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Abstract. Traditional approaches to real-valued function optimization using
evolutionary computational methods tend to use either self-adaptive operators
(as in the case of evolutionary programming), or population-based operators (as
in the case of most real-valued genetic algorithms).  However, in general, most
population-based operators are limited in scope to the use of at most two or
three parent individuals.  In this paper we explore an alternative population-
based form of adaptation for evolutionary computation, Guided Gaussian
Mutation (GGM), which is designed specifically as a localized search operator.
This operator is the first of a larger class of Cohort Driven Operators (CDOs)
which we define here.  Experimental results using GGM in a standard genetic
algorithm framework on a series of test problems show impressive
improvement over standard evolutionary programming.

 Introduction

A number of concepts in evolutionary computation (EC) have arisen from specific
philosophic or metaphoric inspirations.  Perhaps this is only natural given that the
unifying thesis of evolutionary computation is itself based on the metaphor of
simulating biological evolution.  Many of the techniques employed by various EC
systems are direct extensions of the underlying metaphor or philosophy.  For
example, the GA crossover operator extends naturally from the idea of manipulating
solution genomes.  Likewise, the mutation operator in EP extends directly from its
philosophical base, which focuses attention on phenotypic rather than genotypic
effects.  Some innovative search techniques have been created through such insights
([Fogel 66], [Holland 75],[Koza 92], to name a few); however, while such metaphors
may be useful in developing new techniques, they can also become limiting if they are
used to screen out techniques which do not fit within the framework of the underlying
metaphor.



In light of the “No Free Lunch” theorems [Wolpert 95][English 97], such
conceptual litmus tests make little sense.  The generally applicable, most efficient
search technique has become a myth.  Since we cannot expect any single approach to
become uniquely the best in a general sense, perhaps rather than focusing on
broadening any single metaphor we should consider blending concepts from the
existing philosophies, selecting features of different systems or metaphors as
appropriate to the domain and blending them together.  With the blending of concepts,
the focus becomes shifted from evaluation of the metaphor to evaluation of the
individual derived concepts.  By incorporating good concepts from separate
approaches, we may be able to achieve significant advancement over existing
techniques for certain classes of problems.

This paper presents an operator, Guided Gaussian Mutation(GGM), which attempts
to blend the phenotypic character of EP mutation with the population-adaptive
mechanism typified by a number of GA and ES crossover operators.

Discussion

Generally, the debate over the relative merits of EP and GA involves the evaluation
of the operators of the two approaches, most specifically focusing on the reproductive
operators.  In essence, this becomes a philosophical debate between the inherent value
of phenotypic self-adaptive operators, as typified through the EP mutation operator,
and genotypic population-adaptive operators, such as crossover.  Here, we broaden
the topic of population-adaptive operators to consider a larger class of operators, that
of Cohort Driver Operators (CDO).  Also, a new CDO, the Guided Gaussian Mutation
operator is proposed.

Cohort Driven Operators

The GA crossover operator, in its various forms, is in essence, a population-
adaptive operator.  The net modification produced by an application of crossover is
directly dependent on the distribution of the individuals in the population across the
problem space.  As the population converges, the ability to produce diverse
individuals through crossover is greatly reduced.

In general, any operator that relies on information from other individuals in the
population in order to transform individual i into a new individual i’ may be classified
as a Cohort Driven Operator (CDO).  The term cohort here specifies that the selection
of the additional individuals from the population may be biased, for example, in an
attempt to provide some form of niching.  Therefore, the classification of CDO is
more encompassing than population-adaptive.  Examples of existing CDOs include all
forms of GA crossover, including one-point, two-point and uniform crossover, BLX-
α [Eshelman 93], and other more recent variants such as uniform normal distribution
crossover (UNDX) [Ono 97].

An inherent drawback with the use of CDOs is that since the CDO draws its
“driving force” from the population as a whole, any operation that directly affects the
composition of the population over time also affects the operation of the CDO.  Thus,
not only is a CDO somewhat recursive in nature, but the actions of a CDO are directly
tied to all other operators, such as selection and mutation.  For this reason, the



operation of CDOs is often very difficult to analyze, as is the case with standard GA
crossover.  Clearly a CDO may open a Pandora’s box of intertwined relationships and
should only be pursued if the potential gain outweighs the potential for instability.

By the same token, CDOs are limited in power by the diversity (or lack thereof) of
the population.  As the population converges, there is no additional information to be
found in a cohort sampling, since all members of the cohort are identical to the
solution being modified.  Therefore, a requirement when using most CDOs is that
some form of “diversity adding” mutation be present or that large populations be used
to avert premature convergence.

