
The State Machine Approach:
*

A Tutorial

Fred B. Schneider

Department of Computer Science
Cometl University

Ithaca, New York 14853

Abstract. The state machine approach is a general method for achieving fault tolerance and

implementing decentralized control in distributed systems. This paper reviews the approach

and identifies abstractions needed for coordinating ensembles of state machines. Implementa-

tions of these abstractions for two different failure models Byzantine and fail-stolr--are dis-

cussed. The state machine approach is illustrated by programming several examples. Optimi-

zation and system reconfiguration techniques are explained.

1. Introduction

The state machine approach is a general method for managing replication. It has broad applicabil-
ity for implementing distributed and fault-tolerant systems. In fact, every protocol we know of that

employs replication--be it for masking failures or simply to facilitate cooperation without centralized

control---can be derived using the state machine approach. Although few of these protocols actually
were obtained in this manner, viewing them in terms of state machines helps in understanding how and

why they work.

When the state machine approach is used for implementing fault tolerance, a computation is repli-
cated on processors that are physically and electrically isolated. This permits the effects of failures to
be masked by voting on the outputs produced by these independent replicas. Triple-modular redun-
dancy (TMR) is a familiar example of this scheme. Although when the approach is used additional

*This material is based on work supporled in part by the Office of Naval Research under contract N00014-86-K-0092,
the National Science Foundation under Grant No. CCR-8701103, and Digital Equipment Corporation. Any opinions,
findings, and conclusions or recommendations expressed in this publication are those of the author and do not reflect the
views of these agencies.

19

coordination is necessary to distribute inputs and collect outputs from replicas, failures cannot increase

task completion times. This makes the approach ideally suited for real-time systems, where deadlines

must be met and timing is critical. Other approaches, such as failure detection and retry, are ill suited

for real-time applic, ations because unpredictable delays can be observed in response to a failure.

The state machine approach permits separation of fault-tolerance from other aspects of system
design. The programmer is not forced to think in terms of a particular programming abstraction, such as

transactions ~Liskov 85] [Spector 85], fault-tolerant actions [Schlichting & Schneider 83], reliable

objects [Bimaan 85], replicated remote procedure calls [Cooper 84] or the multitude of other proposals

that have appeared in the literature. Instead, a programming abstraction suited for the application at

hand can be defined and used; the state machine approach is employed to realize a fault-tolerant imple-

mentation of that abstraction.

This p~tper is a tutorial on the state machine approach. It describes the approach and its implemen-

tation for two representative environments. Small examples suffice to illustrate the points; however, the

approach has been successfully applied to larger examples. Section 2 describes how a system can be

viewed in t e l l s of a state machine, clients, and output devices. Measures of fault-tolerance are dis-

cussed in section 3. Achieving fault-tolerance is the subject of the following three sections: Section 4

discusses implementing fault-tolerant state machines; section 5 discusses tolerating faulty output dev-
ices; and section 6 discusses coping with faulty clients. An important class of optimizations---based on

the use of tinae--is discussed in section 7. Optimizations possible by making assumptions about failures

are discussed in section 8. Section 9 describes dynamic reconfiguration. Related work is discussed in

section 10.

2. State Machines

A state machine consists of state variables, which implement its state, and commands, which

transform its state. Each command is implemented by a deterministic program; execution of the com-

mand is atomic with respect to other commands and modifies the state variables and/or produces some
output. A client of the state machine makes a request to specify execution of a command. The request

names a state machine, names the command to be performed, and contains any information needed by

the command. Output from request processing can be to an actuator (e.g. in a process-control system),

to some other peripheral device (e.g. a disk or terminal), or to clients awaiting responses from prior

requests.

The name "state machine" is a poor one, since it is suggestive of a finite-state automata. Our state

machines are more powerful than finite-state automata because they contain program variables and,

therefore, need not be finite state. However, state machines intended for execution on real machines
should be finite state because real computers have finite memories. Our state machines are also easier to
specify than finite-state automata because any programming notation can be used. "State machine" is

used in this paper for historical reasons--it is the term used in the literature.

State machines can be described by explicitly listing state variables and commands. As an exam-
ple, state machine memory of Figure 2.1 implements a mapping from locations to values. A read com-
mand permits a client to determine the value associated with a location, and a write command associates
a new value with a location. Observe that there is little difference between our state machine descrip-

tion of merrugry and an abstract datatype or (software) module for such an object. This is deliberate---it
makes it clear that state machines are a general programming construct. In fact, a state machine can be
implemented in a variety of ways. It can be implemented as a collection of procedures that share data,

20

memory: s ta temachine
var store : array [O..n] of word

read: command(loc : O..n)
send store [loc] to client
end read;

write: eommand(loc : O..n, value : word)
store [loc] := value
end write

end memory

Figure 2.1. A memory

as in a module; it can be implemented as a process that awaits messages containing requests and per-

forms the actions they specify; and, it can be implemented as a collection of interrupt handlers, in which

case a request is made by causing an interrupt. (Disabling interrupts permits each command to be exe-

cuted to completion before the next is started.) For example, the state machine of Figure 2.2 imple-

ments commands to ensure that at atl times at most one client has been granted access to some

resource. 1 It would likely be implemented as a collection of interrupt handlers as part of the kernel of an

operating system.

Requests are processed by a state machine one at a time, in an order consistent with causality.

Therefore, clients of a state machine can be programmed under the assumptions that

O1: requests issued by a single client to a given state machine sm are processed by sm in

the order they were issued, and

O2: if the fact that request r was made to a state machine sm by client c could have caused

a request r' to be made by a client c" to sm, then sm processes r before r ' .

In this paper, for expository simplicity, client requests are specified as tuples of the form

(state_machine.command, arguments)

and the return of results is done using message passing. For example, a client could execute

(memory.write, 100, 16.2);
(memory.read, 100);
receive v from memory

to set the vatue of location 100 to 16.2, request the value of location 100, and await that value, setting v

to it upon receipt.

