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Abstract. Traditional approaches to real-valued functionirojiation using
evolutionary computational methods tend to useeeitfelf-adaptive operators
(as in the case of evolutionary programming), quytation-based operators (as
in the case of most real-valued genetic algorithmddwever, in general, most
population-based operators are limited in scopéhéouse of at most two or
three parent individuals. In this paper we explarealternative population-
based form of adaptation for evolutionary compotati Guided Gaussian
Mutation (GGM), which is designed specifically abealized search operator.
This operator is the first of a larger class of @olDriven Operators (CDOs)
which we define here. Experimental results usirgMsin a standard genetic
algorithm framework on a series of test problemsowshimpressive
improvement over standard evolutionary programming.

I ntroduction

A number of concepts in evolutionary computatio@)lBave arisen from specific
philosophic or metaphoric inspirations. Perhaps ik only natural given that the
unifying thesis of evolutionary computation is lfsbased on the metaphor of
simulating biological evolution. Many of the tedtmes employed by various EC
systems are direct extensions of the underlyingaptedr or philosophy. For
example, the GA crossover operator extends najuiralin the idea of manipulating
solution genomes. Likewise, the mutation oper&oEP extends directly from its
philosophical base, which focuses attention on ptygric rather than genotypic
effects. Some innovative search techniques haga beeated through such insights
([Fogel 66], [Holland 75],[Koza 92], to name a fevapwever, while such metaphors
may be useful in developing new techniques, theyatso become limiting if they are
used to screen out technigues which do not fitiwithe framework of the underlying
metaphor.



In light of the “No Free Lunch” theorems [Wolperb]fEnglish 97], such
conceptual litmus tests make little sense. Theeggly applicable, most efficient
search technique has become a myth. Since we tarpect any single approach to
become uniquely the best in a general sense, pertetper than focusing on
broadening any single metaphor we should considending concepts from the
existing philosophies, selecting features of ddfér systems or metaphors as
appropriate to the domain and blending them togettWéth the blending of concepts,
the focus becomes shifted from evaluation of thdapteor to evaluation of the
individual derived concepts. By incorporating goatncepts from separate
approaches, we may be able to achieve significaivarcement over existing
techniques for certain classes of problems.

This paper presents an operator, Guided GaussiaatighuGGM), which attempts
to blend the phenotypic character of EP mutatioth whe population-adaptive
mechanism typified by a number of GA and ES crossoyperators.

Discussion

Generally, the debate over the relative merits@fBid GA involves the evaluation
of the operators of the two approaches, most spaltjf focusing on the reproductive
operators. In essence, this becomes a philosdatabate between the inherent value
of phenotypic self-adaptive operators, as typifiecbugh the EP mutation operator,
and genotypic population-adaptive operators, siclkrassover. Here, we broaden
the topic of population-adaptive operators to coeisia larger class of operators, that
of Cohort Driver Operators (CDO). Also, a new CDREe Guided Gaussian Mutation
operator is proposed.

Cohort Driven Operators

The GA crossover operator, in its various forms,jnisessence, a population-
adaptive operator. The net modification producgdab application of crossover is
directly dependent on the distribution of the indials in the population across the
problem space. As the population converges, thifityallo produce diverse
individuals through crossover is greatly reduced.

In general, any operator that relies on informafimm other individuals in the
population in order to transform individual i irdonew individual i may be classified
as a Cohort Driven Operator (CDO). The term cohert specifies that the selection
of the additional individuals from the populatioraynbe biased, for example, in an
attempt to provide some form of niching. Therefdie classification of CDO is
more encompassing than population-adaptive. Exesngfl existing CDOs include all
forms of GA crossover, including one-point, two4pioand uniform crossover, BLX-
o [Eshelman 93], and other more recent variants sischniform normal distribution
crossover (UNDX) [Ono 97].

An inherent drawback with the use of CDOs is thate the CDO draws its
“driving force” from the population as a whole, aogeration that directly affects the
composition of the population over time also affettie operation of the CDO. Thus,
not only is a CDO somewhat recursive in nature tihetactions of a CDO are directly
tied to all other operators, such as selection andation. For this reason, the



operation of CDOs is often very difficult to anatyzas is the case with standard GA
crossover. Clearly a CDO may open a Pandora’sobintertwined relationships and
should only be pursued if the potential gain oughisithe potential for instability.

