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Abstract. We use the genetic programming (GP) paradigm for two tasks. The first 
task given a GP is the generation of rules for the target / clutter classification of a set 
of synthetic aperture radar (SAR) images, the second, the generation of rules for the 
identification of tanks in a second set of SAR images. To perform these tasks, 
previously defined feature sets are generated on the various images, and GP is used to 
select relevant features and methods of analyzing these features. GP results are then 
compared with previous work using the feature sets. 

1. Introduction 

One of the first uses of the GP paradigm for image classification appeared in Tackett 
[17], where GP was used to generate arithmetical expressions representing features for 
target / clutter classification on a set of infrared imaged military vehicles. While this 
work was useful from an automatic target recognition (ATR) standpoint, it was 
unclear whether Tackett's particular technique would work for other types of imagery 
or classification problems, as noted by Laird [11]. 

The question of GP's  utility in image feature extraction problems has been, since this 
early work, partially tested by many other researchers. Daida [3,4], for example, used 
GP to generate arithmetical expressions for the purpose of extracting ridge features 
from SAR imaged arctic ice. Another set of examples lie in the facial feature 
extraction algorithms using GP implemented by Isaka [10] and Winkeler [18]. One 
interesting aspect of many of these works is the fact that they generally concentrated 
on the feature extraction aspect of image classification, rather than feature selection 
(although the two are closely related). In many problems (such as ATR problems), 
however, a large set of features is often available via prior analysis, and, rather than 
further feature extraction, feature selection and classification algorithm generation is 
necessary. In this area, although there has been much applied work done using genetic 
algorithms (GAs), e.g. Sims [16], little has been done using GP. In this work, we hope 
to further demonstrate the potential utility of the GP paradigm for feature selection 
and classification algorithm generation in the ATR domain. 

To show the utility of the GP paradigm for feature selection and classification 
algorithm generation in the ATR domain, we focus on two problems. The first 
problem is a simple target / clutter image classification problem. The second problem 



736 

is an actual target identification problem. Each problem uses a set of SAR-imaged 
military targets, and rather than using GP to generate features for the classification and 
identification of these images, we use a previously defined feature set shown to have 
utility for classification and identification in the SAR domain. The role of the GP is to 
generate logical expressions on comparisons of  these features to both real-valued 
constants and themselves, in order to create a linear classifier of the style described in 
Fukunaga [7]. Resulting expressions are then compared to previously known 
information about the feature set in terms of both classification / identification 
performance and methodology, to obtain an estimate of  the performance of the GP. 

2. Experiment One - Target / Clutter Classification 

In the first experiment, GP was used to classify a set of SAR images into those 
containing a man-made military target, and those containing only clutter. We first 
describe the SAR data set used, as well as the features generated on this data set. 
Second, we describe the procedure used, including how the GP was used to generate 
rules on the full feature set. Last, we evaluate the results of the GP, and contrast these 
results with previous knowledge of the characteristics of the feature set. 

2.1 Data Set 

The data set used in the first experiment was the DARPA ADTS (Advanced Detection 
Technology Sensor) standard data set [13]. This data set consisted of a large set of 
small SAR-imaged "chips" (128x128 pixels), each of which contained either a target 
with or without camouflage, or natural clutter such as trees, rocks, etc. An example of 
each is given below (Images 1 and 2). Other than these examples, we will not discuss 
the technical details of SAR here (see [2]), except to note that it is a type of imaging 
radar differing from infrared imagery in that it works from the microwave, as opposed 
to the infrared portion of the electromagnetic spectrum. This large set of images was 
then divided into a large training set (1447 images) and a smaller set (304 images) to 
be used for testing the learned classification rules. Feature vectors, as discussed in the 
next section, were then generated on each image, and these feature vectors were sent 
to the GP for processing. 
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2.2 Feature Set 

A set of  ten separate features was used to generate feature vectors on each individual 
chip mentioned above. The 10 features used were taken from a larger set of  15 
features fully investigated by MIT Lincoln Laboratory (MIT/LL) [12] and are 
described in Table 1 below. While the use of  all 15 features in the set would have 
been desirable, several of  them were discarded due to a lack of  necessary data on each 
image. After generating each feature i on each chip x in both the training data set and 
test data set, each feature vector xi was normalized by the mean Itxi and standard 
deviation ffxi of  the feature vectors generated on the training data to produce features i 

with/ti = 0 and oi = 1. These final, normalized feature vectors were then passed to the 
GP for processing. 