1We use xq~ to append y to the end of list x.

21

mutex: state machine
var u s e r : client id init ~;

waiting : list of client id init

acquire: command
if user=dp --> send OK to client;

user := client

user ~ --> waiting := waiting oclient

fi

end acquire

release: command
i f waiting =d~ .--> user :=

D waiting ~ ---> send OK to head(waiting);
user := head(waiting);
waiting := tail(waiting)

fi

end release
end mutex

Figure2.2. Aresourceallocator

The defining characteristic of a state machine is not its syntax, but that it specifies a deterministic

computation that reads a stream of requests and processes each, occasionally producing output:

Semantic Character izat ion of State Machine. Outputs of a state machine are completely deter-

mined by the sequence of requests it processes, independent of time and any other activity in a sys-

tem.

Any program satisfying this definition will be considered a state machine for the purposes of this paper.

For example, the following program solves a simple process-control problem in which an actuator

is adjusted repeate~y based on the value of a sensor. Periodically, a client reads a sensor and communi-

cates the value read to state machine pc:

monitor : process
do true --~ val := sensor;

(pc.adjust, vat);
delay D

od
end monitor

State machine pc adjusts an actuator based on past adjustments saved in state variable q, the sensor

reading, and a control function F.

22

pc: s tatemachine
var q : real;

adjust: command(sensorval : real)
q := F(q, sensorval);
send q to actuator
end adjust

end pc

Although it is tempting to structure pc as a single command that loops--reading from the sensor,

evaluating F, and writing to actuator--if the value of the sensor is time-varying, then the result would

not satisfy the semantic characterization given above and therefore would not be a state machine. This

is because values sent to actuator (the output of the state machine) would not depend solely on the
requests made to the state machine but would, in addition, depend on the execution speed of the loop.

In the structure used above, this probIem has been avoided by moving the loop into monitor.

Having to structure a system in terms of state machines and clients does not constitute a restriction.

Anything that can be structured in terms of procedures and procedure calls can also be structured using

state machines and clients--a state machine implements the procedure, and requests implement the pro-

cedure calls. In fact, state machines permit more flexibility in system structure than is usually available

with procedure calls. With state machines, a client making a request is not delayed until that request is

processed, and the output of a request can be sent someplace other than to the client making the request.

We have not yet encountered an application that could not be programmed cleanly in terms of state

machines and clients.

3. Fault -Tolerance

A component is faulty once its behavior is no longer consistent with its specification. In this paper,
we consider two representative classes of faulty behavior from a spectrum of possible ones:

Byzantine Failures. The component can exhibit arbitrary and malicious behavior, perhaps involv-
ing collusion with other faulty components [Lamport et a182].

Fail-stop Failures. In response to a failure, the component changes to a state that permits other
components to detect that a failure has occurred and then stops [Schneider 84].

Byzantine failures can be the most disruptive, and there is anecdotal evidence that such failures do occur
in practice. Allowing Byzantine failures is the weakest possible assumption that could be made about

the effects of a failure. Since a design based on assumptions about the behavior of faulty components
runs the risk of failing if these assumptions are not satisfied, it is prudent that life-critical systems
tolerate Byzantine failures. However, for most applications, it suffices to assume fail-stop failures.

A system consisting of a set of distinct components is f fault-tolerant if it satisfies its specification

provided that no more than f of those components become faulty during some interval of interest. 2

Fault-tolerance traditionally has been specified in terms of MTBF (mean-time-between-failures), proba-
bility of failure over a given interval, and other statistical measures [Siewiorek & Swarz 82]. While it is
clear that such characterizations are important to the users of a system, there are advantages in

ZAn f fault-tolerant system might continue to operate correctly if more than f failures occur, but correct operation cannot
be guaranteed.

23

describing fault tolerance of a system in terms of the maximum number of component failures that can

be tolerated over some interval of interest. Asserting that a system is f fault-tolerant makes explicit the

assumptions required for correct operation; MTBF and other statistical measures do not. Moreover, f

fault-tolerance is unrelated to the reliability of the components that make up the system and therefore is

a measure of the fault tolerance supported by the system architecture, in contrast to fault tolerance
achieved simply by using reliable components. Of course, MTBF and other statistical reliability meas-
ures of an f fault-tolerant system will depend on the reliability of the components used in constructing

that system---in particular, the probability that there will be f o r more failures during the operating inter-

val of interest. Thus, f should be chosen based on statistical measures of component reliability. Oncef

has been chosen, it is possible to derive MTBF and other statistical measures of reliability by computing
the probabilities of various configurations of 0 throughf failures and their consequences [Babaoglu 86].

4. Fault-tolerant State Machines

A n f fault-tolerant state machine can be implemented by replicating it and running a copy on each

of the processors in a distributed system. Provided each copy being run by a non-faulty processor starts

in the same initial state and executes the same requests in the same order, then each wiU do the same

thing and produce the same output. If we assume that each failure can affect at most one processor,

hence one state machine copy, then by combining the output of the state machine copies in this ensem-

ble, the output for a t fault-tolerant state machine can be obtained.

When processors can experience Byzantine failures, an ensemble implementing a f fault-tolerant

state machine must have at least 2f +1 copies, and the output of the ensemble is the output produced by

the majority of the state machine copies. This is because with 2f +1 copies, the majority of the outputs
remain correct even after as many a s f failures. If processors experience only fail-stop failures, then an

ensemble containing f + 1 copies suffices, and the output of the ensemble can be the output produced by

any of its members. This is because onty correct outputs are produced by fail-stop processors, and after

ffailures one non-faulty copy will remain among the f+ 1 copies.

Our scheme for implementing an f fault-tolerant state machine is based on fault-tolerant implemen-

tations of two abstractions.

