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Abstract

Our general motivation is to answer the question: “What is a model
of concurrent computation?”. As a preliminary exercise, we study
dataflow networks. We develop a very general notion of model for
asynchronous networks. The “Kahn Principle”, which states that a
network built from functional nodes is the least fixpoint of a system
of equations associated with the network, has become a benchmark
for the formal study of dataflow networks. We formulate a gener-
alized version of the Kahn Principle, which applies to a large class of
non-deterministic systems, in the setting of abstract asynchronous net-
works; and prove that the Kahn Principle holds under certain natural
assumptions on the model. We also show that a class of models, which
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represent networks that compute over arbitrary event structures, gen-
eralizing dataflow networks which compute over streams, satisfy these
assumptions.

1 Introduction

There are by now a proliferation of mathematical structures which have been
proposed to model concurrent systems. These include synchronization trees
[Win85], event structures [Win86], Petri nets [Rei85], failure sets [Hoa85],
trace monoids [Maz89], pomsets [Pra82] and many others. One is then led
to ask: what general structural conditions should a model of concurrency
satisfy? There is an obvious analogy with the λ-calculus, where a consensus
on the appropriate notions of model only emerged some time after a number
of particular model constructions had been discovered (cf. [Bar84]). Indeed,
we would like to pose the question:

“What is a model of concurrent computation?”

in the same spirit as the title of Meyer’s excellent paper [Mey82].
One important disanalogy with the λ-calculus is that the field of con-

current computation so far lacks a canonical syntax; and at a deeper level,
there is as yet no analogue of Church’s thesis for concurrent computation.
The various formalisms which have been proposed actually draw inspira-
tion from a highly varied phenomenology: synchronous, asynchronous, real-
time, dataflow, shared-memory, declarative, object-oriented, systolic, SIMD,
neural nets, etc. etc. In these circumstances, some more modest and cir-
cumscribed attempts at synthesis seem justified. At the same time, merely
finding general definitions which subsume a number of concrete models is
not enough; good definitions should show their cutting edge by yielding some
non-trivial results.

In the present study, we start from a particular class of concurrent sys-
tems, the non-deterministic dataflow networks [Par82]. A problem which
has established itself as a benchmark for the formal study of such systems is
the Kahn Principle [Kah74], which states that if a network is composed of
functional nodes, its behaviour is captured by the least fixpoint of a system
of equations associated with the network in a natural way.

We attempt to formulate a notion of model for such networks in the most
general and abstract form which still allows us to prove the Kahn Principle.
In this way, we hope both to shed light on the initial motivating question of
the axiomatics of process semantics, and to expose the essence of the Kahn
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Principle. In the course of doing so, we shall attain a level of generality,
both as regards the notion of asynchronous network we consider, and the
statement of the Kahn Principle, far in excess of anything we have seen in
the literature.

The structure of the remainder of the paper is as follows. In section 2,
we review some background on domain theory and dataflow networks. Then
in section 3 we introduce our general notion of model, state a generalized
version of the Kahn Principle, and prove that certain conditions on models
are sufficient to imply the Kahn Principle. As far as I know, these are the
first results of this form, as opposed to proofs of the Kahn Principle for
specific models. Some directions for further research are given in section 4.

2 Background

We begin with a review of some notions in Domain theory; see e.g. [GS89]
for further information and motivation.

We write Fin(X) for the set of finite subsets of a set X; and A ⊆f X for
the assertion that A is a finite subset of X. A poset is a structure (P,6),
where P is a set, and 6 a reflexive, transitive, anti-symmetric relation on P .
Let (P,6) be a poset. We write ↓x = {y ∈ P | y 6 x}, ↑x = {y ∈ P | y > x}
for x ∈ P ; and ↓X =

⋃
x∈X ↓x, ↑X =

⋂
x∈X ↑x for X ⊆ P . A subset S ⊆ P

is directed if every finite subset of S has an upper bound in S. A poset is
directed-complete if every directed subset S has a least upper bound, written⊔
S. A cpo (complete partial order) is a directed-complete poset with a least

element, written ⊥. An element b ∈ D of a cpo (D,⊑) is compact if whenever
S ⊆ D is directed, and b ⊑

⊔
S, then b ⊑ d for some d ∈ S. We write K(D)

for the set of compact elements of D, and K(d) = ↓d ∩K(D) for d ∈ D. A
cpo D is algebraic if for all d ∈ D, K(d) is directed, and d =

⊔
K(d); and

ω-algebraic if in addition K(D) is countable. An ideal over a poset P is a
directed subset I ⊆ P such that x 6 y ∈ I ⇒ x ∈ I. The ideal completion

of a poset P is the set of ideals over P , ordered by inclusion. If P has a
least element, this is an algebraic cpo; it is ω-algebraic if P is countable.

A map f : D → E of cpo’s is continuous if for every directed subset
S ⊆ D, f(

⊔
S) =

⊔
f(S); and strict if f(⊥D) = ⊥E. A subset U ⊆ D of a

cpo D is Scott-open if U = ↑U , and whenever
⊔
S ∈ U for a directed subset

S ⊆ D, then S ∩ U 6= ∅. The Scott-open subsets form a topology on D;
a function between cpo’s is continuous as defined above iff it is continuous
in the topological sense with respect to the Scott topology. The Scott-open
subsets of an algebraic cpoD are those of the form

⋃
i∈I ↑bi, where bi ∈ K(D)
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for all i ∈ I.
We define some standard constructions on cpo’s. Given a set X, the

algebraic cpo of streams over X, Str(X), is the set of finite and infinite
sequences over X, with the prefix ordering. If D, E are cpo’s, [D → E] is
the cpo of continuous functions from D to E, with the pointwise ordering; if
{Di}i∈I is a family of cpo’s,

∏
i∈I Di is the cartesian product cpo, with the

componentwise ordering. If f : D → D is a continuous map on a cpo D, it
has a least fixed point, defined by

lfp(f) =
⊔

k∈ω

fk(⊥).