Table 1: Feature set used in target / clutter classification experiment. 
Feature 
Blob Mass 
Blob Diameter 
Blob Inertia 
Contrast Max 

Contrast Mean 
Contrast Bright 

Standard Deviation 
Fractal Dimension 
Count 

Weighted-Rank Fill 
Ratio 

Description 
Calculates the number of pixels in a morphological blob defined on the suspected target. 
Returns length of diagonal of the smallest rectangle botmding the morphological blob. 
The second moment of the blob amplitudes about their center of mass. 
Returns the largest pixel value in the morphological blob from a clutter-normalized (~utt.r = 0 
and ~clutter = l ) image. 
Returns the mean pixel value in the morphological bhib from a clutter-normalized image. 
Returns the number of pixels greater than one standard deviation above the mean in the 
morphological blob from the normalized image. 
The standard deviation of the pixel amplitudes contained in the morphological blob. 
A measure of the spatial dirnensionality of the pixels contained in the morphological blob. 
The number of pixels in the morphological blob with amplitudes greater than the 98th percentile 
of the surrounding clutter. 
Computed by obtaining quotient of the sum of the highest-valued 50 pixels in the morphological 
blob, and the sum of all t h e w s  in the blob. 

All of the above features were computed using a morphological "blob" about the 
target. This refers to the set of  pixels in a image that represent the shape of  the target, 
obtained through a series of  image algebra operations such as defined by Crimmins 
[1]. 

2.3 Procedure 

After obtaining the normalized feature vectors on each individual chip, the full set of  
normalized feature vectors was then passed to the GP for analysis. The GP worked in 
the following manner: Each individual consisted of  a binary tree with a maximum 
depth of  7, representing a logical statement on the feature vectors. I f  the statement 
returned a value of  1 (TRUE), the image represented by the feature vector was 
assumed to contain a target, otherwise, the image was assumed to contain only clutter. 
The fitness f for a given individual i was then calculated as 

# correct classifications 
f ( i )  = . In this case, the fitness of  an individual corresponds 

# images 

to the probability of  correct classification of  images into target / clutter classes as 
defined by Ratches [15]; the goal of  the GP is to maximize this probability. 
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Each node of an individual was allowed to be of four types: Logicals, returning a 1 
or 0; C o m p a r a t o r s ,  returning a 1 or 0; T e r m i n a t o r s ,  referencing a feature, and 
C o n s t a n t s ,  returning a specified value sampled from a Gaussian distribution with It 

= 0 and o-= 1. For each type, there were multiple possible operators. The L o g i c a l  
type consisted of the operators {AND, OR}, the C o m p a r a t o r  type consisted of the 
operators {% >}, T e r m i n a t o r s  consisted of operators referencing any of the ten 
possible features, and C o n s t a n t s  had some real value. L o g i c a l s  and 
C o m p a r a t o r s  were allowed exactly two child nodes, while T e r m i n a t o r s  and 
C o n s t a n t s  were allowed none. Further, the child nodes allowed to each node type 
were limited. L o g i c a l s  were allowed to have child nodes of type L o g i c a l  or 
C o m p a r a t o r ,  while C o m p a r a t o r s  were forced to have the left child node of type 
T e r m i n a t o r ,  and the right node of either type T e r m i n a t o r  or type C o n s t a n t .  
For a summary of this information, see Table 2 below. 

