V.W. Porto N. Saravanan D. Waagen A.E. Eiben (Eds.)

Evolutionary Programming VII

7th International Conference, EP98 San Diego, California, USA, March 25-27, 1998 Proceedings

In Cooperation with IEEE Neural Networks Council

Volume Editors

V.W. Porto Natural Selection Inc. 3333 North Torrey Pines Court, Suite 200, La Jolla, CA 92037, USA E-mail: bporto@natural-selection.com

N. Saravanan Ford Motor Company, 230-1 A/MD 4, ECC Building 20600 Rotunda Drive, Dearborn, MI 48121, USA E-mail: saravan@ford.com

D. Waagen Lockheed Martin Tactical Defense Systems 1300 South Litchfield Road, Goodyear, AZ 85338, USA E-mail: waagen@cyberhighway.net

A.E. Eiben Leiden University, Department of Computer Science Niels Bohrweg 1, 2333 CA Leiden, The Netherlands E-mail: gusz@wi.leidenuniv.nl

Cataloging-in-Publication data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Evolutionary programming VII: 7th international conference; proceedings / EP98, San Diego, California, USA, March 25 - 27, 1998. V. W. Porto ... (ed.). - Berlin ; Heidelberg ; New York ; Barcelona ; Budapest ; Hong Kong ; London ; Milan ; Paris ; Singapore ; Tokyo : Springer, 1998 (Lecture notes in computer science ; Vol. 1447) ISBN 3-540-64891-7

CR Subject Classification (1991): D.1.3, F.1-2, C.1.2, I.2.6, I.2.8, I.2.11, J.3

ISSN 0302-9743 ISBN 3-540-64891-7 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1998 Printed in Germany

Typesetting: Camera-ready by author SPIN 10638114 06/3142 - 5 4 3 2 1 0 Printed on acid-free paper

Preface

These proceedings contain the record of papers presented at the Seventh Annual Conference on Evolutionary Programming. Held March 25-27, 1998, EP98 was sponsored by the Evolutionary Programming Society in cooperation with the IEEE Neural Networks Council and the PPSN V Steering Committee. Since its inception, the purpose of this conference has been to foster communication and stimulate interactions between researchers investigating all aspects of evolutionary computation. The conference has steadily evolved into an open forum for discussing the current state of the art and future directions of evolutionary computation.

In addition to returning to San Diego, CA, for 1998, this year's conference enjoyed the largest number of papers presented and highest attendance since its inception in 1992. As part of the egalitarian nature of this conference, the papers presented span the full spectrum of evolutionary computation, including evolutionary programming, evolution strategies, genetic algorithms, genetic programming, cultural algorithms, and other variants. Special sessions on biological modeling and particle swarm augmented more traditional sessions on theory, operators, and representation. The number and wide range of applications papers presented is particularly notable. It is an important indicator that these techniques are being used successfully in real-world problem domains.

Creating a successful conference always takes a considerable effort and involves many people. The Evolutionary Programming Society would like to express its appreciation to the program committee for their diligent efforts to maintain the high quality of the papers, the conference volunteers Jacquelyn, Verna, and Eva for their cheerful, ever helpful presence, and to the team of Natural Selection, Inc., for their gracious support. Finally, special thanks go to David Fogel and Peter Angeline, whose hard work behind the scenes ensured the success of the conference.

May 1998

V. William Porto General Chairman

N. Saravanan Don Waagen A.E. Eiben Technical Co-Chairs

Invited Lectures and Panel Session

Keynote Lecture:

The Symbolic Species: The Co-Evolution of Language and the Brain Terrence W. Deacon, Boston University

Special Invited Lecture:

The Cumulative Consensus of Cognitive Agents in Scenarios: A Framework for Evolutionary Processes in Semantic Memory Don Dearholt, Mississippi State University

Banquet Lecture:

Virtual Expectations Darrell Morgeson, Los Alamos National Labs

Special Invited Lecture:

Visualization of Evolutionary Algorithms in \mathbb{R}^n Roman Galar, Technical University of Wroclaw

Panel Discussion:

Evolution and Economics Panelists: Steve Bankes, Evolving Logic Associates Paul Harrald, G.E. Capital, U.K. William Morrison, University of South Carolina Leigh Tesfatsion, Iowa State University Moderator: V. William Porto, Natural Selection, Inc.