We shall assume some small knowledge of category theory in the sequel;
suitable references are [ML71, AM75]. We write Cpo for the category of
cpo’s and continuous maps, Cpos for the subcategory of strict continuous
maps; and ωAlg, ωAlgs for the corresponding categories of ω-algebraic
cpo’s.

We define the weak covering relation on a poset (P,6) by:

x � y
def
⇐⇒ x 6 y & ∀z. (x 6 z 6 y ⇒ (x = z or y = z))

and the covering relation by

x ≺ y
def
⇐⇒ x � y & x 6= y.

The computational intuition behind the covering relation as used in Domain
theory is that it represents an atomic computation step, or the occurrence
of an atomic event; this idea can be traced back to [KP78].

A covering sequence in an algebraic cpoD is a non-empty finite or infinite
sequence of compact elements (bn), such that b0 = ⊥, and bn ≺ bn+1 for all
terms bn, bn+1 in the sequence. A covering sequence can be taken as a
representation of d =

⊔
bn, which gives a step-by-step description of how it

was computed.
Given an algebraic cpoD, we can form the algebraic cpo C(D) of covering

sequences over D, with the prefix ordering. There is a continuous map
µ : C(D) → D, with µ((bn)) =

⊔
bn.

Finally, we define the relative covering relation in D by:

[b, c] ⊑ d
def
⇐⇒ b, c ∈ K(d) & b ≺ c.

We can think of b ≺ c as an atomic step at some finite stage in the compu-
tation of d.
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A prime event structure [Win86] is a structure E = (E,6,Con), where
(E,6) is a countable poset, and Con ⊆ Fin(E) a family of finite subsets of
E, satisfying:

• ∀e ∈ E. (↓e is finite).

• ∀e ∈ E. ({e} ∈ Con).

• A ⊆ B ∈ Con ⇒ A ∈ Con.

• A ∈ Con ⇒ ↓A ∈ Con.

We refer to elements of E as events, to 6 as the causality or enabling

relation, and to Con as the consistency predicate. A configuration of E is a
set x ⊆ E such that

• e 6 e′ ∈ x ⇒ e ∈ x

• A ⊆f x ⇒ A ∈ Con.

The set |E| of configurations of E , ordered by inclusion, is an algebraic
cpo; the compact elements are the finite configurations. Note that in |E|,
x ≺ y iff y \x = {e} for some e ∈ E; and that if x ⊑ y for compact elements
x, y, there is a sequence e1, . . . , en such that x = z0 ≺ · · · ≺ zn = y,
where zi = x ∪ {e1, . . . , ei}. The algebraic cpo’s which arise from prime
event structures are characterized in [Win86]; we refer to them as event

domains. They form quite an extensive class, containing models of type-free
and polymorphic lambda calculi (using stable functions), as well as the usual
datatypes of functional programming [CGW87].

We now turn to the dataflow model of concurrent computation. Consider
a process network, represented by a directed (multi)graph G = (N,A, s, t),
whereN is the set of nodes, A the set of arcs, and s, t : A→ N are the source
and target functions. Each node is labelled with a sequential process, while
each arc corresponds to a buffered message channel, which behaves like an
unbounded FIFO queue. In addition to the usual sequential constructs, each
node n can read from its input channels (those α with t(α) = n), and write
to its output channels (those α with s(α) = n). Although this computational
model might be criticised as unrealistic because of the unbounded buffering,
this very feature enables a high degree of parallelism, and the model is
appealingly simple, and quite close to a number of actually proposed and
implemented dataflow languages and architectures [WA85, KLP79, KM77,
GGKW84]. Kahn’s brilliant insight in his seminal paper [Kah74] was that
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the behaviour of such networks could be captured denotationally in a very
simple and elegant fashion, using some elementary domain theory. The
key idea is to model the behaviour of each message channel α, on which
atomic values from the set Dα can be transmitted, as a stream from the
domain Str(Dα). Using standard denotational techniques, the behaviour of
the process at node n, with input channels α1, . . . , αk, and output channnels
β1, . . . , βl, can be modelled by a continuous function

f : Str(Dα1
)× · · · × Str(Dαk

) → Str(Dβ1
)× · · · × Str(Dβl

).

The behaviour of the whole system can be modelled by setting up a system
of equations, one for each channel in the network, of the overall form

X = G(X),

where G :
∏

α Str(Dα) →
∏

α Str(Dα); and solving by taking the least fixed
point lfp(G) ∈

∏
α Str(Dα).

It is worth noting that Kahn never proved the coincidence of this de-
notational semantics with an operational semantics based directly on the
computational model sketched above; indeed, he never defined any formal
operational semantics for dataflow networks. Nevertheless, no-one has ever
seriously doubted the accuracy of his semantics. A number of subsequent
attempts have been made to fill this gap in the theory [Fau82, LS88]; it has
proved surprisingly difficult to give a clean and elegant account.

