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Abstract. This paper discusses a simple representation of variable-dimensional
optimization problems for evolutionary algorithms. Although it was successfully
applied to the optimization of multi-layer optical coatings, it is shown that it intro-
duces a unintentional bias into the search process with respect to the probability
of a dimension being generated by mutation and recombination. In order to ex-
amine the impact of the bias, the representation was applied to another variable-
dimensional problem, the simultaneous estimation of model orders and model
parameters of instances of autoregressive moving average processes (ARMA).
The results of the parameter study show that quality of the estimation can be
improved by removing the bias.

1 Motivation

Most applications of evolutionary algorithms (EAs) cannot be easily described by a
homogeneous set of real or integer numbers. Instead, they depend on problem-specific
non-standard representations, such as graphs or matrices. Suitable non-standard rep-
resentations are not only hard to find, but, even worse, they are difficult to analyze.
This paper focuses on a special type of non-standard representations, namely variable
dimensional representations.

2 Variable Dimensional Problems

In the usual parameter optimization task a fixed number of variables corresponds to the
number of degrees of freedom of the system modeled by the objective function, i.e.,
the model is fixed with respect to the structure of the problem. As soon as structural
optimization is required, the number of parameters becomes a variable itself.

While there are already some approaches to non-standard representations which
are at least experimentally verified (see [5] for an overview), there are only a few ap-
proaches to variable dimensional encodings and operators. Most of them are discussed
in [8].

The most obvious way to optimize variable dimensional problems with evolutionary
algorithms is to use variable length chromosomes for the EA, e.g. [3, 4]. This approach



requires the definition of new operators to increase or decrease the length of the in-
ternal representation. Following the paradigm of natural evolution, these operators are
commonly modeled asgene deletionandgene duplication. On the other hand, new op-
erators also introduce new problems and questions, e.g. if and how chromosomes of
different lengths can be recombined, which values are appropriate for newly inserted
variables, and so on. An alternative approach was introduced in [9]. Instead of a vari-
able length representation, a fixed-length representation was chosen for a real-valued
variable-dimensional problem. The representation consists of a fixed-length vector of
problem variables and a binary vector containing information to reduce the number of
problem variables.

In the following sections, two structural optimization problems are discussed which
were successfully solved by EAs with fixed-length genomes. For the second applica-
tion, a statistical parameter estimation problem, we present a detailed analysis of the
influence of two different internal representations with respect to the quality of the op-
timization results.

2.1 Coding of the Multi-layer Optical Coatings

The design problem of multi-layer optical coatings (MOC) is a mixed-integer variable-
dimensional optimization problem. The tasks of MOC design is to find a sequence of
layers of a small set of materials, such that a given reflection profile of the resulting
coating is achieved. For example, in order to construct an infrared filter, one has to
assure that there is minimum reflection in the infrared range while there is maximum
reflection all over the rest of the spectrum.
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Fig. 1. Mapping from a fixed dimensional internal representation to a variable dimension MOC
structure.



A first attempt to a solve the MOC problem by means of EAs is documented in [7]
and [1]. The idea was to use gene deletion and duplication together with a self-adapted
mutation rate for dimensional mutations.

An alternative representation was presented in [9], which works as follows: Each in-
dividual consists of a real-valued vectorx1; : : : ; xn and an integer vectorb1; : : : ; bn; 1 �
bi � M , whereM is the number of materials, so each layer of thicknessxi has got its
material indexbi. Since both parts of the genome are standard representations, standard
mutation and recombination operators can be applied accordingly. For the vector of real
numbers, the evolution strategy operators as defined in [10] are used, whereas the bit
strings are varied by bit flip mutation and uniform crossover.