Table 2: Summa r of GP node t ~ e  information. 
Node ~ Return Value Operators ~ a l  C~ld T ~  . . . .  
Logical {I, O} {AND, OR} Logical, Comparator 
Comparater {I,0} {>,<} ] Terminator, 1 Terminator or 

Constant 
Terminator Real See Table 1 None 
Cons t a n t  Real Given a real value None 

The genetic operators worked in the following manner: The mutation operator, 
applied to a node, would alter that node to a random operator (or value, in the case of 
a node of type C o n s t a n t )  of the same type. Crossover between individuals resulted 
in one child, and was allowed to occur at nodes if two criteria, ensuring both 
consistent individuals and the tree depth restrictions, were met. First, the node types at 
the point of crossover had to have consistent return values (i.e. a crossover point at 
node types Logical and Comparator would be legal, while a crossover point at 
node types L o g i c a l  and T e r m i n a t o r  would not). Second, the crossover node 
depth of the second parent needed to be equivalent to or greater than the node depth of 
the crossover node of the first parent. Given these restrictions on the genetic operators 
used by the GP, it would be possible to classify this GP as being "strongly typed", as 
described by Montana [14] and Harris [8]. Additionally, this procedure is similar to 
other GP procedures that induce decision trees for classification purposes, such as 
recent work by Frietas [6]. 

The GP used a population size of 250 over 100 generations. The probability of 
generating a new individual via crossover was set to Pc = 0.60, while the probability 
of mutating a specific node was set to PM = 0.25. The use of these specific settings 
were a result of performance testing on a limited set of data, on which they worked 
well. No elitism was used, and a proportional selection scheme was used to select 
individuals for propagation into the next generation. Twenty runs were made, and for 
each run in this set, fitness information was gathered for each individual processed on 
the testing data and on the out-of-sample data. Further, information was collected over 
all 20 runs, and the average mean and best fitness of individuals generated by the GP 
over these 20 runs were computed on both the training and the out-of-sample data up 
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to generation 50. Beyond generation 50, no significant statistical improvement in the 
fitness of individuals generated by the GP was seen. 

2.4 Results and Discussion 

Analysis of the performance of the GP was based on two measures of performance. 
The first was how well the GP performed in terms of accuracy of classification. The 
second was how well the features which the GP found useful corresponded to prior 
analysis performed by MIT/LL against the full feature set, which characterized the 
most useful features for target / clutter classification problems [12]. 

In terms of accuracy of classification, the system was able to generate rules that 
performed reasonably well on both the training data set and the out-of-sample testing 
data set, as seen in Graphs 1-2. In this particular test, the best out-of-sample 
performance scores, giving approximately 82% correct classification, compared to 
results generated by MIT/LL using this feature set, in which targets could be detected 
correctly in approximately 75-85% of the cases evaluated. The quoted figures for the 
MIT/LL experiments resulted roughly 1-10 false alarms per square kilometer, as 
shown in ROC (Receiver Operating Characteristic) curves from that study. No such 
statistic exists for the GP. 

Graph 1: G P  Performance on Training D a t a  - 
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One of two possible issues that could be raised is that of how well classification 
accuracy in the training data set implies classification accuracy in the out-of-sample 
data set. There was some tendency of the GP to overfit to the training data, seen most 
often in those rules with classification accuracy approaching 90% in the training data. 
However, rules that gave classification accuracy of 70-80% in the training data 
showed minimal degradation in moving to the out-of-sample data set. 

The second issue that might be raised deals with the fact that there is seemingly a lack 
of improvement of the performance of the best rules found over time. There are three 
potential reasons for this phenomenon. The first is the relative ease of the problem, in 
that the problem combined a large population with a small set of features. The second 
is the fact that elitism was not used, and the third is that the method used in visualizing 
the results of the GP may have smoothed out any variance encountered in individual 
runs. To resolve whether or not the GP had any learning capability, a single run was 
made, in which the population size was lowered to 10 individuals and elitism was used 
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to propagate the best two rules found from generation to generation explicitly. The 
best and mean performances of this run are given in Graph 3; in this case, significant 
improvements were made in the solutions initially proposed by the GP. 

Graph 3: GP Performance with Small 
Population - Classification 
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Given the performance of the GP in terms of accuracy, the next measure of 
performance was how well the features found to be useful by the GP matched against 
the features revealed to be useful by the previous analysis done by MIT/LL. To 
answer this question, we first (Table 3) give three examples of rules found by the GP, 
which are characteristic of the types of rules that the GP generates. Then, in Table 4, 
the features noted by MIT/LL as providing best discrimination power and the five 
features most commonly found by GP-generated rules with high classification 
accuracy both in the training data set and the out-of-sample data set are given. There 
is some overlap in the features found to be useful by MIT/LL and the features that the 
GP commonly found to be useful, which might imply that the GP has performed well 
in this aspect. 