Agreement. Every non-faulty copy of the state machine receives every request.

Order. Requests are processed in the same order by every non-faulty copy of the state machine.

However, knowledge of command semantics sometimes permit weaker (i.e., cheaper to implement)

abstractions to be used. For example, when fall-stop processors are used, a request whose processing

does not modify state variables need only be sent to a single non-faulty state machine copy, thus permit-
ting reIaxation of Agreement. It also possible to exploit request semantics to relax Order. Two requests
r and r" commute in a state machine if the sequence of outputs that would result from processing r fol-

lowed by r ' is the same as would result from processing r ' followed by r. Not surprisingly, the schemes

outlined above for combining outputs of the members of an ensemble work even when two requests that
commute axe processed in different orders by different state machine copies in an ensemble, thus per-
mining relaxation of Order.

An example of a state machine where Order is not necessary appears in Figure 4.1. State machine
tally determines the first from among a set of alternatives to receive at least MAJ votes and sends this
choice to SYSTEM. If clients cannot vote more than once and the number of clients Cno satisfies
2MAJ > Cno, then every request commutes with every other. Thus, implementing Order would be

24

tally: state_machine
var votes : array[candidate] of integer init 0

cast vote: command(choice : candidate)
votes [choice] := votes [choice] + 1;
if votes [choice] >_MAJ --4 send choice to SYSTEM;

halt

0 votes [choice] <MAJ --> skip
fi
end cast vote

end tally

Figure 4.1. Election

unnecessary--different copies of the state machine will produce the same outputs even if they process

requests in different orders. On the other hand, if clients can vote more than once or 2MAJ<Cno, then

reordering requests beyond the first M A J - 1 might change the outcome of the election.

Various implementations of Agreement and Order are possible. Two are discussed below.

4.1. A g r e e m e n t

The Agreement abstraction is implemented by any protocol that allows a designated processor,

called the transmitter, to disseminate a value to other processors in such a way that:

ICI: All non-faulty processors agree on the same value.

IC2: If the transmitter is non-faulty then all non-faulty processors use its value as the one

they agree on.

If whenever a client makes a request, it employs a protocol satisfying IC1 and IC2 to disseminate that

request to all copies of the state machine, then Agreement is achieved. Thus, we have:

Agreement Implementa t ion . Clients disseminate requests using a protocol that establishes

IC1 and IC2.

Notice that the Agreement Implementation does not require a client to be the transmitter. A client

might send its request to a single copy of the state machine and let that copy serve as the transmitter in

further distributing the request to the other members of the ensemble. This permits clients to be simpler.

However, a request can be lost or corrupted if the client sends it directly to only a single copy of the

state machine and that copy is being executed by a faulty processor.

Protocols to establish IC1 and IC2 have received much attention in the literature. If digital signa-

tures are available and processors can exhibit Byzantine failures or if processors are restricted to fail-

stop failures, then f + 1 processors are sufficient in order to tolerate f failures; otherwise 3f+ 1 processors

are necessary to tolerate f failures. See [Strong & Dolev 83] for a survey of protocols that can tolerate

25

Byzantine processor failures and [Schneider et al 84] for a (significantly cheaper) protocol that can

tolerate (only) fail-stop processor failures.

4.2. O r d e r

The Order abstraction can be implemented by having clients assign unique identifiers to requests
and having state machine copies process requests according to a total ordering relation on these unique
request identifiers. However, simply having each state machine copy process in ascending order the

requests it has received does not imply that every state machine will processes requests in the same
order. Two requests could be delivered to one state machine in one order and to another state machine

in the other order. We must devise a way to avoid this problem.

We shall say that a request is stable at p once no request from a correct client and bearing a lower

unique identifier can be subsequently delivered to the state machine copy at processor p. Given an
implementation of stability, the following is an implementation for the Order abstraction:

Order Implementation. Stable requests are processed by a state machine in ascending order

by unique identifier.

The choice of request identifiers is further constrained when clients of a state machine are pro-

grammed under the assumption that requests are processed in an order consistent with potential causal-

ity (i.e., O1 and O2 of section 2). Now, processing requests in ascending order by unique identifier must

• be in an order consistent with 01 and 02. One way to produce unique request identifiers satisfying O1

and O2 is to use logical clocks; a second way is to use approximately synchronized real-time clocks.

Using Logical Clocks

A logical clock [Lamport 78a] is a mapping A from events to the integers. A(E), the "t ime"

assigned to an event E by logical clock A, is such that for any two distinct events E and F, either

A(E) < A(F) or A(F)< A(E), and if E might be responsible for causing F then A(E)< A(F). It is a sim-

ple matter to implement logical clocks in a distributed system. Associated with each process p is a

counter ~.p. A timestamp is included in each message sent by p. This timestamp is the value of ~'t, when
that message is sent. In addition, Lp is changed according to:

CUI: 3.p is incremented after each event at p.

CU2: Upon receipt of a message with timestamp x, process p resets kp:
~'e :=max(~p, x) + 1.

The value of A(E) for an event E that occurs at processor p is constructed by appending a fixed-length

bit string that uniquely identifies p to the value of ~,p when E occurs.

A logical clock can be used to implement a mapping from requests to unique identifiers with a total
ordering that satisfies O1 and 02. A(E) is used as the unique identifier associated with a request whose
issuance corresponds to event E. Therefore, all that remains for an implementation of the Order abslrac-

tion is to formulate a test for stability.

It is pointless to implement a stability test in an asynchronous system 3 where Byzantine failures are

3A system is asynchronous if message delivery delay or the relative speeds of processors is unbounded; it is synchro-
nous if delivery delay and relative processor speeds are bounded.