In another direction, many attempts have been made to overcome one
crucial limitation built into Kahn’s framework; namely, the assumption that
all processes in the network are deterministic, and hence their behaviour
can be described by functions. This limitation must be overcome in order
for these networks to be sufficiently expressive to model general-purpose
concurrent systems (see e.g. [Hen82, Abr84]). However, as soon as non-
deterministic processes are allowed, the denotational description of dataflow
networks becomes much more complicated. In fact, naive attempts to ex-
tend Kahn’s model have been shown to be doomed to failure by certain
“anomalies” which were found by Keller [Kel78] and Brock and Ackerman
[BA81]. In particular, Brock and Ackerman exhibited a pair of deterministic
processes N1, N2 with the same Kahn semantics, and a non-deterministic
context C[·] such that C[N1] 6= C[N2] with respect to the intended opera-
tional semantics. The main point of this is to show that in the presence of
non-determinism, the behaviour of a system is no longer adequately mod-
elled by a “history tuple” d ∈

∏
α Str(Dα). Such a tuple records the order

in which values are realized on each channel, but fails to record causality
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relations which may exist between items of data on different channels. A
number of more detailed models have been proposed which reflect this kind
of information. Two in particular have received some attention.

Definition 2.1 Let S be a set of channel names, where for each α ∈ S,
there is a set Dα of atomic data which can be transmitted over α. The
domain of linear traces over S, LTrS, is the stream domain Str(ES), where

ES = {(α, d) | α ∈ S, d ∈ Dα}.

The idea is that a linear trace represents a sequential observer’s view of a
computation in the network, as a sequence of atomic events (α, d)—namely,
the production of the atomic value d on the channel α. We can regard
linear traces as more detailed—perhaps even over-specified—representations
of history tuples; indeed, there is an obvious “result” or “output” map
µS : LTrS →

∏
α∈S Str(Dα). It is a useful exercise to verify that this is strict

and continuous.
Given S ⊇ T , we can define a (strict, continuous) restriction map, ρST :

LTrS → LTrT , where ρ
S
T (s) is obtained by deleting all (α, d) from s such that

α 6∈ T .
In the linear trace model, a process is modelled by a pair (S,P ), where

S is the set of channels incident to the process, and P ⊆ LTrS describes
its (possibly non-deterministic) behaviour. The key definition is that of the
operation of network composition, which glues together a family of processes
along their coincident channels. Let {(Sj , Pj)}j∈J be a family of processes;
we define ‖j∈J (Sj, Pj) = (S,P ), where

S =
⋃

j∈J Sj

P = {s ∈ LTrS | ∀j ∈ J. (ρSSj
(s) ∈ Pj)}.

Note that this definition of the behaviour of a net is quite different in
form to the Kahn semantics; we have replaced continuous functions by sets
of traces, and the iterative construction of a least fixed point by a product-
like construction. It thus becomes a matter of some importance to see if this
definition actually coincides with the Kahn semantics in the case when each
node in the network is in fact computing some continuous function. (Of
course, we must firstly define what that means in terms of sets of traces).
We refer to this task as the proof of the Kahn Principle for the linear trace
model.
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The linear trace model has recently been proved to be fully abstract in a
certain sense [Jon89]; however, some other models have also received consid-
erable attention, and avoid the apparent over-specification of linear traces.
In particular there are the pomset models [Pra82], which were inspired by
Brock and Ackerman’s scenarios [BA81]. The idea is to allow partial orders
of events, rather than insisting on purely sequential observations.

Definition 2.2 The domain of partially ordered traces PTrS is the ideal
completion of the finite partially-ordered traces with the prefix ordering,
where:

• A finite partially-ordered trace is an isomorphism type of finite labelled
partial orders (V,6, ℓ), where ℓ : V → ES, and for each α ∈ S, the
subposet

{v ∈ V | ∃d ∈ Dα(ℓ(v) = (α, d))}

is linearly ordered.

• The prefix ordering is defined on representatives by:

(V,6, ℓ) ⊑ (V ′,6′, ℓ′)
def
⇐⇒ V ⊆ V ′ & 6 = 6′ ∩ V 2 & ℓ = ℓ′ ↾ V

& v 6′ v′ ∈ V ⇒ v ∈ V.

Note that, if we identify sequences with isomorphism types of labelled linear

orders, we have the inclusion LTrS ⊆ PTrS . Once again, there is an evident
definition of a restriction map ρST : PTrS → PTrT for S ⊇ T , and, by virtue
of the stipulation that events at each channel are linearly ordered, a map
µS : PTrS →

∏
α∈S Str(Dα).

We can then define the notion of network composition in the partially
ordered trace model in exactly the same way as we did for the linear traces,
modulo the different notions of “trace” and “restriction”; and formulate
the Kahn Principle in exactly the same terms. The main previous work
on proving the Kahn Principle for (essentially) the partially ordered trace
model is described in [GP87].

Our aim is firstly to extract the essential properties of this situation to
arrive at a general notion of model, and then to prove the Kahn principle in
this general setting. Apart from yielding the particular results for the linear
and partially-ordered trace models for dataflow networks as instances of our
general result, there are a number of other insights that we hope this work
provides:
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• The abstract networks we consider compute over a much broader class
of domains than just the stream domains of dataflow—our results ap-
ply at least to the event domains.