Guided Gaussian Mutation

EP proponents adhere to the proposition that a mutation operator should have a
higher probability of making little or no modification to an individual than making
large scale changes.  Typically, this mutation is accomplished by addition of samples
from a zero-mean probability distribution such as a normal distribution.  The action of
this operator in a continuous domain is more intuitively tractable than that of
crossover or bit mutation.  However, in order to apply this technique, we need to
choose an appropriate set of mutation magnitudes relative to a given solution.  Early
EP approaches used the error of the solution to estimate the mutation magnitudes.
Modern approaches use self-adaptive encoding of magnitudes directly for each
individual [Bäck 93], [Savaranan 95].  However, the former implies some known
error limit and a relationship between the magnitudes of parameter values and error,
while the latter has the apparent effect of increasing the size of the search space,
searching for both the best solution and for the best parameters to continue improving
that solution, which would imply a slower or more difficult search process.

Guided Gaussian Mutation (GGM) is a CDO based directly on the EP philosophy
focusing on phenotypic rather than genotypic effects.  Like EP mutation, it
incorporates a zero-centered mutation biased toward smaller mutations; however,
instead of encoding the scale of the mutation as a self-adaptive parameter, it is
measured directly from the population.  This operator blends the basic design and
philosophy of the EP mutation operator with the population-adaptive concept found in
GA.

For the basic GGM algorithm, a cohort sample is selected from the population for
each individual to be mutated.  The standard deviation across each parameter is
calculated for the sample; these values are then used directly as the standard
deviations for the mutative sampling.  In the current implementation, the algorithm
simply selects individuals from the population without bias (i.e. the cohort is an
unbiased sample of the population).   Typical sample sizes range from 5 to 20;
however, behavioral changes under different sample sizes within this range appear
minor.  For all experimental data collected here, the sample size was fixed at 10.

The GGM operator explores near the current solution roughly within the same
bounds as the population as a whole.  Thus GGM mutates convergent parameters at a
lower magnitude, while at the same time the diversity of more fluid parameters is
maintained by larger magnitude mutation.  Of course, this points to one of the
drawbacks of GGM: like most CDOs, it becomes useless when the population
completely converges, and therefore it requires the use of an additional mutation
operator.



Unfortunately, although the motivation behind the creation of GGM was that of
hybridization, a reasonable fit between GGM and the EP framework has yet to be
realized.  Preliminary tests, using GGM in conjunction with and in place of standard
lognormal EP mutation in an EP framework show a slight degradation over standard
lognormal self-adaptive EP mutation.  However, the performance disparity of GGM
within GA and EP frameworks is not entirely surprising since GGM is a CDO, and as
has been previously discussed, the behavior of all CDOs is directly affected by all
other cohort-affecting operators.  Therefore, the failure to find a match between GGM
and EP may be either due to an incompatibility between some operator in the EP
framework and GGM, or due to a dependency between GGM and some element of
the GA framework.

Experimental Design

In testing the potential effectiveness of the GGM operator, we selected a number of
well regarded optimization test functions from the literature (e.g. [Yang 97],
[Savaranan 95], [Salomon 96]) as well as an original function (Sphere-Hull) intended
to be difficult for algorithms which tend toward the population mean or have
difficulty following non-linear surfaces.  All functions   were   redefined   to   allow
scaling   to  any number of dimensions.  The details of the functions used for this
evaluation are outlined in Table 2.

Function Name Translated Range
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Table 1. Test functions.  Given ranges are after translation, but before rotation.

These test functions were selected because of their ease of computation and
widespread use, which should facilitate evaluation of the results and comparison to
similar work.  No claim is being made as to the representative qualities of these
functions for any larger classes of functions.  Several of these functions are highly
multimodal; and many are known to be difficult for other search algorithms,
especially under high levels of dimensionality (i.e. in a black box form where the
search algorithm should not necessarily assume independence of dimensions).

Translation and Rotation

In order to avoid any bias toward a given operator introduced by axial symmetry
(such as we might expect to be the case with crossover), all test problems were
translated away from the origin by a fixed amount in all dimensions (e.g. a solution of
(0,0) is moved to (10,10), etc.)  Additionally, in light of recent results in [Salomon
97], all test functions were tested in both their original form and with an intervening
45 degree rotation for each contiguous pair of dimensions.  This served to test both
against any inherent alignment bias between the function landscape and the operators,
and for the effects of pleiotropy on the algorithms tested.  Rotation was applied prior
to translation.  Each tested algorithm was examined using both original and rotated
forms of all test functions.