26

possible. This is because no deterministic protocol can achieve ICI and IC2 under these conditions

[Fischer et al 85], so it is impossible to implement Agreement. 4 Since it is impossible to implement

Agreement, there is no point in implementing Order. The case where processors are synchronous is

equivalent to assuming that they have synchronized real-time clocks and will be considered shortly.

This leaves the case where processors are asynchronous and can exhibit fail-stop failures. We now turn

to that.

By attaching sequence numbers to the messages between every pair of processors, it is trivial to

ensure that the following property holds of communications channels.

F IFO Channels. Messages between a pair of processors are delivered in the order sent.

We also assume:

Failure Detection Assumption. A processor p detects that a fail-stop processor q has failed

only after p has received the last message sent to p by q.

The Failure Detection Assumption is consistent with FIFO Channels, since the failure event for a fail-

stop processor necessarily happens after the last message sent by that processor and, therefore, should be

received after all other messages.

Using logical clocks to generate request identifiers implies that a request made by a client must

have a larger unique identifier than was assigned to any previous request made by that client. Thus,

assuming FIFO Channels, once a request from a client c is received by a copy sm i of the state machine,

no request from c with smaller unique identifier can be received by sm i. Moreover, if sm i detects that c

has failed then no request from c with smaller unique identifier can be received by smi, due to the nature

of fail-stop failures and the Failure Detection Assumption. Combining these restrictions, we deduce that

if c l , c2 cn are all the clients that have not failed and request rk, with unique request identifier

uid(rk), denotes the last request received by smi from ck, then any request subsequently received by smi

must have a unique identifier that is larger than min_uid, where

rain uid = min uid(rl~).
- - l < _ k < _ n

This means that every request with unique identifier at most min_uid must be stable. There is one

remaining flaw in this scheme, however. A non-faulty client that does not make requests--for whatever

reason--will prevent requests from becoming stable. This problem can be avoided by requiting that

otherwise inactive clients periodically make null requests. Summarizing, we get:

Logical Clock Stability Test Tolerating Fail-stop Failures. Every client periodically makes

some request to the state machine. A request is stable at smi if a request with larger timestamp

has been received by sml from every client running on a non-faulty fail-stop processor.

Synchronized Real.Time Clocks

A second way to produce unique request identifiers satisfying O1 and 02 is with approximately

synchronized real-time clocks. Define Tp(E) to be the value of the real-time clock at processor p when

4The result of [Fischer et al 85] is actually stronger than this. It states that IC1 and IC2 cannot be achieved by a deter-
ministic protocol in an asynchronous system with a single processor that fails in an even less restrictive manner---by simply
halting.

27

event E occurs. We use Tp(E) foUowed by a fixed-length bit string that uniquely identifies p as the

unique identifier associated with a request made as event E by a client running on a processor p. To

ensure that O1 and 0 2 (of section 2) hold for unique identifiers generated in this manner, two restric-

tions are required. O1 follows provided no client makes two or more requests between successive clock

ticks. If processor clocks have resolution p, then each client can make at most one request every p

seconds. 02 follows provided the degree of clock synchronization is better than the minimum message

delivery time. If clocks on different processors are synchronized to within 8 seconds, then it must take

more than ~i seconds for a message from one client to reach another; otherwise, 02 would be violated

because a request r made by one client could have a unique identifier that was smaUer than a request r '

made by another, even though r was caused by a message sent after r' was made.

A number of protocols to achieve clock synchronization while tolerating Byzantine failures have

been proposed. They are surveyed in [Schneider 86]. The protocols require that known bounds exist for

the execution speed and clock rates of non-faulty processors and for message delivery delays along

non-faulty communications links. These requirements do not constitute a restriction in practice. Clock

synchronization achieved by the protocols is proportional to the variance in message delivery delay,

making it possible to satisfy the restriction--necessary to ensure O2--that message delivery delay

exceeds clock synchronization.

A stability test can be implemented by exploiting synchronized real-time processor clocks and the

bounds on delivery delays. If requests are disseminated using a protocol employing a fixed number of

rounds, like the ones cited above for establishing IC1 and IC2, then there will exist a constant A such

that a request r with unique identifier uid(r) will be received by every correct processor no later than

time uid(r)+A according to the local clock at the receiving processor. 5 Thus, once the clock on a pro-

cessor p reaches x, p cannot subsequently receive a request r such that uid(r) < x - A. Therefore, a sta-

bility test is:

Real-time Clock Stability Test Tolerating Byzant ine Fai lures I. A request r is stable at a

state machine copy sm i being executed by processor p if the local clock at p is x and

uid(r) < x -A .

One disadvantage of this stability test is that it forces the state machine to lag behind its clients by

A, where A is proportional to the worst-case message delivery delay. This disadvantage can be avoided.

Due to property O1 of the total ordering on request identifiers, if communications channels satisfy FIFO

Channels, then a state machine copy that has received a request r from a client c can subsequently

receive from c only requests with unique identifiers greater than uid(r). Thus, a request r is also stable

at a state machine copy provided a request with larger unique identifier has been received from every

client.

Real - t ime Clock Stability Test Tolerating Byzantine Failures II. A request r is stable at a

state machine copy smi being executed by processor p if a request with larger unique identifier

has been received from every client.

This second stability test is foiled by a single faulty processor that refuses to make requests. However,

by combinhag the first and second test, so that a request is considered stable when it satisfies either test,

5In gcnexal, A will be a function of the variance in message delivery delay, the maximum message delivery delay, and
the degree of clock synchronization. See [Cristian et a185] for a detailed derivation for A in a variety of environments.

28

a stability test results that lags clients by A only when faulty processors or network delays force it.

5. Tolerating Faulty Output Devices

When implementing a n f fault-tolerant system, there are problems with using a single voter to com-

bine the outputs of an ensemble of state machine copies into a single output. In particular, a single

failure--of the voter--can prevent the system from producing the correct output. The solution to this

problem depends on how the output of the state machine implemented by the ensemble is used.