Table 3: Sample GP-Generated Rules for Target  / Clutter Classification 
(Blob_Diameter > 0. 003747) 
(Count > 0.043725) 
((Contrast Max > Blob_Diameter) AND (Contrast_Mean < Contrast_Max) ) 
OR (Count > Standard_Deviation) 

Table 4: Comparison of Features Commonly Used by GP to Lincoln Laboratory 
Analysis 

M I T / L L  Bes t  Features  GP  M o s t  Common Features  

Blob  Diamete r  Blob D i ame t e r  
Fracta l  Dimension  Fractal  Dimension  

Contras t  M e a n  Contras t  M e a n  
Contras t  Br ight  Contras t  M a x  

..... We,! ,~,h!ed-Rank Fil l  Rat!o Standard Dev!at ion .... 

2.5 Conclusion - Experiment One 

Experiment One tested the GP defined in Section 2.3 in a target / clutter classification 
problem, using a previously defined feature set. The performance of the GP was 
compared to prior analysis done on this feature set by MIT / Lincoln Laboratory, both 
in terms of general classification accuracy and in terms of finding the usefulness of 
features that were previously shown to be useful. This comparison showed similarities 
in both accuracy and features found to be useful. 
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3. Exper iment  T w o  - Target  Identif icat ion 

In the second experiment, GP was used to identify those images containing a tank 
signature from a set of SAR images, all containing signatures of  military targets. We 
first describe the data set used and the features generated on this data set. Second, we 
describe the procedure used, and last, we evaluate the results of  the GP, and contrast 
these results with previous knowledge of the characteristics of the feature set. 

3.1 Data Set 

The data set using in the second experiment consisted of 15 vehicles, of which 5 were 
tanks, the remaining 13 being considered confuser targets, imaged with a SAR sensor 
at rotation increments of every 30 ~ from 0 ~ Additionally, at each 30 ~ increment, every 
target was imaged + 5 ~ at increments of 0.5 ~ Specific imagery from this data set will 
not be shown; it is similar in appearance to the data set used in Experiment One. This 
resulted in 3755 individual images, of which 1258 were images of tanks. This large set 
was then randomly divided into two groups, a training group consisting of 3004 
images (1007 of which were tanks), and an out-of-sample set consisting of 751 
images (251 of which were tanks). Feature vectors, as discussed below, were 
generated for each image, and the resulting feature vectors were sent to the GP for 
processing. 

3.2 Feature Set 

For the second experiment, two more features were added to the feature set used in the 
first experiment (discussed in Section 2.2 above). The first additional feature was the 
result of a correlation-based template match against a tank. The second was the result 
of the same correlation-based template matcher against a different confuser target. The 
correlation template-matching algorithm used is described briefly below. These 
features were chosen for addition because the details of the use of this matching 
algorithm in this data set has been well characterized in research conducted at ERIM 
International (EI), thereby giving us something to compare the results of the GP 
against. Again, the feature vectors xi generated were scaled by the mean [..lxi and 
standard deviation Crxi of the feature vectors of the training data set to produce features 
i with ]li = 0 and O~ = 1; these final scaled data were used to train the GP. 

The correlation-based template matching algorithm worked in the following manner: 
Given a target image X, and a smaller template image Y, the matching algorithm slides 
the template image Y to each possible position in the target image X where it fits. At 
each position, the algorithm then computes a correlation of the pixel amplitudes in 
image Y and the pixel amplitudes in the subimage of X covered by Y. The best (closest 
to unity) correlation score obtained over all fits of Y in X is regarded as the correlation 
of X and Y. 
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3.3 Procedure 

The procedure for the second experiment was the same as the procedure for the first 
(Section 2.3), except for the addition of the two correlation metrics to the set of 
possible terminators. 