• The version of the Kahn Principle we formulate and prove in fact
applies not only to the deterministic case, but to a broad class of non-
deterministic networks—namely those in which each node computes
one of a set of possible continuous functions. This includes for example
the so-called “infinity-fair merge”, though not the “angelic merge”
[PS88]. As far as I know, this major extension to the Kahn Principle
is new, even for the specific models described above.

• Although our notion of model is abstracted from the dataflow fam-
ily, and cannot be claimed to be fully general, we hope it is a useful
step along the way to answering the question raised in the opening
paragraph, namely: “what is a model of concurrent computation?”.

3 Results

3.1 Models

We assume a class Chan of channel names, ranged over by α, β, γ. We refer
to sets of channels as sorts; the class of sorts, partially ordered by inclusion,
is denoted by Sort. We use S, T , U to range over sorts.

Definition 3.1 A model M = (T ,V, µ) comprises:

• functors T ,V : Sortop → Cpos

• a natural transformation µ : T
.
→ V

such that V preserves limits.

We refer to TS as the traces of sort S, VS as the values of sort S, and µ
as the output or evaluation map.

More explicitly, T assigns to each sort S a cpo TS , and to each S ⊇ T a
strict, continuous restriction map ρST : TS → TT , such that:

• S ⊇ T ⊇ U ⇒ ρTU ◦ ρST = ρSU

• ρSS = idTS .
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Similarly, V assigns a cpo VS to each sort S. The requirement that V
preserves limits amounts to asking that V takes unions in Sort to products

in Cpos. Since each sort is the union of its singletons, this means that if Vα

is the value domain of sort {α},

VS =
∏

α∈S

Vα;

and that the restriction maps will be the projections onto sub-products: for
S ⊇ T , πST : VS → VT . Thus V is completely determined by the Vα.

Finally, for each sort S there is a strict, continuous map µS : TS → VS ,
such that for all S ⊇ T ,

µT ◦ ρST = πST ◦ µS .

Notation. We write νST = µT ◦ ρST = πST ◦ µS.

Examples

(1). Firstly, from the discussion in the previous Section, it is easy to see
that both linear and partially-ordered traces yield examples of models. More
precisely, for each channel α fix a set Dα of atomic values; then define Vα =
Str(Dα), and TS = PTrS (LTrS), ρ

S
T , µS as in Section 2. The verification of

the required functoriality and naturality conditions is straightforward.
(2). We now describe a general class of models. For each channel α, fix
an event structure Eα = (Eα,6α,Conα). Define Vα = |Eα|, the domain
of configurations over Eα. For a sort S, we define ES =

∏
α∈S Eα, where

the product of event structures is defined as their disjoint union [Win86]:
ES = (ES ,6S,ConS), where

ES
def
= {(α, e) | α ∈ S, e ∈ Eα}

(α, e) 6S (β, e′)
def
⇐⇒ α = β & e 6α e

′

A ∈ ConS
def
⇐⇒ ∀α ∈ S. ({e | (α, e) ∈ A} ∈ Conα).

We have [Win86]: |ES | ∼=
∏

α∈S |Eα|, and we shall take VS = |ES |. For
S ⊇ T , the projections πST : |ES | → |ET | are defined by πST (x) = x ∩ ET .

In order to define the traces over ES , we follow the idea that

traces = data + causality.

Thus a trace is a configuration together with extra information about
the order in which data was actually produced in a particular computation,
reflecting some causal constraints.
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Definition 3.2 A trace over an event structure E = (E,6,Con) is a pair
t = (xt,6t), where xt ∈ |E|, and 6t is a partial order on xt such that:

• ∀e ∈ xt. ({e
′ ∈ xt | e

′ 6t e} is finite)

• (6 ∩ x2t ) ⊆ 6t.

Traces are partially ordered as follows:

t ⊑ t′
def
⇐⇒ xt ⊆ xt′ & 6t = 6t′ ∩ x

2
t & (e 6t′ e

′ ∈ xt ⇒ e ∈ xt).

Clearly, traces with this ordering form an algebraic cpo PE . A trace t
is linear if 6t is a linear order; the linear traces also form an algebraic cpo,
LE , and LE ⊆ PE . The compact elements of PE are those t for which xt is
a finite configuration of |E|. Also, t ≺ u in PE iff xu \ xt = {e} for some e
which is maximal in 6u. The following construction on trace domains will
be useful. Given t ∈ PE , and X ⊆ xt, we define t↾X by:

xt↾X = {e ∈ xt | ∃e
′ ∈ X. e 6t e

′}

6t↾X = 6t ∩(xt↾X)2.

Clearly t↾X is a well-defined trace, and t↾X ⊑ t; moreover, X ⊆ Y ⇒
t↾x ⊑ t↾Y . This construction can also be applied to LE .

We can now complete the definitions for our two families of models, MP

(partially ordered traces over event structures) and ML (the sub-model of
linearly ordered traces). The trace domains forMP are defined by TS = PES,
and for ML by TS = LES. The evaluation maps are defined for both by

µS(t) = xt,

and the restriction maps by

ρST (t) = (xt ∩ ET ,6t ∩ E
2
T ),

for S ⊇ T .
The verification that these definitions yield models is straightforward.

Note that MP and ML are really families of models, parameterized by the
choice of event structures Eα for each α. Our results will apply to all models
in these families.

We now show how the concrete dataflow models of (1) are special cases
of MP and ML. Fix a set Dα for each channel α, and define an event
structure Eα as follows:

11



• Eα = {(s, sd) | s ∈ D⋆
α, d ∈ Dα}.

