
Back and Forth Bisimulations

Rocco De Nicola
Jstituto di Elaborazione dell' lnformazione, C.N.R.

Via S. Maria 46, 1-56126 Pisa, Italy

Ugo Montanari
Dipartimento di Informatics, Un/versita di Pisa

Corso Italia 40, 1-56125 Pisa, Italy

Frits Vaandrager
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

This paper is concerned with bisimulation relations which do not only require related agents to simu­
late each others behavior in the direction of the arrows, but also to simulate each other when going
back in history. First it is demonstrated that the back and forth variant of strong bisimulatlon leads to
the same equivalence as the ordinary notion of strong bisimulation. Then it is shown that the back
and forth variant of Milner's observation equivalence is different from (and finer than) observation
equivalence. In fact we prove that it coincides with the branching bisimulation equivalence of Van
Glabbeek & Weljland. Also the back and forth variants of branching, 1J and delay bisimulation lead to
branching bisimuiation equivalence. The notion of back and forth bisimulation moreover leads to
characterizations of branching bisimulation in terms of abstraction homomorphisms and in terms of
Hennessy-Milner logic with backward modalities. In our view these results support the claim that
branching blsimulation Is a natural and important notion.

1. INTRODUCTION

The notion of bisimulation relation has been introduced by PARK (18]. It leads to an
equivalence on labelled transition systems which, in case image finiteness is assumed, coincides
with the strong equivalence of MILNER [12). The great importance and usefulness of bisimula­
tions in the theory of concurrent systems is evident: Mathematically, bisimulation is a very
pleasant notion. It is closely related to the non-well-founded sets of AczEL (1] and leads to a
natural first behavioral abstraction from transition systems. Algebraically, in the setting of
CCS-like languages, bisimulations lead to elegant and simple laws [10]. Moreover, bisimulation
equivalence has a beautiful characterization in terms of Hennessy-Milner logic [10). Bisimula­
tions are also important from a practical point of view because with the algorithm of PAIGE &
TARJAN [17), bisimulation equivalence on finite state automata can be decided extremely fast in
O(mlogn) time (where m is the number of transitions and n the number of states).

In this paper we introduce the concept of back and forth bisimulations. In a back and forth
bisimulation the agents can not only simulate each others behavior in the direction of the
arrows but also when going backward in their history. In general, given the definition of any
bisimulation, one can define a corresponding back and forth version of it. We want to explore
the relationships between bisimulations and their back and forth variants.

Back and forth bisimulations are interesting for several reasons. First of all, it is always

First and second authors where supported by ESPRIT project 3011 (CEDISYS). The research of the third author was
supported by RACE project no. 1046, Specification and Programming Environment for Communication Software
(SPECS) and by ESPRIT project no. 3006 (CONCUR).

153

intriguing to see what are the consequences of small modifications of important definitions.
More important is the connection with temporal and modal logics. These logics give rise to
equivalences on transition systems and K.ripke structures (two states are equivalent iff they
satisfy the same formulas) and it appears to be very useful to give operational characterizations
of these equivalences. A well known result in this area is that the equivalence induced by
Hennessy-Milner logic (HML) formulas coincides with (strong) bisimulation equivalence [10].
Other results of this kind are for instance reported in [4]: two bisimulation-based equivalences
over K.ripke structures are related to two variants of ere [8]. In the world of temporal and
modal logic, there has been a lot of interest in past-tense operators (see for instance [ll,20]). If
one is looking for operational characterizations of the equivalences induced by logics with a
past-tense operator, it seems natural to consider back and forth bisimulations.

In Section 2.1 of this paper, we demonstrate that the back and forth variant of strong bisimu­
lation leads to the same equivalence as the ordinary notion of strong bisimulation. This results
clarifies an earlier result of HENNESSY & STIRLING [11]. They showed that in the context of clas­
sic labelled transition systems, the extension of HML with a reverse operator does not lead to
any increase in discriminating power. HENNESSY & STIRLING [11] did not consider abstraction
of silent actions. In Section 2.2, we show that the back and forth variant of the (weak) observa­
tion equivalence of Mll.NER [15] is different from (and finer than) observation equivalence. In
fact we prove that it coincides with the branching bisimulation equivalence of VAN GLABBEEK &
WEIJLAND [9]. We will play the same game with other equivalences and prove that the back and
forth versions of branching bisimulation, the 71-bisimulation of BAETEN & VAN GLABBEEK [3] and
the delay bisimu/ation of [21] (first introduced by MILNER [13] under the somewhat confusing
name observational equivalence), all lead to branching bisimulation equivalence. Hence, branch­
ing bisimulation equivalence arises as a kind of 'fixed point' of the back and forth operation.
This result supports the claim that branching bisimulation is a natural and important notion.