By the same token, CDOs are limited in power bydiversity (or lack thereof) of
the population. As the population converges, tlero additional information to be
found in a cohort sampling, since all members @& tdohort are identical to the
solution being modified. Therefore, a requiremesien using most CDOs is that
some form of “diversity adding” mutation be presenthat large populations be used
to avert premature convergence.

Guided Gaussian M utation

EP proponents adhere to the proposition that a tront@perator should have a
higher probability of making little or no modifigah to an individual than making
large scale changes. Typically, this mutationcisoanplished by addition of samples
from a zero-mean probability distribution such amamal distribution. The action of
this operator in a continuous domain is more intely tractable than that of
crossover or bit mutation. However, in order tglgphis technique, we need to
choose an appropriate set of mutation magnitudasve to a given solution. Early
EP approaches used the error of the solution imatd the mutation magnitudes.
Modern approaches use self-adaptive encoding ofniafps directly for each
individual [Back 93], [Savaranan 95]. However, tteemer implies some known
error limit and a relationship between the magretudf parameter values and error,
while the latter has the apparent effect of indrenshe size of the search space,
searching for both the best solution and for th& parameters to continue improving
that solution, which would imply a slower or moii&idult search process.

Guided Gaussian Mutation (GGM) is a CDO based tlrem the EP philosophy
focusing on phenotypic rather than genotypic effectLike EP mutation, it
incorporates a zero-centered mutation biased towardller mutations; however,
instead of encoding the scale of the mutation asel&kadaptive parameter, it is
measured directly from the population. This opmrdtlends the basic design and
philosophy of the EP mutation operator with theyapion-adaptive concept found in
GA.

For the basic GGM algorithm, a cohort sample isceld from the population for
each individual to be mutated. The standard deviahcross each parameter is
calculated for the sample; these values are thexd whrectly as the standard
deviations for the mutative sampling. In the cotrenplementation, the algorithm
simply selects individuals from the population witth bias (i.e. the cohort is an
unbiased sample of the population).  Typical sa&mgkes range from 5 to 20;
however, behavioral changes under different samigles within this range appear
minor. For all experimental data collected helne,sample size was fixed at 10.

The GGM operator explores near the current solutmumghly within the same
bounds as the population as a whole. Thus GGM tesitzonvergent parameters at a
lower magnitude, while at the same time the divgref more fluid parameters is
maintained by larger magnitude mutation. Of coutbés points to one of the
drawbacks of GGM: like most CDOs, it becomes uselefien the population
completely converges, and therefore it requires ube of an additional mutation
operator.



Unfortunately, although the motivation behind threation of GGM was that of
hybridization, a reasonable fit between GGM and Hfe framework has yet to be
realized. Preliminary tests, using GGM in conjiumttwith and in place of standard
lognormal EP mutation in an EP framework show ghslidegradation over standard
lognormal self-adaptive EP mutation. However, peeformance disparity of GGM
within GA and EP frameworks is not entirely surprissince GGM is a CDO, and as
has been previously discussed, the behavior o€BIDs is directly affected by all
other cohort-affecting operators. Therefore, tikife to find a match between GGM
and EP may be either due to an incompatibility leetwvsome operator in the EP
framework and GGM, or due to a dependency betweBM@nd some element of
the GA framework.

Experimental Design

In testing the potential effectiveness of the GGdémator, we selected a number of
well regarded optimization test functions from thterature (e.g. [Yang 97],
[Savaranan 95], [Salomon 96]) as well as an origimaction (Sphere-Hull) intended
to be difficult for algorithms which tend toward ethpopulation mean or have
difficulty following non-linear surfaces. All futions were redefined to allow
scaling to any number of dimensions. The detafl the functions used for this
evaluation are outlined in Table 2.