This representation allows adjacent layers being of the same material, which can
be grouped together to single layers by summing up their thicknesses, thus effectively
reducing the dimension of the solution. This representation has a major advantage: even
if the dimension is reduced by the genotype-phenotype-mapping, each variable is used
to evaluate the fitness of the resulting genotype. This is very important with respect to
internal strategy variables, e.g. the step size informations used by evolution strategies,
as well as for the smoothness of structural mutations: in the MOC example, a structural
mutation does not change the physical thickness of the original coating.
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Fig. 2.Distribution of the numbers of layers implied by the MOC coding.

Although this internal representation looks straightforward, it is biased towards
medium dimensional solutions. For a MOC design problem with only two materials,
the structural information can be encoded by a bit string, as shown in Fig. 1. The num-
bers of layers implied by the coding is not equally distributed, as shown in Fig. 2.
Instead, for a given number of layersk, the number of representations in a bit string of
lengthn is
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As can be seen, a huge number of bit strings represents dimensions around half the
given maximum.

2.2 ARMA-Modeling as an Example for Variable Dimensional Optimization

Another example for a variable dimensional optimization problem is the classical sta-
tistical approach to time series modeling: The Box-Jenkins method [2]. This method is
based on the so-called ARMA-model, which is of the form

yt = �1yt�1 + : : :+ �pyt�p + "t � �1"t�1 � : : :� �q"t�q,

whereyt are the observations of the time series,"t are the elements of the series
of random shocks,p andq are the numbers of considered elements of the two series,
�1; : : : ; �p and�1; : : : ; �q are the parameter vectors.

Since the parameters as well as their lengthsp andq are unknown, this model leads
to a mixed-integer optimization problem with variable dimension. In a recent study
[6], the simultaneous estimation of model order and parameter of ARMA processes by
means of EAs was investigated. As an objective function, the least-squares-function

LS(y; ŷ) =
NX
t=k

[yt�(�1yt�1+: : :+�pyt�p��1 "̂t�1�: : :��q "̂t�q)]
2; k � maxfp; qg

was chosen, wherey = (yt)t2f1;:::;Ng is the observed time series, and where
ŷ = (ŷt)t2f1;:::;Ng the estimated time series based on the estimations of�1; : : : ; �p,
�1; : : : ; �q , and the estimated error series("t)t2f1;:::;Ng.

Moreover, a slight penalty term was used to give smaller models an advantage over
models of high orders. The resulting objective functionF is

F (ŷ) = LS(y; ŷ) � (1 +
p+ q

100
) ;

of which the minimum value is sought.
The penalty term in the objective function was introduced to follow one of the prin-

ciple of ARMA-modeling, which is to find models as sparse as possible. Therefore, it
also seems to be reasonable to use a fixed upper limit for the lengths of the parameter
vectorsp andq. In this study this upper limit was set ton = 8. Figure 3 shows the
internal representation of the variables as well as the mapping and the resulting vector
for the example of the AR-vector�.

The internal representation was taken from the MOC design problem, with one
modification: In order to allow zero order models, the dimension is incremented one
position after a bit flip was detected.

The feasibility of this combination of statistical methods and evolutionary algo-
rithms has been subject of an elaborate study in which ARMA-models up to the order
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Fig. 3. Mapping from a fixed dimensional internal representation to a variable length AR param-
eter vector. The resulting order isp = 4.

of p andq equal to3 have been generated and evaluated by this approach. The detailed
methods and results of this investigation are documented in [6]. As a short summary it
can be said that the optimization of the ARMA-model by means of evolutionary algo-
rithms leads to good results in the fit compared to those reached by common statistical
methods. The percentage of correctly identified model orders on the other hand is rather
low with about 20%. On the other hand, there is no standard algorithm for the model
identification of ARMA processes that guarantees to find the correct model. The Box-
Jenkins approach, for example, depends highly on the correct choice of test levels in
the model identification step.

3 Analysis of the ARMA Representation

To find out about the reasons of the rather poor model identification abilities of the
EA approach to ARMA model estimation, a detailed analysis of the coding has been
performed. Under the assumption that all216 binary vectors are of equal probability
and that they are chosen completely by random, the distribution of the resulting model
ordersp andq has been computed and can be seen in Fig. 4.