The G-nMRM Algorithm

In an attempt to isolate whether any observed gain while using the GGM operator
originates from information gleaned from the cohort sampling, (as opposed to, say,
simply the fact that GGM is a zero-mean Gaussian mutation operator), an alternate
mutation algorithm was constructed.  The Gaussian n-Scaled Multi-range Mutation
(G-nMRM) operator allows the scale of a Gaussian mutation to be selected as
follows: select uniformly from the range s = [0...(rmax-rmin)

n), then take the magnitude of

the mutation to be 
n sr −max10 .  Once the magnitude is selected for an individual, each

parameter is mutated by addition of a sample from a zero-mean normal distribution
with a standard deviation of the selected magnitude multiplied by the initial range for
the given parameter.

Algorithms Tested

For a given GA application, any combination of operator application rates may be
chosen.  After extensive initial testing, several operator mixtures were chosen for
further evaluation.  These combinations are listed in Table 3 below.  These
combinations were chosen explicitly to test various aspects of the interplay between
these operators within the GA framework.  GA1 represents a “standard” GA approach
dominated by application of crossover.

In addition to these five GA variants, a basic EP algorithm using log-normal
self-adaptive parameter updates was tested to provide methodology verification and
as an external baseline for comparison.  For the purpose of comparison, all algorithms
tested (both EP and GA variants) encode the problem parameters as 64-bit IEEE



floating point reals (doubles).  Also, the same random number generators were used in
all tested GA and EP implementations (although not the same random seeds), and the
identical code for function evaluation was used in each.  The GA used was a modified
version of GALOPPS [Goodman 96], while Savaranan provided the EP code, which
is the same code used in [Savaranan 95].  Both implementations are originally based
on Goldberg’s implementation of SGA [Goldberg 89].

Results

Results were obtained for all six test algorithms on 10-dimensional versions of the
translated test functions, both with and without coordinate rotation, averaged over 100
test runs for each algorithm/function pair.  Algorithms were tested with population
sizes of 200 and 500.  All test runs were tracked for 500 generations, except for GA2
and GA5, which were stopped after 1300 and 2500 generations respectively, since
their lower application rate generate fewer evaluations per generation.  Tables 4 and 5
list results for selected algorithms on the rotated functions using population sizes of
200 and 500 respectively.

Interpretation

The GA3, GA4, and GA5 variants show an impressive improvement over all other
evaluated algorithms for a number of  test functions.  As expected EP outperformed
the “standard” GA1 in nearly all cases.  Also, the observed EP performance parallels
that reported in [Savaranan 95].

A common observation, which held across almost all tests, is that both GA1 and
GA2 variants performed significantly poorer than the GA3 variant. This is intriguing,
especially since it implies that, while neither crossover nor GGM is capable of any
remarkable performance on its own, the combination of crossover and GGM leads to
a larger performance gain than the sum of the gains obtained from using each operator
separately.  Given that both crossover and GGM are CDOs, and that GGM was
designed to an extent to fill the need for local exploration in a GA this is acceptable,
even somewhat expected behavior.  Still, the emergent properties of the combination
are quite striking and pronounced.

Sphere, Sphere-Hull, and Schwefel 1

Except for minor differences, the relative performance of all tested algorithms was
consistent across the Sphere, Sphere Hull, and Schwefel 1 functions (both rotated and
non-rotated).  Figure 1 illustrates the online performance of all tested algorithms using
a population size of 500 on the sphere function.  Performance across all algorithms
varied uniformly under rotation for all three test problems, with only minor
performance loss.  The low-level mutation and low crossover combination of GA5
worked very well on these broad, smooth, symmetric functions.



GA Parameters
Tournament Selection, w/ Tournament

Size of 2
Single Best Elitism
Field-Based 2-Point Crossover
GGM Cohort Sample size of 10
Scale Factor of 2 for G-nMRM, with

rmin = 0, and rmax = 20
EP Parameters

Log-Normal Self-Adaptive Parameter
Updates

Self-Adaptive Parameter Initialization
(initialrange)/(6*sqrt(n))

1 Child per Parent per Generation
EP Tournament Ranking Selection w/

Voting Pool of 10

Table 2. EP and GA Parameter settings

Algorithm Crossover G-2MRM GGM

Name Rate Rate Rate

GA1 90% 15% 0%

GA2 0% 0% 15%

GA3 90% 0% 15%

GA4 90% 50% 10%

GA5 5% 5% 10%

Table 3. GA variants tested.

Table 4. Comparison of selected algorithms with population size of 200 on rotated functions.

Table 5. Comparison of selected algorithms with population size of 500 on rotated functions.

Function Log Log Log Log Log Log Log Log

Evals. Mean S.Dev. Evals. Mean S.Dev. Evals. Mean S.Dev. Evals. Mean S.Dev.