Function Name Translated Rangje
> %’ Sphere -100< x; < 100
V3 (x —a)7 -100f + [ (x —t) where
Sphere-Hull | -500< x; < 500
VY (& -c)? =10m
3 - sing/[x| Schwefel 1 | -500< x; < 500
—oz- L X2 1 cos| - f
—20e( 02+ =% %) _enz M)+2c+e Ackley 30< %, <30
n-1
S (% -2x.,” -~ 03cos@rx ) - O4cos@rx,,) +07) | Bohachevsky] -15<xi<15
1on+Yy (x> —10cos@rx,)) Rastrigrin -15<x <15
3 067 41,7 s’ (50" (57 + %)) +10] Schaffer | -100<x <100
ZEZXE Schwefel 2 | -500< x < 500
ey 5 Rodd Gri k | -600<x <600
24000 ﬂ[@ %ﬁ% riewang -600< x;
n-1
Z[loo* (%2 =%,) + @-x)7] Rosenbrock | -15<x <15




Table 1. Test functions.Given ranges are after translation, but befordimta

These test functions were selected because of #ese of computation and
widespread use, which should facilitate evaluatibthe results and comparison to
similar work. No claim is being made as to therespntative qualities of these
functions for any larger classes of functions. eéalof these functions are highly
multimodal; and many are known to be difficult fother search algorithms,
especially under high levels of dimensionality .(ire a black box form where the
search algorithm should not necessarily assumeeéerdience of dimensions).

Trandation and Rotation

In order to avoid any bias toward a given operattnoduced by axial symmetry
(such as we might expect to be the case with cvesgoall test problems were
translated away from the origin by a fixed amounli dimensions (e.g. a solution of
(0,0) is moved to (10,10), etc.) Additionally, light of recent results in [Salomon
97], all test functions were tested in both theigioal form and with an intervening
45 degree rotation for each contiguous pair of disiens. This served to test both
against any inherent alignment bias between thetifumlandscape and the operators,
and for the effects of pleiotropy on the algorithtasted. Rotation was applied prior
to translation. Each tested algorithm was examumgdg both original and rotated
forms of all test functions.

The G-nMRM Algorithm

In an attempt to isolate whether any observed gdite using the GGM operator
originates from information gleaned from the cohsatnpling, (as opposed to, say,
simply the fact that GGM is a zero-mean Gaussiatatimn operator), an alternate
mutation algorithm was constructed. The Gaussigtaled Multi-range Mutation
(G-nMRM) operator allows the scale of a Gaussiartatn to be selected as
follows: select uniformly from the range 4&..(r-r..)", then take the magnitude of

the mutation to bd 0>, Once the magnitude is selected for an individeath

parameter is mutated by addition of a sample froee@-mean normal distribution
with a standard deviation of the selected magnitadéiplied by the initial range for
the given parameter.

Algorithms Tested

For a given GA application, any combination of @ter application rates may be
chosen. After extensive initial testing, severpemtor mixtures were chosen for
further evaluation. These combinations are listedTable 3 below. These
combinations were chosen explicitly to test variagpects of the interplay between
these operators within the GA framework. GAL1 repres a “standard” GA approach
dominated by application of crossover.

In addition to these five GA variants, a basic Egbathm using log-normal
self-adaptive parameter updates was tested toq@aviethodology verification and
as an external baseline for comparison. For thpgse of comparison, all algorithms
tested (both EP and GA variants) encode the prolgamameters as 64-bit IEEE



floating point reals (doubles). Also, the samed@an number generators were used in
all tested GA and EP implementations (althoughthetsame random seeds), and the
identical code for function evaluation was useédach. The GA used was a modified
version of GALOPPS [Goodman 96], while Savaranasviged the EP code, which
is the same code used in [Savaranan 95]. Botheimghtations are originally based
on Goldberg’s implementation of SGA [Goldberg 89].

Results

Results were obtained for all six test algorithmsl®-dimensional versions of the
translated test functions, both with and withoutrciinate rotation, averaged over 100
test runs for each algorithm/function pair. Algbms were tested with population
sizes of 200 and 500. All test runs were trackedbD0 generations, except for GA2
and GA5, which were stopped after 1300 and 250@rg¢ions respectively, since
their lower application rate generate fewer evaduet per generation. Tables 4 and 5
list results for selected algorithms on the rotdi@tttions using population sizes of
200 and 500 respectively.