Outputs Used Ou t s ide the Sys tem

If the output of the state machine is sent to an output device, then that device is already a single

component whose failure cannot be tolerated. Thus, being able to tolerate a faulty voter is not

sufficient--the system must also be able to tolerate a faulty output device. The usual solution to this

problem is to replicate the output device and voter. Each voter combines the output of each state

machine copy, producing a signal that drives one output device. Whatever reads the outputs of the sys-

tem is assumed to combine the outputs of the replicated devices. This reader, which is not considered

part of the computing system, implements the critical voter.

If output devices can exhibit Byzantine failures, then by taking the output produced by the majority

of the devices, 2f+ 1-fold replication permits up t o f faulty output devices to be tolerated. For examF

a flap on an airplane wing might be designed so that when the 2f+ 1" actuators that control it do ~,

agree, the flap always moves in the direction of the majority (rather than twisting, which would be a

voter failure). If output devices exhibit only fail-stop failures, then only f + 1-fold replication is neces-

sary to tolerate f failures because any output produced by a fail-stop output device can be assumed

correct. For exampte, terminals usually present information with enough redundancy so that they can be

treated as fail-stop--failure detection is implemented by the viewer. With such an output device, a

human user can look at a one o f f+ 1 devices, decide whether the output is faulty, and only if it is faulty,

look at another, and so on.

Outputs Used In s ide the Sys tem

If the output of the state machine is to a client, then the client itself can combine the outputs of

state machine copies in the ensemble. Here, the voter- -a part of the client--is faulty exactly when the

client is, so the fact that an incorrect output is read by the client due to a faulty voter is irrelevant. When

Byzantine failures are possible, the client waits until it has received f + 1 identical responses, each from a

different member of the ensemble, and takes that as the response from the f fault-tolerant state machine.

When only fail-stop failures are possible, the client waits until it has received the first response from any

member of the ensemble and takes that as the response from the f fault-tolerant state machine.

When the client is executed on the same processor as one of the state machine copies and Byzan-

tine failures can occur, optimization of client-implemented voting is possible. 6 Now, the local state
machine copy is correct exactly when the client is. Therefore, the response produced by the state

6Care must be exercised when analyzing the fault-tolerance of such a system because a single processor failure can now
cause two system components to fail. Implicit in most of our discussions is that system components fail independently. It is
not always possible to transform a f fault-tolerant system in which clients and state machine copies have independent failures
to one in which they share processors.

29

machine copy running locally can be used as that client's response from the f fault-tolerant state

machine and we have:

Dependent-Failures Output Optimization. If a client and a state machine copy run on the

same processor, then even when Byzantine failures are possible, the client need not gather a

majority of responses to its requests to the state machine. It can use the single response pro-

duced locally.

6. Tolerating Faulty Clients

Implementing an f fault-tolerant state machine is not sufficient for implementing an f fault-tolerant

system. Faulty clients must not be able to make requests that cause the state machine to produce errone-

ous output or that corrupt the state machine so that subsequent requests from non-faulty clients are

incorrectly processed. When a client is itself structured as a state machine or can be restructured as a

state machine, the approach of section 4 can be used to implement an f fault-tolerant client. Unfor-

tunately, such restructuring is not always possible and other, application-dependent, techniques must

sometimes be employed.

6.1. Sensor Rep l ica t ion

A client c that obtains input from a time-varying input source can be restructured as a state

machine sin(c) by isolating that time-varying input source and making it a client c ' of sin(c). While

sm(c) can be made f fanlt-toterant (using the approach of section 4), this appears to bring us no closer to

solving the original problenv--the new client c ' is still not fault toterant and still obtains input from a

time-varying input source. One solution to this dilemma is to restructure sm(c), obtaining a state

machine sm'(c) that reads its input from multiple sensors, and therefore does not depend on the correct-

ness of any single sensor. To accomplish this, client c ' and its sensor are each replicated; every copy of

c ' reads from a different sensor. Where sin(c) obtained a single value from the sensor, sm'(c) obtains

values from copies of c ' and combines them. To summarize:

Fault- tolerant Sensor. Given a client c that reads from a time-varying input source, the input

source is replicated and c is restructured as a state machine sin'(c) and a collection of clients.

Each client reads from a different copy of the time-varying input source; sm'(c) reads from all

the clients.

If a sensor can exhibit Byzantine failures, then it must be replicated 2f+ 1 fold; sm'(c) chooses the

median value. This works because even when as many asfcopies of the client (c') or sensor are faulty,

the median of these 2f+ 1 values is guaranteed to be either a value from a correct sensor or bounded by

values from correct sensors. If sensors exhibit only fail-stop failures, then f+ 1 fold replication suffices,

and sm'(c) can chooses any sensor value that is known not to be faulty.

It is possible to optimize the implementation of a fault-tolerant sensor when the same processors

are being used both to run copies of the state machine of which c is a client and to run copies of sin'(c).
Since the output of sm'(c) is destined to another state machine--say m--we could use the output pro-
duced by the single copy of sin'(c) as input to m instead of combining the outputs produced by copies of

sin'(c), as described in the Dependent-Failures Output Optimization of section 5. Moreover, we can

merge the copy of sm'(c) and m, obtaining a single state machine. For example, when this scheme is

applied to the process control system of section 2, monitor is c ' and is replicated, and pc is the result of

combining m and sin'(c). This is shown for the case where Byzantine failures are possible in Figure 6.1.