Best Best Best Best

Sphere 99837 -3.00 -2.19 84621 -0.31 0.07 84588 -7.28 -6.49 93160 -29.53 -28.90

Sphere-Hull 99354 0.35 0.88 84577 1.57 1.35 84561 -1.41 -0.76 93195 -14.05 -14.47

Schwaef.1 99860 0.99 1.88 84608 2.76 2.95 84644 -1.74 -0.87 93475 -15.08 -14.37

Ackerman 99069 0.17 0.15 84595 0.71 0.14 84349 -1.73 -0.78 93058 0.37 0.16

Bohachev. 99623 0.36 0.14 84562 0.95 0.55 83240 -0.56 -0.32 93216 0.51 0.19

Rastrigin 99295 1.42 0.97 83956 1.31 0.93 83105 0.94 0.65 93007 1.49 1.25

Schaffer 94992 1.22 0.89 84254 1.40 0.63 84130 0.42 0.51 93430 1.50 1.12

Schwaef.2 97080 3.09 2.49 84631 3.12 2.41 83712 3.05 2.48 92920 3.20 2.53

Griewank 99796 -0.69 -0.62 84605 0.15 0.00 84533 -2.09 -2.01 93075 -0.52 -0.55

Rosenbrock 99871 1.35 1.78 84621 2.07 2.69 84133 0.96 1.15 93583 1.35 1.78

GA5EP GA1 GA3

Function Log Log Log Log Log Log Log Log

Evals. Mean S.Dev. Evals. Mean S.Dev. Evals. Mean S.Dev. Evals. Mean S.Dev.

Best Best Best Best

Sphere 249503 -4.22 -3.23 211584 -3.53 -3.08 211380 -INF -INF 240816 -30.15 -29.54

Sphere-Hull 249516 -0.71 -0.14 211558 0.25 0.38 211446 -14.21 -29.40 241118 -14.15 -15.07

Schwaef.1 249294 -0.82 0.16 211496 1.40 1.81 211444 -27.78 -27.00 242338 -24.96 -24.78

Ackerman 249444 -0.11 -0.05 211616 0.43 -0.07 211415 -INF -INF 241341 -0.52 -0.22

Bohachev. 247441 0.19 0.04 211578 0.65 0.23 202778 -1.19 -0.79 241106 -0.21 -0.16

Rastrigin 244889 1.36 0.99 211563 1.02 0.65 206755 0.69 0.45 241321 1.40 1.07

Schaffer 237537 1.18 0.81 204734 1.24 0.52 210014 -0.22 -0.04 242055 1.31 1.09

Schwaef.2 249297 3.03 2.41 207937 3.03 2.48 203954 2.91 2.48 241032 3.10 2.61

Griewank 249478 -0.76 -0.98 211611 -0.44 -0.60 211415 -2.64 -2.31 241693 -0.82 -1.06

Rosenbrock 249702 1.46 2.08 211492 1.02 1.01 211637 0.84 -0.14 242571 0.91 1.23

EP GA1 GA3 GA5
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Population Size Effects

As expected, variants GA2 and GA3 show the largest gain as the population size is
increased (since all of the operators in these variants are useless under premature
convergence); however, the difference in behavior for GA3 between population sizes
is the most striking.  This behavior holds constant for the Sphere, Sphere-Hull, and
Schwefel 1, as well as Ackley and Bohachevsky functions.  In all these cases except
the Bohachevsky function, this behavior was also invariant under rotation (i.e.
rotation had no effect except for a minor modification of the slope and convergence
points).  In-depth analysis shows that, in fact, approximately 95% of the runs using
GA3 with the smaller population size show the same sort of direct exponential error
reduction as is observed using a larger population size; however, the remaining 5%
converge prematurely fairly early in the run.

Ackley and non-rotated Bohachevsky
On these functions, GA3 and GA4 outperform all other tested algorithms,

especially as the population size is increased.  As expected, GA5, which performed so
well on earlier functions, becomes much less effective.  Also, the dramatic population
size effects for GA3 and GA4 are clearly visible.  Figure 2 illustrates the online
performance of all tested algorithms using a population size of 500 on the rotated
Ackley function.
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(Population size 500)



Schaffer, Rastrigin, and Griewangk
In general for these functions, algorithms GA3 and GA4 show improvement over

the remaining algorithms (though not as strikingly as before), and the other algorithms
are relatively indistinguishable.  This separation is more distinct under rotation.  Also,
the population size effects for GA3 and GA4 are not as dramatic.  Figure 3 illustrates
online performance of all tested algorithms using a population size of 500 on the
rotated Shaffer function.

Conclusion

GGM is a successful blending of both GA and EP philosophies.  It is apparent that
for several functions, a system using GGM and parameter-based crossover can
achieve significantly better performance than both standard EP and GA approaches.
In all test cases, GA3 performed at least as well as EP, and often performed
significantly better.  The apparent success of GGM appears to be related to an
interplay between GGM and parameter-based crossover; hence we may expect some
difficulties in achieving similar success in using GGM within a standard EP
framework.
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