I nterpretation

The GA3, GA4, and GAb5 variants show an impressmprovement over all other
evaluated algorithms for a number of test functioms expected EP outperformed
the “standard” GAL in nearly all cases. Also, tiserved EP performance parallels
that reported in [Savaranan 95].

A common observation, which held across almostedits, is that both GA1 and
GA2 variants performed significantly poorer thae tBA3 variant. This is intriguing,
especially since it implies that, while neither ssover nor GGM is capable of any
remarkable performance on its own, the combinatiocrossover and GGM leads to
a larger performance gain than the sum of the gabtained from using each operator
separately. Given that both crossover and GGMGD®s, and that GGM was
designed to an extent to fill the need for locgbleration in a GA this is acceptable,
even somewhat expected behavior. Still, the enméng®perties of the combination
are quite striking and pronounced.

Sphere, Sphere-Hull, and Schwefel 1

Except for minor differences, the relative perfonoe of all tested algorithms was
consistent across the Sphere, Sphere Hull, and&ehtvfunctions (both rotated and
non-rotated). Figure 1 illustrates the online parfance of all tested algorithms using
a population size of 500 on the sphere functioerfd®mance across all algorithms
varied uniformly under rotation for all three teptoblems, with only minor
performance loss. The low-level mutation and lawssover combination of GA5
worked very well on these broad, smooth, symméurictions.



GA Parameters _ Algorithm | Crossover | G-2MRM | GGM
Tourr;e};]eegft 2Select|on, w/ Tournament Name Rate Rate Rate
Single Best Elitism GAl 90% 15% 0%
Field-Based 2-Point Crossover GA2 0% 0% 15%
GGM Cohort Sample size of 10 o o o
Scale Factor of 2 for GMRM, with GA3 90% 0% 15%

Iin =0, and Fax = 20 GA4 90% 50% 10%

EP Parameters GA5 5% 5% 10%
Log-Normal Self-Adaptive Parameter ]

Updates Table 3. GA variants tested.

Self-Adaptive Parameter Initialization
(initialrange)/(6*sqrt(n))

1 Child per Parent per Generation

EP Tournament Ranking Selection w/
Voting Pool of 10

Table 2. EP and GA Parameter settings

EP GAl GA3 GA5
Function Log Log Log Log Log Log Log Log
Evals. | Mean | S.Dev.] Evals. | Mean | S.Dev.| Evals. | Mean | S.Dev.] Evals. | Mean | S.Dev.
Best Best Best Best
Sphere 99837 -3.00f -2.19] 84621] -0.31] 0.07) 84588| -7.28] -6.490 93160| -29.53| -28.90]

Sphere-Hull 99354 0.35| 0.88) 84577 157 1.35] 84561] -1.41] -0.76] 93195| -14.05| -14.47|
Schwaef.1 99860 0.99 1.88) 84608 2.76 2.95] 84644| -1.74] -0.87] 93475 -15.08 -14.37]
Ackerman 99069 0.17) 015§ 84595 0.71 0.14) 84349 -1.73] -0.78§ 93058 0.37[ 0.16
Bohachev. 99623 0.36] 0.14y 84562 0.95 0.55) 83240] -0.56] -0.32§ 93216 0.51f 0.19
Rastrigin 99295 142] 0.97) 83956 131 0.93) 83105/ 0.94] 0.65) 93007 1.49 1.25
Schaffer 94992 1.22] 0.89) 84254 1.40 0.63) 84130] 0.42| 0.51) 93430 1.50 1.12]
Schwaef.2 97080 3.09 249 84631 312 241y 83712| 3.05 2.48) 92920| 3.20] 253
Griewank 99796 -0.69| -0.62§ 84605 0.15 0.00p 84533] -2.09] -2.01§ 93075/ -0.52[ -0.55
Rosenbrock 99871 1.35 1.78) 84621 2.07 2.69) 84133 0.96) 1.15) 93583 1.35 1.78]

Table 4. Comparison of selected algorithms with populasae of 200 on rotated functions.