30

monitor [i]: process
do true ---> vat := sensor[/];

(~oc.adjust, i, val);
delay D

od
end monitor [i]

pc: state_machine
var q : real;

resp : set of client_id init ~;
val_rcd : array[1. .2t+l] of real;

adjust: command(c id , sensorva l)
resp := resp ~) cid;
val__rcd [cid] := sensor_val ;
if I resp I <F(2t+l)/2~ --> skip

[] I resp t >[(2t+i)/2~ --~ q := F(q, median(val_rcd [c]));
c • resp

resp := ~ ;
send q to actuator

fi
end adjust

end pc

Figure 6.1. Revised process control system

6.2. Defensive Programming

Sometimes a client cannot be restructured as a state machine, and thus cannot be made f fault-

tolerant using the approach just described. If it were possible for state machine copies to agree on the

identities of faulty clients, then tolerating faulty clients would be simple--ignore requests from them.

Unfortunately, this is not always possible. When Byzantine failures can occur, not all failures will pro-

duce identifiable symptoms. Without restricting possible failure modes, there is no way for a state

machine to be able to identify faulty clients. However, careful design of a state machine can limit the

effects of faulty requests. For example, memory (Figure 2.1) permits any client to write to any location.

Therefore, a faulty client can overwrite all locations, destroying valuable information in state variables.

This problem could be prevented by restricting write client access to only certain memory locations--

the state machine can enforce this.

Including tests in commands is another way to design a state machine that cannot be corrupted by

requests from faulty clients. For example, mutex as specified in Figure 2.2, will execute a release com-

mand made by any client---even one that does not have access to the resource. Consequently, a faulty

client could issue such a request and cause mutex to grant a second client access to the resource before

31

the first has relinquished access. A better formulation of mutex ignores release commands from all but

the client to which exclusive access has been granted. This is implemented by changing the release in

mutex to:

release: c o m m a n d
if user¢client ~ skip

n wait ing=¢ A user=client ---) user := (I)

waiting ~(I) ^ user=client ---> send OK to head(waiting);
user := head(waiting);
waiting := tail(waiting)

fi
end release

Sometimes, a faulty client not making a request can be just as catastrophic as one making an

erroneous request. For example, if a client of mutex failed and stopped while it had exclusive access to

the resource, then no client could be granted access to the resource. Of course, unless we are prepared

to bound the length of time that a correctly functioning process can retain exclusive access to the

resource, there is little we can do about this problem. This is because there is no way for a state

machine to distinguish between a client that has stopped executing because it has failed and one that is

executing very slowly. However, given an upper bound B on the interval between an acquire and the

following release, mutex can automaticaUy schedule release on behalf of a client. This is done by hav-

ing the acquire command automatically schedule the release request.

We introduce the notation

schedule (REQUEST) for +x

to specify scheduling (REQUEST) with a unique identifier x greater than the identifier on the request

being processed. Such a request is called a timeout request and becomes stable at some time in the

future, according to the stability test being used for client-generated requests. Unlike requests from

clients, requests that result from executing schedule need not be distributed to all state machine copies

of the ensemble. This is because each state machine copy will independently schedule its own (identi-

cal) copy of the request.

We can now modify acquire so that a release operation is automatically scheduled: 7

7This means that mutex might process two release commands on behalf of a client: one from the client itself and one
generated by its acquire request. The new state variable time_granted permits such superfluous commands to be ignored.

32

acquire: command
if user=d~ --> send OK to client;

user := client;
time_granted := NOW;
schedule ~mutex.timeout, time_granted) for +B

D user~O --> waiting := waitingoclient
fi
end acquire

timeout : command(when_granted : integer)
if when_granted ~time__granted --> skip

D waiting =alp ̂ when_granted=time_granted ~ user :=

n waiting ~ ^ when_granted=time_granted -->
send OK to head(waiting);
user := head (waiting);
time_granted := NOW;
waiting := tail (waiting)

fi
end timeout

7. Using Time to Make Requests

A client need not explicitly send a message to make a request. Not receiving a request can trigger

execution of a command--in effect, allowing the passage of time to transmit a request from client to

state machine [Lamport 84]. Transmitting a request using time instead of messages can be advanta-

geous because protocols that implement IC1 and IC2 can be costly both in total number of messages

exchanged and in delay. Unfortunately, using time to transmit requests has only limited applicability,

since the client cannot specify parameter values.

The use of time to transmit a request was employed in section 6 when we revised the acquire com-

mand of mutex to foil clients that failed to release the resource. There, a release request was automati-

cally scheduled by acquire on behalf of a client being granted the resource. A client transmits a release
request to mutex simply by permitting B (logical clock or real-time clock) time units to pass. It is only

to increase utilization of the shared resource that a client might use messages to transmit a release
request to mutex before B time units have passed.

A more dramatic example of using time to transmit a request is illustrated in connection with tally
of Figure 4.1. Assume that

• all clients and state machine copies have (logical or real time) clocks synchronized to

within F and

• the election starts at time Strt anffthis is known to all clients and state machine copies.

Using time, a client can cast a vote for a default by doing nothing; only when a client casts a vote dif-

ferent from its default do we require that it actually transmit a request message. Thus, we have:

Transmitting a Default Vote. If client has not made a request by time Strt+F, then a request

with that client's default vote has been made.

Notice that the default need not be fixed nor even known at the time the vote is cast. For example, the

default vote could be "choose the first client that votes for itself". In that case, only one client---one that

83

votes for itself--need actually use message transmission to cast its vote. The result is a state machine to

implement an election in which only the winner actually does something.

8. Exploiting Assumptions about Failures

Optimization of a state machine is frequently possible when assumptions can be made about the

number and types of failures that can occur. The easiest assumption to make about failures is that they

do not happen. Given a fault-free processor on which to execute a state machine, replication of the state

machine becomes unnecessary and the Agreement and Order abstractions have trivial implementa-

tions: a client simply sends its request to the single state machine copy. Of course, the asstimption that

failures do not happen is not very realistic.