• (s, sd) 6α (s′, s′d′)
def
⇐⇒ sd ⊑ s′d′.

• A ∈ Con
def
⇐⇒ ∀(s, sd), (s′, s′d′) ∈ A.(sd ⊑ s′d′ or s′d′ ⊑ sd).

It can easily be verified that |Eα| ∼= Str(Dα). Also, we have

Proposition 3.3 For all sorts S,

PTrS ∼= PES

LTrS ∼= LES.

Proof. Given t ∈ K(PES), we define a labelled poset (xt,6t, ℓ), where

ℓ((α, (s, sd))) = (α, d).

This defines a map φ : K(PES) → K(PTrS). (Note that the condition
(6S ∩xt) ⊆6t is needed to ensure that α-events are linearly ordered in
φ(t) for each α ∈ S). Now consider a trace in K(PTrS) with representative
labelled poset (V,6, ℓ). For each v ∈ V , let ℓ(v) = (α, d). The set of
α-labelled predecessors of v is linearly ordered, say

v1 < · · · < vn < v,

and hence yields a finite sequence s = d1 · · · dn ∈ K(Str(Dα)), where di =
snd ◦ ℓ(vi), i = 1, . . . , n. We can thus define a new labelling function ℓ′,
which maps v to (α, (s, sd)) ∈ ES . Note that ℓ′ is injective, and hence
we can dispense with V , and take the induced order on ℓ′(V ): ℓ′(v) 6′

ℓ′(v′)
def
⇐⇒ v 6 v′, yielding a trace (ℓ′(V ),6′) in PES . Thus we obtain a

map ψ : K(PTrS) → K(PES). It is easily checked that φ and ψ are monotone
and mutually inverse, yielding an order-isomorphism K(PES) ∼= K(PTrS),
and hence by algebraicity, PES ∼= PTrS . Finally, φ, ψ cut down to an
isomorphism K(LES) ∼= K(LTrS), and so LES ∼= LTrS .

One further connection will be useful: the linear traces over an event
structure are isomorphic to the covering sequences over its domain of con-
figurations.

Proposition 3.4 For any event structure E, LE ∼= C(|E|).

12



Proof. From our description of covering relations in event domains, it fol-
lows that any covering sequence in |E| has the form

x0 ≺ · · · xn ≺ · · ·

where x0 = ∅, xn+1 \ xn = {en} for some e ∈ E. We can then define the
linear trace t with xt =

⋃
xn, en 6t em ⇔ n 6 m. Conversely, any linear

trace must, by countability of E and the well-foundedness property of traces,
amount to a (finite or infinite) sequence (en), from which we can define a
covering sequence (xn), where xn = {ej | j 6 n}. The fact that each xn ∈ |E|
follows from the conditions on traces. These passages between LE and C(E)
are easily checked to be monotone and mutually inverse, establishing the
required isomorphism.

For the remainder of this section, we fix a model M = (T ,V, µ).

Definition 3.5 A process in M is a pair (S,P ), where P ⊆ TS. Let
{(Sj , Pj)}j∈J be a family of processes. The network composition of this
family is defined by:

‖j∈J (Sj, Pj) = (S,P ),

where

S =
⋃

j∈J Sj

P = {t ∈ TS | ∀j ∈ J. (ρSSj
(t) ∈ Pj)}.

This definition was predictable from our discussion of concrete dataflow
models in the previous section. The next definition is a key one, which
answers the question of how to characterize when a process, qua set of traces,
is computing a function. In fact, we deal with the more general situation
when a process is computing any one (non-deterministically chosen) from a
set of functions.

Definition 3.6 Let (S,P ) be a process, with S = I ∪O, and let F ⊆ [VI →
VO] be a set of continuous functions. We say that (S,P ) computes F if for
all t ∈ TS:

t ∈ P ⇐⇒ ∃f ∈ F :

(1) νSO(t) = f(νSI (t))

(2) [u, v] ⊑ t ⇒ νSO(v) ⊑ f(νSI (u)).
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Condition (1) in this definition is the obvious stipulation that the overall
effect of the trace is to compute an input-output pair in the graph of one of
the functions f ∈ F . Condition (2) is more subtle; it insists that the way this
input-output pair is computed must be “causally consistent”, in the sense
that for any step u ≺ v towards computing t, the output values realized
after the step—at v—are no more than what was justified as f applied to
the input values available before the step—at u.1

As regards the generality conferred by the use of sets of functions, con-
sider the following example from dataflow [Par82]: the deterministic merge
function

dmerge : Str(X) × Str(X)× Str({0, 1}) → Str(X)

which uses an oracle to guide its choices. This satisfies the equations:

dmerge(a : x, y, 0 : o) = a : dmerge(x, y, o)

dmerge(x, b : y, 1 : o) = b : dmerge(x, y, o).

Now for any set of oracles O we can define:

F = {λx, y.dmerge(x, y, o) | o ∈ O}.

If we take O to be the set of fair oracles, i.e. infinite binary sequences con-
taining infinitely many zeroes and infinitely many ones, then F corresponds
to the “infinity-fair merge” [PS88]; however, note that the “angelic merge”
cannot be obtained in this way.