EP GAl GA3 GA5
Function Log Log Log Log Log Log Log Log
Evals. | Mean | S.Dev.] Evals. | Mean | S.Dev.| Evals. | Mean | S.Dev.] Evals. | Mean | S.Dev.
Best Best Best Best

Sphere 249503 -4.22| -3.23] 211584] -3.53| -3.08) 211380 -INF -INFj 240816| -30.15] -29.54]
Sphere-Hull [ 249516 -0.71| -0.14§ 211558 0.25| 0.38) 211446| -14.21( -29.400 241118| -14.15] -15.07]
Schwaef.1 || 249294 -0.82 0.16) 211496 1.40 1.810 211444| -27.78| -27.00) 242338| -24.96| -24.78]
Ackerman || 249444| -0.11f -0.05§ 211616 0.43] -0.07Q 211415 -INF -INFj 241341 -0.52| -0.22
Bohachev. || 247441] 0.19 0.04) 211578 0.65| 0.23 202778 -1.19[ -0.79] 241106| -0.21] -0.16]

Rastrigin 244889 1.36 0.99) 211563 1.02] 0.65) 206755 0.69 0.45) 241321 1.40 1.07]
Schaffer 237537 1.18 0.81) 204734 1.24] 0.52) 210014| -0.22| -0.04] 242055 1.31 1.09
Schwaef.2 || 249297 3.03 2410 207937 3.03 2.48) 203954 2091 2.48) 241032 3.10 2.61]
Griewank 249478 -0.76] -0.98) 211611] -0.44| -0.60Q 211415| -2.64| -2.31] 241693| -0.82] -1.06]
Rosenbrock || 249702 1.46 2.08) 211492 1.02 1.01) 211637) 0.84] -0.14] 242571f 0.91 1.23

Table 5. Comparison of selected algorithms with populasae of 500 on rotated functions.



o<X> QOor

~W0N DI

o<X> QOor

~W0NOI

Figure 1. : Performance on sphere function (10 Dimensions)
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Figure 2. : Performance on rotated Ackley function (10 Dimensions)
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Figure 3. : Performance on rotated Schaffer function (10 Dim.)
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Population Size Effects

As expected, variants GA2 and GA3 show the largast as the population size is
increased (since all of the operators in theseamtsiare useless under premature
convergence); however, the difference in behaworGA3 between population sizes
is the most striking. This behavior holds constantthe Sphere, Sphere-Hull, and
Schwefel 1, as well as Ackley and Bohachevsky fonst In all these cases except
the Bohachevsky function, this behavior was alseaiimnt under rotation (i.e.
rotation had no effect except for a minor modificatof the slope and convergence
points). In-depth analysis shows that, in facpragimately 95% of the runs using
GAS3 with the smaller population size show the saoi of direct exponential error
reduction as is observed using a larger populaine; however, the remaining 5%
converge prematurely fairly early in the run.

Ackley and non-rotated Bohachevsky

On these functions, GA3 and GA4 outperform all othested algorithms,
especially as the population size is increasedexpected, GA5, which performed so
well on earlier functions, becomes much less eiffectAlso, the dramatic population
size effects for GA3 and GA4 are clearly visibl&igure 2 illustrates the online
performance of all tested algorithms using a pdpmiasize of 500 on the rotated
Ackley function.



Schaffer, Rastrigin, and Griewangk

In general for these functions, algorithms GA3 &@&4 show improvement over
the remaining algorithms (though not as strikinggybefore), and the other algorithms
are relatively indistinguishable. This separai®more distinct under rotation. Also,
the population size effects for GA3 and GA4 areawtramatic. Figure 3 illustrates
online performance of all tested algorithms usingapulation size of 500 on the
rotated Shaffer function.

Conclusion

GGM is a successful blending of both GA and EPqgduphies. It is apparent that
for several functions, a system using GGM and patarrbased crossover can
achieve significantly better performance than bsiindard EP and GA approaches.
In all test cases, GA3 performed at least as wellE®, and often performed
significantly better. The apparent success of G@ppears to be related to an
interplay between GGM and parameter-based crossbeace we may expect some
difficulties in achieving similar success in usif@GM within a standard EP
framework.
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