Best Student Paper Awards

An Empirical Investigation of an Evolutionary Algorithm's Ability to Maintain a Known Good Solution Thomas Kammeyer, University of California, San Diego

On the Application of Cohort-Driven Operators to Continuous Optimization Problems using Evolutionary Computation Arnold Patton, Michigan State University

General Chairman

V. William Porto

Technical Co-Chairs

N. Saravanan Don Waagen A.E. Eiben

Publicity Chair

Peter J. Angeline

Financial Chair

V. William Porto

Program Committee

Lee Altenberg, Maui High Performance Computing Center Russell W. Anderson, HNC, Inc. Thomas Bäck, Informatik Centrum Dortmund Joseph Breeden, Center for Adaptive Systems Applications, Inc. Kumar Chellapilla, University of California, San Diego Michael Conrad, Wayne State University Marco Dorigo, Universite Libre de Bruxelles Tom English, Texas Tech University David Fogel, Natural Selection, Inc. Gary Fogel, University of California, Los Angeles Garry Greenwood, Western Michigan University Paul Harrald, G.E. Capital, U.K. Jong-Hwan Kim, KAIST John Koza, Stanford University John McDonnell, SPAWAR, RDT&E Division Zbyszek Michalewicz, University of North Carolina Robert Reynolds, Wayne State University Mateen Rizki, Wright State University Guenter Rudolph, Informatik Centrum Dortmund Marc Schoenauer, Ecole Polytechnique Anthony Sebald, University of California, San Diego Leigh Tesfatsion, Iowa State University Hans-Michael Voigt, Technical University Berlin Xin Yao, Australian Defence Force Academy

Proceedings compiled by Bill Porto and David B. Fogel

VII

Table of Contents

Special Invited Lecture

The Cumulative Consensus of Cognitive Agents in Scenarios: A Framework for Evolutionary Processes in Semantic Memory D.W. Dearholt	3
Economics, Emergence and Complex Systems	
Preferential Partner Selection in Evolutionary Labor Markets: A Study in Agent-Based Computational Economics L. Tesfatsion	15
Subspace Pursuit for Exploratory Modeling S. Bankes	25
Complete Classes of Strategies for the Classical Iterated Prisoner's Dilemma B. Beaufils, JP. Delahaye, and P. Mathieu	33
Evolutionary Computing in Multi-agent Environments: Operators L. Bull	43
Evalution of a Simple Host-Parasite Genetic Algorithm B. Olsson	53
Testing Three Paradigms for Evolving Groups of Cooperative, Simple Agents J.F. Walker	63
Issues and Innovations in Evolutionary Computation	
Acquisition of General Adaptive Features by Evolution D. Ashlock and J.E. Mayfield	75
Hybrid Interior-Lagrangian Penalty Based Evolutionary Optimization <i>H. Myung and JH. Kim</i>	85
GA-Optimal Fitness Functions J.L. Breeden	95
Scaling Up Evolutionary Programming Algorithms X. Yao and Y. Liu	103

Short Notes on the Schema Theorem and the Building Block Hypothesis in 113 Genetic Algorithms *R. Salomon*

Applications I

A Superior Evolutionary Algorithm for 3-SAT T. Bäck, A.E. Eiben, and M.E. Vink	125
Evolvable Hardware Control for Dynamic Reconfigurable and Adaptive Computing P.M. Chau, G. Clark, and A.V. Sebald	137
Evolutionary Programming Strategies with Self-Adaptation Applied to the Design of Rotorcraft Using Parallel Processing <i>J.E. Hirsh and D.K. Young</i>	147
Optimization of Thinned Phased Arrays Using Evolutionary Programming K. Chellapilla, R. Sathyanarayan, and A. Hoorfar	157
Evolutionary Domain Covering of an Inference System for Function Approximation W. Kosinski, M. Weigl, and Z. Michalewicz	167

