fragment of a row in the picture and consists of

976

one or more contiguous macroblocks which are formed by a number of blocks.
The block is an 8 × 8 group of pixels which is the smallest coding unit. Given an
MPEG-2 stream, five stages are performed in order to decode it into a sequence
of pictures: Huffman decoding, run-length decoding, inverse quantization, inverse
discrete cosine transform, and motion compensation.

3 Exploiting Coarse-Grain Parallelism

The behaviour of two parallel implementations of the MPEG-2 decoder on an
SGI Challenge has been analysed in [2]. The first implementation exploits par-
allelism at the GOP level (that is, by decoding different GOPs on different
processors), while the second implementation exploits parallelism at the slice
level. In both cases, close to linear speed-up was obtained. How close to these
results could be the performance obtained through autoparallelising techniques,
or, more generally, techniques for incremental development of parallel programs
where little or no knowledge of the nature of the code exists [8], has been the
main objective of our experiments. The program used was the C language im-
plementation of the MPEG-2 decoder provided by [7], which was tested using
four medium sized video sequences taken from films [5].

First, the code was instrumented on an SGI Challenge using prof to deter-
mine where time is spent. Then, the program was parallelised using the native
SGI autoparalleliser, PCA. The paratlelisation led to a performance degradation,
while, in one program function, PCA transformed a loop in an erroneous way. An
analysis of the results showed that PCA parallelised only parts with a low com-
putational cost [5]. At a second stage, we tried to improve performance by means
of program transformations that PCA failed to apply. Using mainly induction
variable elimination, loop unrolling, and statement reordering, a speed-up of up
to 1.25 on 4 processors was obtained. The overhead was found to be mostly
due to barrier synchronisation as a result of the repeated parallel execution of
loops with a small number of iterations. The inability of the compiler to exploit
parallelism beyond the loop level (which corresponds to the macroblock level of
the algorithm) has been a major obstacle in obtaining high performance.

4 Exploiting Instruction-Level Parallelism

The second part of our study concerned with the investigation and measurement
of parallelism at the assembly code level (i.e., instruction-level parallelism). In
order to do this, we assumed a model Very Long Instruction Word (VLIW)
architecture, loosely resembling, in terms of functional units available, the Philips
Trimedia TM1000 [3]. A prototype scheduler, based on the SFARC instruction
set, which takes into account resource constraints and instruction latency and
schedules instructions locally within each basic block, has been implemented.

Using this scheduler an approximately 46% compaction of the sequential
assembly has been obtained; no large deviations were observed between different
parts of the code. For the most time-consuming parts of the code, this leads
to an estimated speed-up of up to 1.85 (on five functional units), which can

977

be increased up to 1.95 by applying source-level transformations, such as loop
unrolling and inlining. There have been no significant performance losses due to
resource saturation. However, more advanced low-level optimisations as well as
more aggressive compilation techniques [1] could uncover more parallelism [6].

5 C o n c l u s i o n

The two sets of experiments briefly presented above aimed to s tudy the perfor-
mance impact of a compiler-based parallelisation approach at both the source
level and the assembly level. In the first case, the results obtained were unsatisfac-
tory. Although there is much parallelism, its detection appears to be beyond the
reach of state-of-the-art parallelising compiler techniques; the particular char-
acteristics of the code are not suitable for exploiting loop parallelism and tech-
niques developed in the context of automat ic parallelisation of scientific codes
are not sufficient for the code examined. This prompts us to investigate, in the
future, the feasibility of producing automatically algorithmic-level specifications
of the source program that would be more amenable to an automat ic paralleli-
sation tool. Comparat ively bet ter results have been achieved when exploiting
instruction-level parallelism. Although at this level the potential performance
improvements may not be impressive, they may prove to be more cost-effective
for the general class of mult imedia and embedded applications [1].

Acknowledgements: Part of this work has been funded by the E S P R I T IV reac-
tive LTR project OCEANS, under contract No. 22729.

R e f e r e n c e s

1. B. Aarts, et. al. OCEANS: Optimizing Compilers for Embedded Applications. In
C. Lengauer, M. Griebl, S. Gorlatch (Eds.), Proceedings of Euro-Par'97, Lecture
Notes in Computer Science 1300, Springer-Verlag, 1997, pp. 1351 1356.

2. A. Bilas, J. Fritts, and J. P. Singh. Real-Time Parallel MPEG-2 Decoding in Soft-
ware. Technical Report 516-96, Department of Computer Science, Princeton Univer-
sity, 1996. A shorter version is also available in the Proceedings of the 11th Interna-
tional Parallel Processing Symposium (IPPS) (Geneva, Apr. 1997), IEEE Computer
Society Press, 1997, pp. 197-203.

3. B. Case. Philips Hope to Displace DSPs with VLIW. Microprocessor Report, 8(16),
5 Dec. 1994, pp. 12 15. See also http: llwww.trimedia-philips, com/

4. ISO/IEC 13818. Generic Coding of Moving Pictures and Associated Audio. 1995.
5. A. Laffitte. Obtaining High Performance for MPEG-2 Video Decoder Software. MSc

Thesis, Department of Computer Science, University of Manchester, October 1997.
6. H. Liao and A. Wolfe. Available Parallelism in Video Applications. Proceedings of

MICRO-30, IEEE Computer Society Press, 1997, pp. 321-329.
7. MPEG Simulation Group. http://www.mpeg, org/
8. G. D. Riley, J. M. Bull, and J. R. Gurd. Performance Improvement Through Over-

head Analysis: A Case Study in Molecular Dynamics. Proceedings of the 1997 In-
ternational Conference on Supercomputing, ACM Press, 1997, pp. 36 43.

9. R. Sakellariou, E. A. StShr, and M. F. P. O'Boyle. Compiling Multimedia Applica-
tions on a VLIW Architecture. Proceedings of the 13th International Conference on
Digital Signal Processing (DSP97) (Santorini, July 1997), vol. 2, IEEE Press, 1997,
pp. 1007-1010.