In Section 3, we study the relationships of back and forth bisimulation with abstraction
homomorphisms. Abstraction homomorphisms have been introduced for the first time in [6],
for labelled event structures. The tight relation of abstraction homomorphisms with bisimulation
has been discussed in [5], where it is also proved that, under some rather restrictive conditions,
given any transition system @, there is always a unique minimal homomorphic system. Both
important properties have been extended in [16] to partial ordering labelings, and they are
proved to hold under significantly milder conditions. Similar results (but apparently applicable
only to transition systems without T) have been generalized to saturating quasi-homomorphisms
of ~ algebras in [2] (following [19]). In the present paper, the main result about abstraction
homomorphisms is the evidence of their flexibility in expressing several notions of equivalence:
we show that observation equivalence can be characterized in terms of abstraction homomor­
phims that preserve successors, whereas branching bisimulation corresponds with abstraction
homomorphisms which preserve both successors and predecessors.

The final section presents a logical characterization of branching bisimulation equivalence in
terms of back and forth logic, an extension of Hennessy-Milner logic with backward modalities.
In order to establish this logical characterization, we essentially use the result of Section 2.2
which says that branching bisi.mulation and weak back and forth bisimulation coincide. The
logical characterization with backward modalities is also reported in [7]. In addition that paper
presents two other logics for branching bisimulation equivalence. The first is an extension of
HML with a kind of 'Un.til' operators, which tum out to be definable in terms of the modalities
of back and forth logic. The second is CTL• without the next-time operator interpreted over all
paths, not just the maximal ones.

154

2. OPERATIONAL CHARACTERIZATIONS

2.1. Strong bisimulation.
We start the technical part of this paper with a discussion of a simple, but fundamental case:
the back and forth variant of strong bisimulation. Strong bisimulation equivalence, like all other
equivalences in this paper, will be defined on the states of labelled transition systems (LTS's).
Below we recall the definitions of a L TS and strong bisimulation.

2.1.l. DEFINITION. A labelled transition system (or LTS) is a triple (S,A,-7) where:
Sis a set of states,
A is a set of actions; the silent action -r is not in A; we write AT= A U { -r};
--) t,;;;S XAT X S is the transition relation; an element (r, a,s)E-7 is called a transition and is
usually written as r~s.

We let r,s, .. range over S; a,b,.. over A and a,/3 over AT.

2.1.2. DEFINITION. Let ~=(S,A,-7) be a LTS. A relation R t,;;;SXS is called a (strong) bisimu/a­
tion if it is symmetric and satisfies: if rRs and r...f!7r', then there exists ans' such that s...f!7s'
and r' Rs'.
Two states r,s are (strongly) bisimilar, abbreviated ~:r ti s or r tt s, if there exists a strong
bisimulation relating r and s.

It is well known (and easy to see) that the arbitrary union of strong bisimulation relations is
again a strong bisimulation; ti is the maximal strong bisimulation on S. Moreover ti is an
equivalence relation.

2.1.3. Back and forth bisimulation on states. Back and forth bisimulations do not only require
that related states can simulate each other in a forward direction but also also that they can
simulate each others behavior in backward direction. The definition which comes to mind first is
obtained by adding to the definition of a bisimulation relation the condition1 :

if r R s and r' ~r, then there exists ans' such that s'f!7s and r' R s'.
The resulting equivalence distinguishes the states r and s in Figure 1 below. From r it is possible
to do a, then b, and then go back with a, which is not possible from s.

s

a b

b a

FIGURE 1.

In some non-interleaved models of concurrency 'diamond' properties are used to express con­
currency of events. In these models the states r and s of Figure 1 are distinguished since the
behavior from r corresponds to a pair a and b of concurrent events, whereas s describes a sys­
tem which either does an a causally followed by a b, or a b causally followed by an a. Back and
forth bisirnulations cannot capture the intuitions behind these models: if we replace in Figure l
the labels b by a, then there exists a back and forth bisimulation between r and s, even though

l. This generalization arose from discussion of the first author with Colin Stirling at Edinburgh

155

from a true concurrency point of view these states are different. At this moment, we do not see
how the above back and forth variant of bisimulation equivalence could be useful. Probably
everything would work if autoconcurrency is not permitted.

Therefore, in this paper a different type of back and forth bisimulations will be studied: it is
possible to move back from a state, but only along the path which represents the history that
brought one to this state. This means that a bisimulation is no longer a relation between states,
but is instead a relation between histories. Below, after some preliminary definitions, we define
the new notion of back and forth bisimulation.

2.1.4. DEFINITION. For a set K, the notation K* denotes the set of finite sequences of elements
of K. We denote concatenation of sequences by juxtaposition. With "A we denote the empty
sequence and with I a I the length of sequence a.

2.1.5. DEFINITION. Let @,=(S,A,-7) be a LTS. A sequence (so,a1,s1) · · · (sn-l>an,sn) e-7* is
called a path from s 0 • A run (also called history or computation) from seS is a pair (s,w), where
.,, is a path from s. We write runft(s), or just run(s) for the set of runs from sand runit for the
set of runs in@. We let"'··· range over paths and p,a,8, .. over runs.