Now let {(Sj , Pj)}j∈J be a family of processes, with (S,P ) =‖j∈J (Sj , Pj).
We say that {(Sj , Pj)}j∈J is a non-deterministic functional network if the
following conditions hold:

1. For all j ∈ J , Sj = Ij ∪Oj and (Sj , Pj) computes Fj ⊆ [VIj → VOj
].

2. For all α ∈ S, there is exactly one j ∈ J with α ∈ Oj .

If Fj is a singleton for all j ∈ J , we say that the network is deterministic.
Condition (2) is worth some comment. The constraint that each channel

has at most one producer precludes non-determinism by “short circuit”. The
requirement that there be exactly one producer is a technical convenience;
it means that we can avoid considering input channels—i.e. those with no

1These conditions were directly inspired by Misra’s “limit” and “smoothness” condi-
tions in his notion of descriptions [Mis89]; his definition was made in the specific setting
of the linear trace domain LTrS, and in a rather different context.
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producer in the system—separately. Of course, we can still handle input
channels, in a “pointwise” fashion; for each given input value, we add a
process which behaves like the constant function producing that value on
the channel. Indeed, in our approach this is immediately generalized to
allow a set of values to be produced.

Now we generalize the Kahn semantics for dataflow in the obvious way.
For each f ∈

∏
j∈J Fj , we define Gf : VS → VS by:

Gf = 〈π
Oj
α ◦ fj ◦ π

S
Ij
〉α∈S,α∈Oj

.

By virtue of condition (2) on the network, there is exactly one component
of the tuple defining Gf for each α ∈ S.

We say that the network satisfies the Generalized Kahn Principle if the
following condition holds:

(GKP) µS(P ) = {lfp(Gf ) | f ∈
∏

j∈J

Fj}.

We say that M satisfies the Generalized Kahn Principle if (GKP) holds for
every non-deterministic functional network in M. We say that M satisfies
the (ordinary) Kahn Principle if (GKP) holds for every deterministic func-
tional network. Note that in this case,

∏
j∈J Fj is a singleton, and hence so

is the right-hand side of (GKP).
Our main objective will be to give sufficient conditions on M to en-

sure that (GKP) holds. (GKP) states an equality between two sets; it is
convenient to consider the two inclusions separately. Firstly, we have

(GKPs) µS(P ) ⊆ {lfp(Gf ) | f ∈
∏

j∈J

Fj}.

This is a safety property, since it asserts that every behaviour of the network
computes one of the values specified by the (generalized) Kahn semantics.
The converse:

(GKPl) {lfp(Gf ) | f ∈
∏

j∈J

Fj} ⊆ µS(P )

is a liveness property, since it asserts that every specified value is realized
by some computation.
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3.2 Safety

Definition 3.7 An ω-algebraic cpo is incremental if whenever b ⊑ c in
K(D), there is a finite covering sequence

b = b0 ≺ · · · ≺ bn = c.

A strict, continuous function f : D → E on incremental domains is an
incremental morphism if:

• f weakly preserves relative covers:

[b, c] ⊑ d ⇒ [f(b), f(c)] ⊑ f(d) or f(b) = f(c) ∈ K(d).

• f lifts relative covers:

[b′, c′] ⊑ d′ = f(d) ⇒ ∃b, c.([b, c] ⊑ d & f(b) = b′, f(c) = c′).

Incremental domains and morphisms form a category IncDom. We
say that a functor F : C → Cpos is incremental if it factors through the
inclusion IncDom →֒ Cpos, and that a modelM = (T ,V, µ) is incremental
if T is.

Note that all event domains, and all ideal completions of countable posets
satisfying both the ascending and descending chain conditions, are incremen-
tal. The reason for our terminology is that incremental domains are pre-
cisely the specialization to posets of the incremental categories introduced
in [GJ88].

Proposition 3.8 MP and ML are incremental.

Proof. We have already observed that the domains PES , LES are incre-
mental. The fact the restriction maps weakly preserve relative covers fol-
lows easily from the definitions. We must verify the lifting property. We
give the argument for MP only. Suppose then that S ⊇ T , [u′, v′] ⊑ t′ in
PET , and ρST (t) = t′. We define v = t ↾ xv′ . Since xv′ ⊆ xt′ ⊆ xt, this is
well-defined, and yields v ⊑ t. Let w = ρST (v). Since xv′ ⊆ xv, xv′ ⊆ xw.
For the converse, suppose e ∈ xw. This implies that e ∈ ET , and that for
some e′ ∈ xv′ , e 6t e

′. But this implies e 6t′ e
′, since ρST (t) = t′, and hence

e ∈ xv′ , since v
′ ⊑ t′ and e′ ∈ xv′ . Thus xw = xv′ . The same reasoning

shows that 6w=6v′ , and so w = v′.
To define u, recall that u′ ≺ v′ iff xv′ \ xu′ = {e} for some e ∈ ET

which is maximal in 6v′ . But then e must also be maximal with respect
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to 6v, since otherwise we would have e <v e
′ ∈ xv′ , which would imply

e <v′ e
′, contradicting <v′-maximality of e. Thus if we define xu = xv \ {e},

6u=6v ∩x2u, we see that v ↾ xu = (xu,6u). Clearly u ≺ v; and if w = ρST (u),

xw = xu ∩ ET = (xv \ {e}) ∩ ET = (xv ∩ET ) \ {e} = xv′ \ {e} = xu′ .

Similarly 6w=6u′ , yielding ρST (u) = u′, and the proof is complete.
Our main objective in the remainder of this subsection is to prove:

Theorem 3.9 If M is incremental, it satisfies (GKPs).

Our strategy is to use incrementality of the restriction maps to move between
local conditions expressing the functional behaviour of the nodes and global
conditions expressing the functional behaviour of the whole network.