More realistic assumptions about failures permit somewhat less dramatic optimizations. To iUus-

trate these, we consider various solutions to the database commit problem. A commit protocol permits

an update to be performed on all or no copy of a replicated database according to a commit rule and

information provided by the sites maintaining database copies. We can formulate a solution to the com-

mit problem by using a state machine commit [tid] (see Figure 8.1) for each transaction tid and defining

a client for each copy of the database. Each client involved in processing tid registers a suggested

outcome--commit or abort--with commit [rid] and awaits a response. State machine commit [t/d] runs

forever, so that a client that has failed and restarted can ascertain the outcome of transactions it pro-

cessed but neither committed nor aborted. In commit [tid], the commit rule is implemented by function

commit[t/d]: state machine
vat sugs : array[1..maxclients] of [commit, abort, undecided];

wait ans : set of client_id;
outcome : [commit, abort, undecided] init undecided;

status: command(c_sug : [commit, abort])
sugs [client] := c_sug;

if outcome = undecided --* outcome := Commit_Rule (sugs)
0 outcome #undecided ---> skip
fi;
if outcome #undecided ---> send outcome to client;

forall pid ~ wait ans:
send outcome to pid

Q outcome =undecided --) wa i t ans := wait_ans u client
fi
end status

end commit [tid]

Figure 8.1. Commit

34

Commit_Rule(sugs), which returns commit, abort, or undecided, based on the values in sugs. Note that
it may also be necessary to employ timeout u'ansitions in commit[t/d] so that a faulty processor that
does not register a suggested outcome cannot unconditionally delay the decision to commit or abort tid.

When commit [tid] is replicated and a copy is executed at each site running a client, the decentral-

ized commit protocol of [Skeen 82] results. Other commit protocols that have appeared in the literature
can be derived from commit It/d] by making assumptions about failures. For example, the 2-phase com-

mit protocol described in [Gray 78] uses a single copy of the commit [tid] state machine and is based on

two assumptions:

(1) The processor executing this state machine does not fail.

(2) Client failures are detectable (i.e., clients are fail-stop).

If the assumptions are violated, then the protocol may not work. In particular, if commit [tid] exhibits a
fail-stop failure in the midst of sending outcome to clients in wait_ans, then (correct) clients might be

unable to decide on an outcome, a phenomenon sometimes referred to as the "window-of-vulnerability"
of this protocol; and if commit It~d] exhibits a Byzantine failure, then (correct) clients could receive

conflicting information causing some to commit the transaction and others to abort it.

The 3-phase commit protocol of [Skeen 82] and 4-phase protocol of [Hammer and Shipman 80]
result when more than a single copy of the commit[t/d] state machine is run. These protocols can
tolerate fall-stop failures of processors running copies of commit [tid] and of clients. However, they do
not employ sufficient replication to tolerate Byzantine failures.

9, Reconfigurat ion

An ensemble of state machine copies can tolerate more thanf faults if it is possible to remove state

machine copies running on faulty processors from the ensemble and add copies running on repaired pro-

cessors. (A similar argument can be made for being able to add and remove copies of clients and output

devices.) Let P(x) be the total number of processors at time z that are executing copies of some state

machine of interest, and let F(x) be the number of them that are faulty. In order for the ensemble to pro-
duce the correct output, we must have

Combining Condition: P(x)-F(x)>Enuf for all 0<x.

P(z)/2 if Byzantine failures are possible.
where Enuf = 0 if only fall-stop failures are possible.

A processor failure can cause the Combining Condition to be violated by increasing F(z), thereby

decreasing P (x)-F (x).

When Byzantine failures are possible, if a faulty processor can be identified, then removing it from
the ensembIe decreases Enuf without further decreasing P(x)-F(x); this can prevent the Combining
Condition from being violated. When only fail-stop failures are possible, increasing the number of
non-faulty processors--by adding one that has been repaired is the only way to prevent the Combining

Condition from being violated because increasing P(z) is the only way to keep P(x)-F('c)>0. There-
fore, provided the following conditions hold, it may be possible to maintain the Combining Condition
forever and thus tolerate an unbounded total number of faults over the life of the system.

FI: If Byzantine failures are possible, then state machine copies being executed by faulty
processors are identified and removed from the ensemble before the Combining

35

Condition is violated.

F2: State machine copies running on repaired processors are added to the ensemble so that

the Combining Condition is not violated.

F1 and F2 constrain the rates at which failures and repairs occur.

Removing faulty processors from an ensemble of state machines can also improve system perfor-

mance. This is because the number of messages that must be sent to achieve Agreement is usually pro-

portional to the number of state machine copies that must agree on the contents of a request. In addi-

tion, some protocols to implement Agreement execute in time proportional to the number of processors

that are faulty. Removing faulty processors clearly reduces both the message complexity and time com-

plexity of such protocols.

Adding or removing a client from the system is simply a matter of changing the state machine so

that henceforth it responds to or ignores requests from that client. Adding an output device is also

straightforward--the state machine starts sending output to that device. Removing an output device

from a system is achieved by disabling the device. This is done by putting the device in a state that

prevents it from affecting the environment. For example, a CRT terminal can be disabled by turning off

the brightness so that the screen can no longer be read; a hydraulic actuator controUing the flap on an

airplane wing can be disabled by opening a cutoff valve so that the actuator exerts no presure on that

control surface. However, as shown by these examples, it is not always possible to disable a faulty out-

put device: turning off the brightness might have no effect on the screen and the cutoff valve might not
work. Thus, there are systems in which no more than a total of t actuator faults can be tolerated because

faulty actuators cannot be disabled.

The configuration of a system structured in terms of a state machine and clients can be described

using three sets: the clients C, the state machine copies S, and the output devices O. S is used by the

implementation of the Agreement abstraction and therefore must be known to clients and state, machine

copies. It can also be used by an output device to determine which send operations made by state

machine copies should be ignored. C and O are used by state machine copies to determine from which

clients requests should be processed and to which devices output should be sent. Therefore, C and O

must be available to state machine copies.