2.1.6. DEFINITION. Let p=(so,'fT)Erun(so) with w=(so,a1 ,s,) · · · (sn -l>an,Sn)·
first(p) = so,
path(p) = "'•
last(p) = Sn,
states(p) = sos1 · · ·Sn,

label(p) = a1 · · · a,,,
concatenation of runs is denoted by juxtaposition, the result aa' is defined iff
last(a)= first(a'), the operation is associative and empty runs behave as (left and right)
identities,
a~a' if for some run B=(s,(s,a,s')): a'=a8.

2.1.7. DEFINmON. Let ct=(S,A,-7) be a LTS. Two states r,seS are strongly back and forth
bisimilar, abbreviated @,:r~bf's or r~b1s, if there exists a symmetric relation R <;;;;,runil.Xrunft,
called a strong back and forth bisimulation, satisfying
I. (r, "A) R (s, "A);
2. if p Ra and p~p', then then~ exists a a' such that a~a' and p'Ra';
3. if p Ra and p'~p, then there exists a a' such that a'~a and p'Ra'.

The following proposition tells us that, when all actions are visible, the possibility to go back 'in
ones own history' does not result in any ~dditional distinguishing power: the resulting
equivalence is the same as the 'forward only' strong bisimulation equivalence.

2.1.8. PROPOSITION. Let @,=(S,A,-7) be a LTS. Then for all r,seS:

(:f:.r ~bfs # @,:r tt s.

PROOF. "~" Suppose r ~ s. Let et be the mapping that associates to each path .,, in i:i its
colored trace, i.e. the sequence which is obtained from .,, by replacing each state by its bisimula­
tion equivalence class (this terminology is borrowed from [9]). So

ct((so,al>si) ... (Sn -han,Sn)) = (solt:t,al ,S1 lt:t) ... (Sn -I I -t:t.an,Snl'!:!!).

Define relation R by:

R = {(p,a), (a,p)lperun(r), aerun(s)& ct(path(p))=ct(path(a))}.

It is straightforward to check that Risa back and forth bisimulation between rand s.

156

"-=*"Suppose rtib1s. Let R be a back and forth bisimulation between rand s. Define

R' = {(last(p),last(a))lpRa}.

Again, it is straightforward to check that R is a strong bisimulation between r and s. 0

2.2. Weak bisimulation
Weak bisimulation equivalence or observation equivalence is a variant of strong bisimulation
equivalence that has been proposed by MILNER [14], to take into account the 'invisible' nature
of the silent step T. In this section we will see that, in contrast to the case of strong bisimula­
tion, weak bisimulation differs from its back and forth variant.

2.2.1. DEFINITION. Let (S,A,-7) be a LTS. Let (~AT. Define ~ as the transitive and reflexive

closure of ...!.). So r ~ s says that there exists a path from r to s consisting of zero or more T­

transitions. Further we define for a eA:

r~s <=> 3r',s':r~r'..f!.7s'~s.

We let k,l, .. range over A.=A U{E}.

2.2.2. DEFINITION. Let (S,A,-7) be a LTS. A relation R <;;,SXS is called a weak bisimulation if
it is synunetric and satisfies: if rRs and r.Ar', then there exists ans' such that s.As' and

r'Rs'.
Two states r,s are weakly bisimilar or observation equivalent, abbreviated c:E=rttTs or rtiTs, if
there exists a weak bisimulation relating r and s.

Again, it is easy to see that the arbitrary union of weak bisimulation relations is a weak bisimu­
lation; tiT is the maximal weak bisimulation on S. Moreover tiT is an equivalence relation.
Since any strong bisi.mulation is also a weak bisimulation,,we have tt <;;, tiT.

There is an obvious way to generalize the relations .A to runs:

2.2.3. DEFINITION. Let lf=(S,A,-7) be a LTS. Define for p,aerune,:

Now consider the following 'weak' variant of the back and forth bisimulation:

2.2.4. DEFINITION. Let lf=(S,A,-7) be a LTS. Two states r,seS are weakly back and forth
bisimilar, abbreviated f£:.rttTbfs or rttTbfs, if there exists a symmetric relation R <;;,rune,Xrunft,
called a weak back and forth bisimulation, satisfying
I. (r,A.)R{s,A.);
2. if p Ra and p!;.p', then there exists a a' such that 11.Aa1 and p'Ra';

3. if p Ra and p1 ,Ap, then there exists a a' such that a'.Aa and p'Ra'.

Interestingly, weak bisimulation equivalence and weak back and forth bisimulation equivalence
are different. In Figures 2 and 3 below, two counterexamples are presented. The states p and q
in Figure 2 are not weak baclc and forth bisimulation equivalent because there exists no weak
back and forth bisimulation relating the corresponding empty runs: from q it is possible to do

157

an a in such a way that always after going back with an a there is a possibility of doing b. This
behavior is not possible from p. The counterexample of Figure 3 is similar.

t:!'T

b
"frTbf

a a

FIGURE 2.

r - s -T

a a a
"#Tbf

7' c 7' c b

b b

FIGURE 3.