The figure shows that the coding does not generate all model orders with equal
probability, but prefers models close to the ARMA[4,4]-process. Since in the study
only models up to ARMA[3,3] were used, this coding produces a bias into the wrong
direction.

According to closer investigations on the coding, the influence of its bias depends
very much on the mutation rate used. A high mutation rate (Fig. 5 right) leads to a bad
performance in the model identification, the distribution of the chosen models in this
case is very close to the theoretical distribution shown in Fig. 4. A low mutation rate on



A
R

-p
ar

t
MA-part

Fig. 4.Distribution of the model ordersp andq as implied by the coding.

the other hand leads to quite good results as far as the model identification is concerned.
Figure 5 shows the empirical distribution of the model orders in the simulation study
which were gained with mutation rates of0:05 and0:5 respectively. The lower mutation
rate also turned out to achieve a much better fit.

Fig. 5. Empirical distribution of model orders generated with mutation rate0:05 (left) and0:5
(right)



4 Alternative Representation

In terms of information theory, it is reasonable to look for the encoding of maximum
entropy. On a finite set of parameter values, this is an encoding where each value has
the same number of representations. The first ARMA encoding, for example, contains
the misleading information that ARMA[4; 4] processes are overrepresented among the
solutions.

As a consequence of the obvious influence of the coding on the performance of
the method, it seemed to be sensible to take a closer look at the coding itself. As an
alternative coding, a neutral representation was chosen, which can be seen in Fig. 6.
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Fig. 6.Genotype-phenotype-mapping in a neutral coding.

The genotype-phenotype mapping in this case works as follows: The binary vectorb

is treated as a binary number which determines the model order (in the above example
p). The first (p � 1) elements of the real vectorx are then taken to be the model-
parameters�1 to �p�1. The remaining elements ofx are summed up to give�p in
order to keep the entire genome in use. As stated above, this is essential for the step size
adaption to work properly. As a side effect, it makes structural mutations smoother:
Since the sum of all internal variables is used to explain the past, the cumulated weight
of the influence of past values is not changed by dimensional variations.

This coding – in contrast to the former representation – does not favor certain model
orders: All combinations ofp andq have equal probability in the given range.

To find out whether or not this representation provides an advantage in comparison
to the first one, the same simulation study has been carried out for this new coding. It
turned out that – as far as the achieved fit is concerned – both representations are of
nearly equal quality, just a slight superiority of the first representation could be men-
tioned.



The much more significant difference between the two codings lies in their model-
identification abilities: While the first representation reaches 19.33% of correctly iden-
tified models, the second representation does much better with 26.67%. Figure 7 shows
the empirical distribution of the model orders, which came from a mutation rate of0:3.

Fig. 7.Empirical distribution of model orders for the second representation.

The difference between the two empirical distributions is not very obvious. As be-
fore, a very high percentage of 97% can be found in the correct region. Nevertheless,
this coding hits the correct order more often than the first representation does.

5 Conclusions

It has been shown in this paper that a representation, even if it seems to be perfect for
one problem, should not be transfered to similar problems without further analysis.

The low absolute identification rates of ARMA processes achieved by both rep-
resentations are a hint that the fitness criterion itself does not direct the search to the
correct models. For this application, statistical tests for the plausibility of model or-
ders, as used in the Box-Jenkins approach, should be integrated either as restrictions or
additional objectives.

The analysis of the application examples in this paper shows that obvious or natural
representations are not necessarily reasonable. But, nevertheless, thewrong represen-
tation does not perform significantly worse than theright one. This can be partially
explained by the robustness of EAs, partially by the fact that the the terms wrong and
right depend on our knowledge about the problem. Most probably, the search for the
bestrepresentation is at least as hard as the problem itself.
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