Lemma 3.10 Let (S,P ) be a non-deterministic functional process comput-
ing F , where S = I ∪O. For all t ∈ P computing f ∈ F , and u ⊑ t:

νSO(u) ⊑ f(νSI (u)).

Proof. Suppose firstly that u is compact. Either u = t, in which case
the conclusion follows directly from the first condition for t ∈ P , or by
incrementality of TS, for some compact v, [u, v] ⊑ t. Applying the second
condition for t ∈ P ,

νSO(u) ⊑ νSO(v) ⊑ f(νSI (u)).

The general result follows from this special case, since

νSO(u) =
⊔

v∈K(u)

νSO(v) ⊑
⊔

v∈K(u)

f(νSI (v)) = f(νSI (u)).

Lemma 3.11 Let {(Sj , Pj)}j∈J be a non-deterministic functional network
computing Fj at each j ∈ J , where Sj = Ij ∪Oj . Let (S,P ) =‖j∈J (Sj , Pj).
Then for all t ∈ TS:

t ∈ P ⇔ ∀j ∈ J.∃fj ∈ Fj .

• νSOj
(t) = fj(ν

S
Ij
(t)) (1)

• [u, v] ⊑ t ⇒ νSOj
(v) ⊑ fj(ν

S
Ij
(u) (2)
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Proof. We shall write tj = ρSSj
(t) for t ∈ TS. By definition of network

composition,

t ∈ P ⇔ ∀j ∈ J. tj ∈ Pj

⇔ ∀j ∈ J.∃fj ∈ Fj .

• ν
Sj

Oj
(t) = fj(ν

Sj

Ij
(tj)) (1′)

• [uj , vj ] ⊑ tj ⇒ ν
Sj

Oj
(v) ⊑ fj(ν

Sj

Ij
(uj) (2′)

Now it suffices to show that for all t ∈ TS, j ∈ J , fj ∈ Fj : (1) ⇐⇒
(1′) and (2) ⇐⇒ (2′). The equivalence of (1) and (1′) follows from the
functoriality of ρ. To show that (2′) implies (2), we use the fact that ρ
weakly preserves covers. Suppose [u, v] ⊑ t. If uj = vj , we can apply
Lemma 3.10 to get (2); if uj ≺ vj , we can apply (2′). Finally, we show that
(2) implies (2′). Suppose [u′, v′] ⊑ tj. Since ρ lifts covers, for some u, v ∈ TS,

ρSSj
(u) = u′, ρSSj

(v) = v′, & [u, v] ⊑ t.

We can now apply (2) to get (2′), as required.
As an immediate Corollary of Lemma 3.11, we obtain:

Proposition 3.12 With notation as in Lemma 3.11:

t ∈ P ⇐⇒ ∃f ∈
∏

j∈J Fj .

• µS(t) = Gf (µS(t)) (1)

• [u, v] ⊑ t ⇒ µS(v) ⊑ Gf (µS(u)) (2)

Proof of Theorem 3.9. With notation as in Lemma 3.11, suppose
t ∈ P . Applying Proposition 3.12 (1), for some f ∈

∏
j∈J Fj , µS(t) =

Gf (µS(t)), whence lfp(Gf ) ⊑ µS(t). To show that µS(t) ⊑ lfp(Gf ), let (tk)
be a covering sequence for t, which must exist by incrementality of TS ; we
show by induction on k that:

∀k ∈ ω.(µS(tk) ⊑ Gk
f (⊥)).

The base case follows from the strictness of µS . For the inductive step,

µS(tk+1) ⊑ Gf (µS(tk)) Proposition 3.12 (2)

⊑ Gf (G
k
f (⊥)) by induction hypothesis.

18



3.3 Liveness

Consider an algebraic domain D, and a chain of compact elements C = (bk)
in D, with

⊔
bk = d. We can consider C as a (partial) specification of a

particular way of computing d, which induces a causality relation on compact
approximations of d, as follows. Define ‖ · ‖C : K(d) → ω by

‖b‖C = min{k | b ⊑ bk}.

Now we can define:

b <C c
def
⇐⇒ ‖b‖C < ‖c‖C ,

for b, c ∈ K(d).
Now let t be a trace in TS, with µS(t) = d ∈ VS . We can define a relation

<t on K(d) which reflects the causal constraints on how d can be realized
introduced by t:

b <t c
def
⇐⇒ for every covering sequence (tk) for t :

min{k | b ⊑ µS(tk)} < min{k | c ⊑ µS(tk)}.

Definition 3.13 Let M = (T ,V, µ) be an incremental model in which each
value domain VS is ω-algebraic. M is causally expressive if for every sort
S, d ∈ VS, and chain of compact elements C = (bk) with

⊔
bk = d, there

exists t ∈ TS such that:

• µS(t) = d

• <t ⊇ <C .

Proposition 3.14 MP and ML are causally expressive.

Proof. Since ML is a sub-model of MP, it suffices to prove causal ex-
pressiveness for ML. Suppose then that a compact chain C = (bn) in ES
is given, with

⊔
bn = d. Since ES is incremental, C can be refined into a

covering sequence C ′; clearly <C′ ⊇ <C . Now let t be the trace in LES
corresponding to C ′ under the isomorphism of Proposition 3.4. We note the
general fact that for any algebraic cpo D, and covering sequence (cn) in D,
there is a unique covering sequence for (cn) in C(D); a consequence of this

is that C(C(D)) ∼= C(D). If follows that <t = <C′ ⊇ <C , as required.
We shall need a technical lemma about fixpoints in ω-algebraic cpo’s.