Since any strong back and forth bisimulation is also a weak back and forth bisimulation we
have ttbf C ttTbf and hence, by Proposition 2.1.8, tt C '=!Tb/" The example of Figure 4 shows
that this inclusion is strict.

a a

b b c

b c

FIGURE 4.

158

We conclude this section with a technical lemma which will be needed to relate '!::!•bf with
branching bisimulation.

2.2.5. LEMMA. Let (S,A,-7) be a LTS and let r,seS with rtirbfs. Let R <;;,runflXrunct be the
maximal weak back and forth bisimulation between r and s. Then R has the following X-property:

'Vp,p'erun(r) 'Va,a'erun(s): [p~p', a~a', pR a' & p' Ra] => p' Ra'.

PROOF. Define relation R' by:

R' = RU {(p',a'), (a',p')l3perun(r} 3aerun(s): p~ p', a~a', pR a' & p' Ra}

We prove that R' is a weak back and forth bisimulation. Since R is the maximal back and forth
bisimulation and R <;;,R' by construction, R =R'. Thus R has the X-property.
Clearly R' is symmetric. Moreover (r,J\.)R' (s,J\.) because (r,J\.)R (s,J\.). Suppose p' R' a' with
p'erun(r) and a'erun(s). If p' Ra' then the back and forth conditions 2 and 3 are trivially
fulfilled. Otherwise there must be a panda a such that: p~p', a~ a', pR a' and p' Ra.

We check transfer property 2. Suppose p' .';. p". Then p ,!;,, p". Since p R a', there exists a a" such

that a' !:.a'' and p" R' a''.

Next we check transfer property 3. If p" .';. p', then, since p' Ra, there exists a o" such that

a'' .':.a and p" R' a''. Now observe that a'' !;.a'.

The remaining case that a' R' p' with o'erun(s) and p'erun(r) is symmetric. D

2.3. Branching bisimulation
In this section we prove the main result of this paper: the back and forth variant of weak
bisimulation equivalence coincides with the branching bisimulation of VAN GLABBEEK & WEIJ­
LAND (9].

2.3.l. DEFINITION. Let a!=(S,A,-7) be a LTS. A relation R c;;,S XS is called a branching bisimu­
lation if it is symmetric and satisfies: if rRs and r~r', then either a=T and r' Rs, or there
exist si.s' such that s ~s 1 ~s', r Rs 1 and r' R s'.

Two states r,s are branching bisimilar, abbreviated <:l:r tib s or r tib s, if there exists a branching
bisimulation relating r and s.

Again the arbitrary union of branching bisimulation relations is a branching bisimulation; tib

is the maximal branching bisimulation on S. Moreover tib is an equivalence relation. Since any
strong bisimulation is a branching bisimulation and any branching bisimulation is a weak
bisimulation, we have ti <;;, tib c;;, tt,. It is worth noting that we could have strengthened the
above definition by requiring all intermediate states in s~s 1 to be related with r. The following

lemma implies that this would have led to the same equivalence relation. Moreover, we could
have also asked, as in the original definition of [9], that all the states reachable from s' via silent
sequences be related with s; again, by simple considerations, it can be concluded that the
equivalence we would obtain would be the same.

159

2.3.2. LEMMA (cf. Lemma 1.3 of [9]). Let tt=(S,A,-7) be a LTS, let n >0 and let
(ro;r,r1) ... (rn - 1 ;r,rn) be a path in l£ with r 0 tib 'n· Then for all O.;;;i .;;;n: ro tib r;.
PROOF. Define for i >0:

Ro = ttb

R; = R;- I U {(r,r'), (r',r) I 3r": r:,,, r'!7r" & r R; -l r"}

R., = LJR;
i<Ct.>

First we show that R., has the property that we want to prove for ttb. Let for some n >0,
(r0 ,1.,r1) · • · (rn-J.T,rn) be a path with r 0 R., 'n· By induction on n we prove that for all
O.;;;;i.;;;;n: To R., r;.
If n = l the statement is trivially correct.
Now take n>l. Since r0 R,.,rn, there exists an m<i.J with r0 Rmrn. By definition of Rm+ 1:
To Rm+ 1 Tn -I· Thus To R., rn -I and, by induction hypothesis, r0 R., T; for all O.;;;i .;;;;n.
Next we will prove with induction that, for every n <«J, Rn is a branching bisimulation. Thus
R., is a branching bisimulation and R., \:tib. But by construction <c::±b CR.,. Hence t±b =R.,
and we have proved the lemma.
R0 is a branching bisimulation because tib is.
Suppose that, for certain n >0, Rn-I is a branching bisimulation. We prove that Rn is a
branching bisimulation too. By construction R,, is symmetric. Suppose r R,, T' and r ~s. If
T Rn - I r', then the transfer property is trivially fulfilled. In the other case there are two possibil­
ities:
1. For some r": r~T1 ...!.7T 11 and rR,,_ 1r". Using rRn-iT", a first possibility is that a=T