Evolution-Based Approaches to Engineering Design

Learning to Re-engineer Semantic Networks Using Cultural Algorithms <i>N. Rychtyckyj and R.G. Reynolds</i>	181
Integration of Slicing Methods into a Cultural Algorithm in Order to Assist in Large-Scale Engineering Systems Design D. Ostrowski and R.G. Reynolds	191
Genetic Search for Object Identification S.J. Louis, G. Bebis, S. Uthiram, and Y. Varol	199
Fuzzy Cultural Algorithms with Evolutionary Programming S. Zhu and R.G. Reynolds	209

Culturing Evolution Strategies to Support the Exploration of Novel Environments by an Intelligent Robotic Agent <i>CJ. Chung and R.G. Reynolds</i>	219
Skeuomorphs and Cultural Algorithms N. Gessler	229
Examining Representations and Operators I	
Sphere Operators and Their Applicability for Constrained Parameter Optimization Problems <i>M. Schoenauer and Z. Michalewicz</i>	241
Numeric Mutation as an Improvement to Symbolic Regression in Genetic Programming <i>T. Fernandez and M. Evett</i>	251
Variable-Dimensional Optimization with Evolutionary Algorithms Using Fixed-Length Representations J. Sprave and S. Rolf	261
On Making Problems Evolutionarily Friendly Part 1: Evolving the Most Convenient Representations A.V. Sebald and K. Chellapilla	271
On Making Problems Evolutionarily Friendly Part 2: Evolving the Most Convenient Coordinate Systems Within Which to Pose (and Solve) the Given Problem A.V. Sebald and K. Chellapilla	281
An Experimental Investigation of Self-Adaptation in Evolutionary Programming KH. Liang, X.Yao, Y. Liu, C. Newton, and D. Hoffman	291
Evolutionary Computation Theory	
On the Application of Evolutionary Pattern Search Algorithms W.E. Hart	303
The Schema Theorem and the Misallocation of Trials in the Presence of Stochastic Effects	313

D.B. Fogel and A. Ghozeil

On the "Explorative Power" of ES/EP-like Algorithms <i>HG. Beyer</i>	323
Resampling and its Avoidance in Genetic Algorithms R. Salomon	335
Evolutionary Search for Minimal Elements in Partially Ordered Finite Sets G. Rudolph	345
Tailoring Mutation to Landscape Properties W.G. Macready	355
Applications II	
A Genetic Programming Methodology for Missile Countermeasures Optimization Under Uncertainty F.W. Moore and O.N. Garcia	367
Evolutionary Algorithms for Vertex Cover I.K. Evans	377
An Evolutionary Self-Learning Methodology: Some Preliminary Results from a Case Study S. Thacore	387
Evolving IIR Filters in Multipath Environments S. Sundaralingam and K. Sharman	397
Fuzzy Partition and Input Selection by Genetic Algorithms for Designing Fuzzy Rule-Based Classification Systems T. Murata, H. Ishibuchi, T. Nakashima, and M. Gen	407
Evolving Nonlinear Controllers for Backing up a Truck-and-Trailer Using Evolutionary Programming K. Chellapilla	417

Evolutionary Computation and Biological Modeling

Reconstruction of DNA Sequence Information from a Simulated DNA Chip	429
Using Evolutionary Programming	
G.B. Fogel, K. Chellapilla, and D.B. Fogel	