3.4 Results and Discussion 

As in the analysis of Experiment One, in Experiment Two we were concerned with 
two measures of performance. The first measure was the performance of the GP in 
terms of accuracy of identification. The second was how well the features that the GP 
found to be useful correspond with what we know previously to be useful (the 
template matching score against the template of the tank). 

In terms of accuracy of identification, the system was again able to generate rules that 
performed well on both the training data set and the out-of-sample data set, as seen in 
Graphs 4 and 5 below. The best out-of-sample performance of rules were typically 
76% correct classification, although some rules reached approximately 80% correct 
classification. This is worse performance than noted by the EI study which obtained 
100% correct classification with 10% misclassification in a theoretical study, and 
could be partially attributed to the fact that the GP did not explicitly refine real-valued 
thresholds used for comparisons against features. The slight tendency of the GP to 
overfit to the training data persisted, and like Experiment One, while a 10% 
improvement over time was seen in the average mean performance of the algorithm, 
no improvement over time was seen in the average best performance. To again test the 
GP in order to find out if the algorithm had any real learning capability, the same 
technique used in the target / clutter classification problem was again used. A single 
run was made, in which the population size was lowered to 10 individuals and elitism 
was used. The best and mean performances of this run are given in Graph 6; as in the 
target / clutter classification problem, significant improvements were made in the 
solutions initially proposed by the small-population GP. 

Graph 4: GP Performance on Training Data - 
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Graph 6: GP Performance with Small 
Population - Identification 
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Again, given the overall performance of the GP in terms of identification accuracy, the 
next measure of performance was how well the features found to be useful by the GP 
corresponded with the features previously known to be useful. The primary feature 
used by the GP was the correlation score against the tank template, as expected, which 
was good enough for over 75% identification accuracy. However, the GP was able to 
use the other features, especially the correlation score against the confuser target, to 
further refine its accuracy up to the aforementioned 80% accuracy. Two sample rules 
are given below (Table 5), which again are simple but representative of rules that the 
GP generated. In the first, we see a direct numerical comparison to the correlation 
metric against the tank, in the second we see this correlation metric used in 
conjunction with the correlation metric against the template of the confuser target and 
the contrast max feature. It should be noted, however, that after the feature 
normalization process, the value of the (normalized) contrast max feature was 
virtually zero among all targets, due to a few outliers in the data. Based on this 
knowledge, the second rule could be construed as identifying a target as a tank if its 
normalized correlation score against the tank template was both greater than zero and 
greater than the target's normalized correlation score against the template of the 
confuser target. 

Table 5: Sample GP-Generated Rules for Tank / Confuser Identification 
(CORR_TANK > 2.837092) 
((C0RR_CONFUSER < CORR_TANK) AND (CORR TANK > CONTRAST_MAX)) 

Note that the above comparisons again use normalized correlations, making the 
comparison of a correlation match to some threshold greater than 1.0 reasonable. 

3.5 Conclusion - Experiment Two 

Experiment Two tested the GP defined in Section 3.3 in a target identification 
problem, using a previously defined feature set. In terms of identification accuracy, 
the GP apparently had worse performance than the best possible performance noted in 
a prior study. This could be partially attributed to the fact that there was no explicit 
tuning of numerical thresholds used for comparison. However, the GP was able to find 
features that were previously known to be useful, and was able to combine features in 
order to increase its performance. 
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4.  C o n c l u s i o n  

In this work, we performed two experiments. The goal of these experiments was to 
gain insight into the uses of GP for feature selection and classification algorithm 
generation in an applied problem. The first experiment was to use GP to generate 
logical expressions using a set of previously defined features for the purpose of 
classification of a set of SAR-imaged military targets into target / clutter classes. The 
second was to use GP to generate logical expressions on an expanded feature set for 
the purpose of target identification, again on a set of SAR-imaged military targets. 
Both experiments yielded expressions with some level of classification utility, and 
further, used metrics similar to what had been previously determined to be useful. 
Further work in this area will be in both the areas of extending the current algorithm 
(especially useful would be the incorporation of an explicit hill-climbing operation, as 
discussed by Hooper [9] and Esparcia-Alcazar [5]) and using the algorithm for the 
generation of multi-class classifiers. 
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