and s Rn -IT". But this means that r':,,, r'!7r" with r R,, r' and s R,, r". Otherwise there

are rJ.T2 such that T11 :,,,T1 ~r2 , rR,,_ 1 r 1 and sRn-I r2. But then r':,,,r 1 ~rz, rRnT1

and s R,, r 2 •

2. For some T": T' ~T...!.7r" and r' R,,_ 1 r". Then r' :,,,r~s, T Rn rand s R,, s. D

2.3.3. THEOREM. Let lt=(S,A,-7) be a LTS. Then for all r,sES:

fl:rtiTbfs ** (i.:Ttzbs.

PROOF. "*=" Suppose r tib s. Let cct be the mapping that associates to each path 7T in lt its con­
crete coloTed trace, i.e. the sequence which is obtained from 'IT by replacing each state by its
branching bisimulation equivalence class. So

cct((so,ai.si) · · · (s,, _ 1,a,,,s,,)) = (sol;:,,,ai,s1!,,.,) · · · (sn-llt!.,an,snl;:,.).

Let et be the mapping that associates to each path 71 in & its (abstract) colored trace, i.e. the
sequence which is obtained from cct(7T) by removin_g all elements (C,T,C) from the sequence.
Define relation R by

R = {(p,a), (a,p)lpErun(T), aEnm(s)& ct(path(p))=ct(path(a))}.

Using Lemma 2.3.2, it is straightforward to check that R is a weak back and forth bisimulation
between T and s.
"~" Suppose TtiTbfs. Let R CnmllXrunll be the maximal weak back and forth bisimulation
between r and s. Define

R' = {(last(p),last(o))lpR o}.

Clearly r R' s. We show that R' is a branching bisimulation.
R' is symmetric because R is.

160

Suppose r0 R' s0 • Then there are p, a with pR a, last(p)=ro and last(<1) =_s?. S~ppose that
r 0 -27 r'. Let p' = p (r 0, (r 0 , a, r')). In the proof of the transfer property we distmgwsh between
two cases.

a · ' h th t ' ~ ' ' d 'R ' 1. a=l=T. Since p~p' and pR a, there exist a1, a2, <1 sue a a~<11 ~<12 ~<J an P a.

Since a2 ~a', there exists a p such that p~ p' and pR 02. But since the last transition of p'

has label a, p = p' so that p' R a2• Because a1 ~ a2, there exists a p such that p ~ p ...2!..7 p'

and p R a1• Now use that R has the X-property to obtain PR 01. But this gives us the
transfer property:

s0 ~end(a1)..2.7end(a2), r0 R'end(a1) and r'R'end(<J2).

2. a=T. Since p~p' and pRo, there is an n;;;.O and there are a; for O~i~n such that a0=a,

for O<i~n: <1;- 1 ~o;, and p' Ra •.
If n =O then r' R' s0 and we have proved the transfer property. If n >0 then we can go
back with an £-move from a. to a. -I· A first possibility is that p' can simulate this step by
doing nothing: p' Ra._ 1. If this is the case then either n = l and we are ready, or we can
go back one more t"-step from On-I to a.-2 • Repeating this, we either find p'Ra0 , in
which case we have proved the transfer property for branching bisimulation since r' R' s 0 ,

or, for some m >0 with p' Ram, we have that a backward step to am -1 is simulated by a
backward step p~p~p' with pR am-I· In this case we use the X-property (Lemma 2.2.5)

to obtain p Ram_ 1. This gives us the transfer property for branching bisimulation since:

0

Now we have shown that the back and forth variant of weak bisimulation coincides with
branching bisimulation, it becomes natural to consider the back and forth variant of branching
bisimulation. Let the symbol <t±bbf denote this equivalence. One can easily prove the following

2.3.4. THEOREM. Let Ee= (S,A, --1) be a LTS. Then for all r,s ES:

Ee:r 't±bbfs ~ ct:r tlb s.

PROOF. Similar to but much easier than the proof of Theorem 2.3.3. 0

As a corollary of Theorem 2.3.3 and Theorem 2.3.4 one can show that also the back and forth
versions of some equivalences in between <t±< and tlh coincide with <t±b· Consider the following
two definitions:

2.3.5. DEFINITION. Let Ee=(S,A,--1) be a L TS. A relation R C. S X S is called a ri-bisimulation if
it is symmetric and satisfies: if r Rs and r..2.7r', then either o:=T and r' R s, or there exist
S1tS2,s' such that s ~s 1 ..2.7s2 ~s', r R s 1 and r' R s'.

Two states r,s are ri-bisimilar, abbreViated Ee:r <t±~ s or r <t± ~ s, if there exists an ri-bisimulation
relating r and s.