Using Programmatic Motifs and Genetic Programming to Classify Protein Sequences as to Cellular Location J.R. Koza, F.H. Bennett III, and D. Andre	437
Fully Automated and Rapid Flexible Docking of Inhibitors Covalently Bound to Serine Proteases D.K. Gehlhaar, D. Bouzida, and P.A. Rejto	449
Microtubule Networks as a Medium for Adaptive Information Processing J.O. Pfaffmann and M. Conrad	463
Evolve IV: A Metabolically-Based Artificial Ecosystem Model J. Brewster and M. Conrad	473
Sex, Mate Selection, and Evolution K. Jaffe	483
Finding Low Energy Conformations of Atomic Clusters Using Evolution Strategies G.W. Greenwood and YP. Liu	493
Estimating the Distribution of Neural Connections in the Saccadic System Using a Biologically Plausible Learning rule – Preliminary Results R.W. Anderson, J.B. Badler, and E.L. Keller	503
Issues and Innovations in Evolutionary Computation II	
Evolutionary Algorithms Combined with Deterministic Search G.B. Lamont, S.M. Brown, and G.H. Gates Jr.	517
Steady State Memetic Algorithm for Partial Shape Matching <i>E. Ozcan and C.K. Mohan</i>	527
A Fully Characterized Test Suite for Genetic Programming <i>D. Ashlock and J.I. Lathrop</i>	537
Genetic Algorithms for Belief Network Inference: The Role of Scaling and Niching O.J. Mengshoel and D.C. Wilkins	547
Building Software Frameworks for Evolutionary Computation <i>M.A. Smith</i>	557
Recorded Step Directional Mutation for Faster Convergence T. Dunning	569

Particle Swarm

The Behavior of Particles J. Kennedy	581
Parameter Selection in Particle Swarm Optimization Y. Shi and R.C. Eberhart	591
Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy and Performance Differences P.J. Angeline	601
Comparison between Genetic Algorithms and Particle Swarm Optimization <i>R.C. Eberhart and Y. Shi</i>	611
Combinations of Evolutionary and Neural Computation	
A Hybrid Evolutionary Learning System for Synthesizing Neural Network Pattern Recognition Systems D. Wicker, M.M. Rizki, and L.A. Tamburino	619
An Evolutionary Algorithm for Designing Feedforward Neural Networks <i>A.N. Skourikhine</i>	629
Dual Network Representation Applied to the Evolution of Neural Controllers J.C.Figueira Pujol and R. Poli	637
What does the Landscape of a Hopfield Associative Memory Look Like? A. Imada and K. Araki	647

Special Invited Lecture

Visualization of Evolutionary Adaptation in R^n	659
A. Chorazyczewski and R. Galar	

Examining Representations and Operators II

On the Application of Cohort-Driven Operators to Continuous Optimization Problems Using Evolutionary Computation A.L. Patton, T. Dexter, E.D. Goodman, and W.F. Punch	671
Random Search versus Genetic Programming as Engines for Collective Adaptation <i>T. Haynes</i>	683
Optimal Mutation and Crossover Rates for a Genetic Algorithm Operating in a Dynamic Environment S.A. Stanhope and J.M. Daida	693
Local Selection F. Menczer and R.K. Belew	703
Asymmetric Mutations for Stochastic Search J.R. McDonnell	713
Applications III	
Automated Rule Extraction for Engine Health Monitoring T.W. Brotherton and G. Chadderdon	725
Genetic Programming for Automatic Target Classification and Recognition in Synthetic Aperture Radar Imagery S.A. Stanhope and J.M. Daida	735
Evolving Heuristics for Planning R. Aler, D. Borrajo, and P. Isasi	745
Solving Cutting Stock Problems by Evolutionary Programming KH. Liang, X. Yao, C. Newton, and D. Hoffman	755
Issues and Innovations in Evolutionary Computation III	
An Empirical Investigation of an Evolutionary Algorithm's Ability to Maintain a Known Good Solution <i>T.E. Kammeyer and R.K. Belew</i>	767

Evolving Integrated Low-Level Behaviors into Intelligently Interactive	777
Simulated Forces	
V.W. Porto	

Using Offset Invariant Crossover as a Tool for Discovering Cycle Lengths of a Periodic Function <i>C. Davis and C.F. Eick</i>	789
Evolving a Generalized Behaviour: Artificial Ant Problem Revisited I. Kuscu	799
Co-evolving Functions in Genetic Programming: Dynamic ADF Creation Using GLiB M. Ahluwalia and L. Bull	809
Evolving Spatially-Localized Projection Filters for SAR Automatic Target Recognition D. Waagen, J. Pecina, and R. Pickens	819
Genetic Programming in the Overlapping Generations Model: An Illustration with the Dynamics of the Inflation Rate SH. Chen and CH. Yeh	829

839

Author Index

XVI