This was conjectured by the author, and proved under the hypothesis that
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the domain is SFP. The ingenious proof of the general result is due to Achim
Jung (personal communication); it is reproduced here with his kind permis-
sion.

Lemma 3.15 (Jung) Let D be an ω-algebraic cpo, and f : D → D a
continuous function. There exists a chain (bn) of compact elements in D

such that:

1. b0 = ⊥

2. ∀n. bn+1 ⊑ f(bn)

3.
⊔
bn = lfp(f).

Proof. For each fn(⊥) we choose a chain of compact elements (cnm) with
least upper bound fn(⊥). By taking a diagonal sequence we find a chain
(cn) with the property cn

′

m′ ⊑ cn ⊑ fn(⊥) for all n′,m′ 6 n. The least upper
bound of this chain is equal to lfp(f). Let Cn = ↑cn.

We shall define the required sequence (bn) inductively, to satisfy the
following properties:

1. bn ⊑ f(bn−1), n > 1

2. bn ⊑ fn(⊥), n > 0

3. bn ∈ On =
⋂

m∈ω,062m6n g
−n+2m(Cn−m), n > 0.

For n = 2k, the last property implies in particular that bn ∈ Ck, and together
with (2) this ensures that the limit of the bn is the least fixed point of f .

Let b0 = ⊥. Then (2) is obviously satisfied, and (3) evaluates to

O0 = f0(C0) = C0 = ↑c0 = ↑⊥ = D,

and is satisfied too.
Given b0, . . . , bn we find bn+1 as follows. First note that bn ⊑ f(bn−1) ⊑

f(bn) by (1) (for n = 0 this is trivially satisfied); and that f(bn) ⊑ fn+1(⊥)
by (2). We shall select bn+1 below f(bn) and above bn, so (1) and (2) will
be satisfied. As for (3), we calculate:

bn ∈ On ⇒ f(bn) ∈ f(On)

⊆
⋂

062m6n f
−n+2m+1(Cn−m)

=
⋂

262m+26n+2 f
−n−1+(2m+2)(Cn+1−(m+1))

=
⋂

262m′6n+2 f
−n−1+2m′

(Cn+1−m′)

⊆
⋂

262m′6n+1 f
−n−1+2m′

(Cn+1−m′).
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Note that fn+1(⊥) is contained in Cn+1, so we have

⊥ ∈ f−n−1(fn+1(⊥)) ⊆ f−n−1(Cn+1),

which tells us that f−n−1(Cn+1) = D. So

f(bn) ∈
⋂

062m′6n+1

f−n−1+2m′

(Cn+1−m′) = On+1.

Since On+1 is Scott-open, it contains a compact element below f(bn); let

bn+1 be such an element above bn.

Theorem 3.16 If M is causally expressive, it satisfies (GKPl).

Proof. We adopt the same notation as in Lemma 3.11. Suppose f ∈∏
j∈J Fj . We must show that for some t ∈ P , µS(t) = lfp(Gf ). We apply

Lemma 3.15 to obtain a chain of compact elements C = (bk) with
⊔
bk =

lfp(Gf ), b0 = ⊥, and bk+1 ⊑ Gf (bk) for all k. SinceM is causally expressive,
for some t ∈ TS, µS(t) =

⊔
bk = lfp(Gf ), and <t ⊇ <C . It remains to show

that t ∈ P . By Proposition 3.12, it suffices to show that for all [u, v] ⊑ t,
µS(v) ⊑ Gf (µS(u)), which in turn is equivalent to:

∀b ∈ K(VS). (b ⊑ µS(v) ⇒ b ⊑ Gf (µS(u))).

Suppose then that b ⊑ µS(v) ⊑ µS(t) = lfp(Gf ). Since b is compact, b ⊑ bk
for some k. If b = ⊥ we are done; otherwise, for some k, b ⊑ bk+1, b 6⊑ bk.
This implies bk <C b, and hence bk <t b. By incrementality of TS , we can
find a covering sequence (tk) for t with u = tn, v = tn+1 for some n. But
since b ⊑ µS(v) and bk <t b, this implies bk ⊑ µS(u), and hence

b ⊑ bk+1 ⊑ Gf (bk) ⊑ Gf (µS(u)),

as required.
As an immediate Corollary of Propositions 3.8 and 3.14 and Theo-

rems 3.9 and 3.16, we obtain:

Theorem 3.17 MP and ML satisfy (GKP).

4 Concluding Remarks

The results in this paper are of a preliminary nature. Even within the
asynchronous network model, there are a number of interesting topics for
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further investigation. These include the characterisation of models in terms
of properties of extensionality and expressive completeness; and connections
with full abstraction. Also, it would be of interest to specify a uniform
operational semantics for our general class of models MP, and to prove
some correspondence results. A good basis for this should be given by
[Cur86]. It would also be interesting to formulate a notion of continuous
(e.g. probabilistic) computation in a network, replacing algebraic domains
by continuous ones. Much of the theory developed here should generalize;
note in particular that Lemma 3.15 is valid for ω-continuous cpo’s, replacing
“compact” by “relatively compact”. Beyond asynchronous networks, we
would like to give a general notion of model in categorical terms, which
would subsume a wide range of concurrency formalisms, including process
algebras and Petri nets, as well as dataflow. The ideas of [Win88] should be
relevant here.
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