2.3.6. DEFINITION. Let i!e=(S,A,--1) be a LTS. A relation R r;.SXS is called a delay bisimula­
tion if it is symmetric and satisfies: if r R sand r..2.7r', then either a=r and r' R s, or there exist
s"s' such that s ~s 1 ..2.7s' and r' R s'.

Two states r,s are delay bisimilar, abbreviated ll:r <t±d s or r <t±d s, if there exists a delay bisimula­
tion relating r and s.

The notion of ri-bisimulation was first introduced by BAETEN & VAN GLABBEEK [3] as a finer

161

version of observation equivalence. Delay bisimulations are used by WEULAND [21]. A variant
of delay bisimulation - only differing in the treatment of divergence - first appeared in MILNER
[13], also under the name observational equivalence. From the definitions it follows right away
that ttb !;:;; tt11 , ttb !;:;; tta, tt11 !;:;; tt.,. and tla !;:;; tt.,.. The example of Figure 2 can be used to
show that the second and third inclusion are strict. The example of Figure 3 illustrates the
strictness of the other two inclusions.

2.3.7. CoROLI..A.R.Y. Let tt71bf and ttdbf denote the back and forth variants of71- and delay bisimu­
lation respectively. Let t't=(S,A,-7) be a LTS. Thenfor all r,seS:

@:.r tt11bfs # @:.r ttb s # @:.r ttdbfs.

PllooF. Suppose r tl'lhfs. Then there exists a back and forth 71-bisimulation relating r and s.
But any back and forth 71-bisimulation is also a weak back and forth bisimulation. Therefore
r tt.,.b1s. But this implies r ttb s by Theorem 2.3.3.
Suppose r ttb s. Then r ttbbfs by Theorem 2.3.4. So there exists a back and forth branching
bisimulation between rand s. But any back and forth branching bisimulation is also a back and
forth 71-bisimulation. Therefore r tt.,,,,1s.
The remaining two implications can be proved in the same way. D

3. ALGEBRAIC CHARACTERIZATION

In this section we show that observation equivalence can be characterized in terms of abstrac­
tion homomorphims that preserve successors, whereas branching bisimulation corresponds with
abstraction homomorphisms which preserve both successors and predecessors.

3.1. DEFINITION. A category of labelled computations (CLAC) e = (S, C, src, trg, ;, id, A, o) is
defined as follows:

(S, C, src, trg, ; , id) is a category, i.e. S is a set of objects called states; C is a set of arrows
called computations; src,trg: c~s are functions associating to every computation its source
and target; the binary operation;: cxc~c of concatenation is partial: p=p';p" is defined
iff trg(p')=src(p"), with src(p)=src(p') and trg(p)=trg(p''); concatenation has an identity
id(s) (both left and right) for each states and is associative;
A is a set of actions; the silent action T is not in A;
o : C ~A* is a Jabeling function which respects concatenation, i.e. o (p;p') = o (p) o (p').

On computations we define a prefix preorder: we have p1 .:;,P2 iff there is a computation a with
P2 =p1 ;a. We let succ(p)= {aJpo:;,a} and pred(p)= {aJao:;,p}.

3.2. DEFINITION. Let ~=(S,A,-7) be a LTS. Its associated CLAC is
~ii) = (S, C, src, trg, ;, id, A, o) where C is the set runfi of runs of <!e. src(p)= first(p),
trg(p)=last(p), operation ';' is run concatenation, id(s) is the empty run from s, and o(p) is
obtained from label(p) by removing all 'T's.

3.3. DEFINITION. Let e = (S, C, src, trg,;' id, A, 0) and e = (S', C', src', trg, ;', icl, A', o') be
CLAC's. A pair of surjective functions k=<f,g>, f: c~C' and g :S~S' is a forward abstrac­
tion homomorphism, and we write e-.is.?fa e' iff:
i) g(src(p)) = src'(f(p)) and g(trg(p)) = trg(j(p)),
ii) f(p;a) = f(p) ;'f(a) andf(id(s)) = icf(g(s)),
iii) o(p) = o'(f (p)) and
iv) f(succ(p)) = succ'(f(p)), wherefis extended to sets.
In words, a forward abstraction homomorphism must respect sources, targets, concatenations,
identities, observation and successors. A pair k = <f ,g > is called a back and forth abstraction
homomorphism, and we write e~1e, iff, besides (i)-(iv), it satisfies also:
v) f(pred(p)) = precl(f (p)),

162

i.e. if it respects predecessors.

3.4. DEFINITION. Let £i= (S,A, ~) be a L TS. A p~ of state: r,s ES is forward prese~i~g, and
we write rtitpS, iff there exist e and k =<f,~> with ~~~fa e and g<:)=g(s). S~arly, a
pair of states r,s eS is back and forth preserving, and we wnte r ttbfp s, iff there exist e and
k = <f,g > with ~l:t)~e and g(r)=g(s).

The following theorem says that forward and back .and !~rth a?straction ~omomorphisms
correspond to weak observation equivalence and branching bistmulation respectively.

3.5. TliEOREM. Let ~=(S,A,~) be a LTS. Then, given r,seS, we have

a) rtttps iff rtiTs;
b) r tlbtp s iff rt:zTbfs.
PROOF. We sketch the proof of (a). The proof of (b) is similar. Define a one-to-one correspon­
dence between weak bisimulation equivalences and forward abstraction homomorphisms. When
going from homomorphisms <j,g > to bisimulations -, the construction is straightforward,
assuming s-s' iff g(s)=g(s'). In the other direction it is convenient first to extend,_ to com­
putations letting p-a iff src(p)-src(a), trg(p)=trg(a) and o(p)=o(a), and then to take
f(p)=pl_ andg(s)=sl_.
The result follows since if a pair belongs to a bisimulation, it also belongs to a bisimulation
equivalence. D

3.6. R.EMAiuc:. CLAC's and abstraction homomorphisms have been introduced here for a label­
ling function o ranging over A•. However, exactly the same definition (for both the forward and
the back and forth case) could be given in terms of a different observation function opo, yielding
for instance a partial ordering observation opo(P) of a computation p. This allows us to develop
an algebraic theory of observation equivalence, in both its traditional version and its branching
variant, also for true concurrency.

4. LoGICAL CHARACTERIZATION

Theorem 2.3.3 suggests a logical characterization of branching bisimulation which is a variant of
the Hennessy-Milner logic [10]. The characterization relies on a well-known theorem from HEN­
NESSY & MILNER [10], which we recall first.

4.1. DEFINITION. Let A be a given alphabet of symbols. The set HML(A), often abbreviated to
HML, of Hennessy-Milner logic formulas over A is given by the following grammar:

cj>:: = T I cj>/\cj> I -r4> I (tx.)cj>.

Let t:F.=(S,A,-7) be a LTS. The satisfaction relation 1= ~ SXHML is the least relation such that:
s 1= T for all seS,
s 1=4>/\1/1iffs1=q, and s 1=1/i,
s l=-,cj> iff nots l=cj>,
s 1= <a.>4> iff for some t eS: s ...f!jt and t 1=cj>.

The following notations are standard:
F stands for .,T,
cj>Vl/J stands for -,(-,cj>/\--,1/J),
[a]4> stands for -,<a>-,cj>.

Let e be a set of logical formulas with an associated satisfaction relation. Two states r,s eS are
e.equivalent, abbreviated t:F.:r -es or r -es, if for all formulas 4> in e: s 1=q, <:=> t 1=q,.

Transition system ~ is called image finite if for all s e S and a eA the set { t Is --!!.? t} is finite.

163

4.2. THEOREM ([10]). Let lt=(S,A, ~) be an image finite LTS. Then for all r,s ES:

r ~ s ~ r - HML s.

4.3. DEFINITION. Let A be a given alphabet and let k range over A,. The set BFL(A) (or just
BFL) of back and forth logic formulas over A is defined by the following grammar:

cp::=T j ip/\<j> I -i</> I <k><I> I <~k><j>.
Let et=(S,A,~) be a LTS. The satisfaction relation 1= C runaXBFL is the least relation such
that:

p 1= T for all pEruna,
pi=<f>/\lji iff pi=</> and pl=lji,
p 1= -,cp itf not p 1= I/>,
p "F <k ></> iff for some run p': p ~ p' and p' 1= <j>,

pl=<~k><t> ifffor some run p': p'~p and p'1=ip.

The satisfaction relation 1= c; S X BFL is defined by: s 1= <j> iff (s,A) 1= <j>.

4.4. THEOREM. Let CY=(S,A, ~)be a LTS with an image finite double arrow relation (i.e. for all

rES and k EA, the set {s I r ~ s} is finite). Then for all r,s ES:

r ~b s ~ r '""BFL s.

PROOF. Let r,s ES with

(1)

By Theorem 2.3.3, this is equivalent to:

(2)

Consider the LTS bf (Cl), which is obtained by replacing the single step transitions between
states in S with the corresponding many step forward and. backward arrows between paths in Ci'..

More precisely, we define:

bf(Cl) = (runll, Abf• ~bf),

where:

Abf = A, U { - k I k EA,}

and for p,p'Erunll and kEA,:

~ p~p', and

~ p'~p.

Observe that any weak back and forth bisimulation on (£ is a strong bisimulation on bf (Cl) and
vice versa. Thus, (2) is equivalent to:

bf (Cl) : (r, A) ~ (s, A). (3)

Because the double arrow relation in (£ is image finite and because we only consider finite runs,
it easily follows that bf (Cl) is image finite. This means that we can use Theorem 4.2 to obtain
that (3) is equivalent to:

bf (Cl) : (r, A) '""HML(A.,) (s, J..). (4)

Let f be the bijective mapping that associates to each Hennessy-Milner formula in HML(Abf) a

164

back and forth formula in BFL (A) by replacing each /1 - " 'by a /1 +-". Let p E run /1 and
cpeHML(Abf)· A simple inductive argument gives that pt=cp relative to bf(&:) iff pt=/(cp) relative
to«.. Therefore we may conclude that (4) is equivalent to:

@,: r "'BFL(A) S. (5)

The theorem now follows from the equivalence of (1)-(5). 0

4.5. ExAMPLE. Let p,q be as in Figure 2, and r,s as in Figure 3. Let [k] = ...,<k >..., and
[+-k] = -,<+-k>-,.
If qi= <a>[+-a]T then qt=q, while p II cp.
If cj>' =[a][b]<+-b><c>T then rt=q,' whiles II If>'.

REFERENCES

[1] P. AcZEL (1988): Non-wellfounded sets, CSLI Lecture Notes No.14, Stanford University.
[2] A. ARNOLD & A. DICKY (1989): An algebraic characterization of transition system

equivalences. Information and Computation 82, pp. 198-229.
[3] J.C.M. BAETEN & R.J. VAN GLABBEEK (1987): Another look at abstraction in process algebra.

In: Proceedings ICALP 87, Karlsruhe {Th. Ottman, ed.), LNCS 267, Springer-Verlag, pp.
84-94.

[4] M.C. BROWNE, E.M. CLARKE & 0. GRUMBERG (1988): Characterizing finite Kripke struc­
tures in propositional temporal logic. Theoretical Computer Science 59(1,2), pp. 115-131.

[5] I. CASTELLANI (1987): Bisimulations and abstraction homomorphisms. Journal of Computer
and System Sciences 34, pp. 210-235.

[6] I. CASTELLANI, P. FRANCESCHI & U. MONTANARI (1983): Labeled event structures: a model
for observable concurrency. In: Proceedings IFIP TC2 Working Conference on Formal
Description of Programming Concepts - II, Garmisch (D. Bj0rner, ed.), North-Holland, pp.
383-400.

[7] R. DE NICOLA & F.W. VAANDRAGER (1990): Three logics for branching bisimu/ation
(extended abstract). In: Proceedings 5'11 Annual Symposium on Logic in Computer Science
(LICS 90), Philadelphia, USA, IEEE Computer Society Press, Los Alamitos, CA, pp. 118-
129, full version to appear as CWI Report CS-R9012.

[8] E.A. EMERsoN & J.Y. HALPERN (1986): 'Sometimes' and 'Not Never' revisited: on branching
time versus linear time temporal logic. JACM 33(1), pp. 151-178.

[9] R.J. VAN GLABBEEK & W.P. WEULAND (1989): Branching time and abstraction in bisimula­
tion semantics (extended abstract). In: Information Processing 89 (G.X. Ritter, ed.), Elsevier
Science Publishers B.V. (North Holland), pp. 613-618.

[IO] M. HENNESSY & R. MILNER (1985): Algebraic laws for nondeterminism and concurrency.
JACM 32(1), pp. 137-161.

[11] M. HENNESSY & C. STIRLING (1985): The power of the future perfect in program logics.
Information and Control 67, pp. 23-52.

[12] R. MILNER (1980): A Calculus of Communicating Systems, LNCS 92, Springer-Verlag.
[13] R. MILNER (1981): Modal characterisation of observable machine behaviour. In: Proceedings

CAAP 81 (G. Astesiano & C. Bohm, eds.), LNCS 112, Springer-Verlag, pp. 25-34.
[14] R. MILNER (1983): Calculi for synchrony and asynchrony. Theoretical Computer Science 25,

pp. 267-310.
[15] R. MILNER (1989): Communication and concurrency, Prentice-Hall International.
[16] U. MONTANARI & M. SGAMMA (1989): Canonica/ representatives for observational

equivalence classes. In: Resolution Of Equations In Algebraic Structures, Vol. I, Algebraic
Techniques (H. Aft-Kaci & M. Nivat, eds.), Academic Press, pp. 293-319.

[17] R. PAIGE & R. TARJAN (1987): Three partition refinement algorithms. SIAM Journal on
Computing 16(6), pp. 973-989.

[18] D.M.R. PARK (1981): Concurrency and automata on infinite sequences. In: Proceedings 5th

165

GI Conference (P. Deussen, ed.), LNCS 104, Springer-Verlag, pp. 167-183.
[19] J. SIFAKIS (1984): Property-preserving homomorphisms of transition systems. In: Proceedings

Logics of Programs, 1983 (E. Clarke & D. Kozen, eds.}, LNCS 164, Springer-Verlag, pp.
458-473.

[20] C. STIRLING (1990): Modal and temporal logics. In: Handbook of Logic in Computer Sci­
ence, Vol I (S. Abramsky, ed.}, to appear.

[21] W.P. WEULAND (1989): Synchrony and asynchrony in process algebra. Ph.D. Thesis,
University of Amsterdam.