Two problems must be solved to support changing the system configuration. First, the values of

,5, and O must be available when required. Second, whenever a client, state machine copy, or output

device is added to the configuration, the state of that element must be updated to reflect the current state

of the system. These problems are considered in the following two subsections.

9.1. Managing the Configuration

The configuration of a system can be managed using the state machine in that system. Sets G ,5,

and O are stored in state variables and changed by commands. Each configuration is valid for a collec-

tion of requests--those requests r such that uid(r) is in the range defined by two successive

configuration-change requests. Thus, whenever a client, state machine copy, or output device performs

an action connected with processing r, it uses the configuration that is valid for r. This means that a

configuration-change request must schedule the new configuration for some point far enough in the

future so that clients, state machine copies, and output devices can find out about the new configuration

before it actuaUy comes into effect.

36

There are various ways to make configuration information available to the clients and output dev-
ices of a system. (The information is already available to the state machine.) One is for clients and
output devices to query the state machine periodically for information about relevant pending
configuration changes. Obviously, communication costs for this scheme are reduced if clients and out-

put devices share processors with state machine copies. Another way to make configuration information

available is for the state machine to include information about configuration changes in messages it

sends to clients and output devices in the course of normal processing. Doing this requires regular and

periodic communication between the state machine and clients and between the state machine and out-

put devices.

Requests to change the configuration of the system are made by a failure/recovery detection

mechanism. It is convenient to think of this mechanism as a collection of clients, one for each element

of C, S, or O. Each of these configurators is responsible for detecting the failure or repair of the single
object it manages and, when such an event is detected, for making a request to alter the configuration.
A configurator is likely to be part of an existing client or state machine copy and might be implemented

in a variety of ways.

When elements are fail-stop, a configurator need only check the failure-detection mechanism of

that element. When elements can exhibit Byzantine failures, detecting failures is not always possible.
When it is possible, a higher degree of fault tolerance can be achieved by reconfiguration. A non-faulty

configurator satisfies two safety properties.

CI: Only a faulty element is removed from the configuration.

C2: Only a non-faulty element is added to the configuration.

However, a configurator that does nothing satisfies C1 and C2. Changing the configuration enhances
fault-tolerance only if F1 and F2 also hold. For F1 and F2 to hold, a configurator must also (1) detect

faults and cause elements to be removed and (2) detect repairs and cause elements to be added. Thus,

the degree to which a configurator enhances fault tolerance is directly related to the degree to which (1)
and (2) are achieved. Here, the semantics of the application can be helpful. For example, to infer that a

client is faulty, a state machine can compare requests made by different clients or by the same client

over a period of time. To determine that a processor executing a state machine copy is faulty, the state

machine can monitor messages sent by other state machine copies during execution of an Agreement
protocol And, by monitoring aspects of the environment being controlled by actuators, a state machine
copy might be able to determine that an output device is fauity. Some elements, such as processors,

have internal failure-detection circuitry that can be read to determine whether that element is faulty or

has been repaired and restarted. A configurator for such an element can be implemented by having the
state machine periodically poll this circuitry.

In order to analyze the fault-tolerance of a system that uses configurators, failure of a configurator
can be considered equivalent to the failure of the element that the configurator manages: This is
because with respect to the Combining Condition, removal of a non-faulty element from the system or
addition of a faulty one is the same as that element failing. Thus, in a n f fault-tolerant system, the sum
of the number of faulty configurators that manage non-faulty elements and the number of faulty com-

ponents with non-faulty configurators must be bounded by f.

37

9.2. I n t eg ra t i ng a R e p a i r e d O b j e c t

Not only must an element being added to a configuration be non-faulty, it also must have the

correct state so that its actions will be consistent with those of rest of the system. Define e[ri] to be the

state that a non-faulty system element e should be in after processing requests r0 through ri. An ele-

ment e joining the configuration immediately after request rjoin must be in state e[rjoin] before it can

participate in the running system.

An dement is self-stabilizing [Dijkstra 74] if its current state is completely defined by the previous

k inputs it has processed, for some fixed k. Obviously, running such an dement long enough to ensure

that it has processed k inputs is all that is required to put it in state e [rjom]. Unfortunately, the design of

self-stabilizing state machines is not always possible.

When elements are not self-stabilizing, processors are fail-stop, and logical clocks are imple-

mented, cooperation of a single state machine copy smi is sufficient to integrate a new element e into the

system. This is because state information obtained from smi must be correct. In order to integrate e at

request r join, smi must have access to enough state information so that e[rjoin] can be assembled and

forwarded to e.

• When e is an output device, e[ryoin] is likely to be only a small amount of device-specific

set-up information--information that changes infrequently and can be stored in state vari-

ables of smi.

• When e is a client, the information needed for e[rjo~] is frequently based on recent sensor

values read and can therefore be determined by using information provided to smi by other

clients.

• And, when e is a state machine copy, the information needed for e[rjoin] is stored in the

state variables and pending requests at sm i.

The protocol for integrating a client or output device e is simple---e[ryoin] is sent to e before the

output produced by processing any request with a unique identifier larger than uid(rjoin). The protocol

for integrating a state machine copy Smne~ is a bit more complex. It is not sufficient for smi simply to

send the values of all its state variables and copies of any pending requests to Smnew. This is because

some client request might have been received by sml after sending e[rjoin] but delivered to smne~ before

its repair. Such a request would neither be reflected in the state information forwarded by smi to smnew

nor received by s m , ~ directly. Thus, smi must, for a time, relay to sm,~,,~ requests received from

clients. 8 Since requests from a given client are received by Smnew in the order sent and in ascending

order by request identifier, once smnew has received a request directly (i.e. not relayed) from a client c,
there is no need for requests from c with larger identifiers to be relayed to srnnew. If sm,~,~ informs smi

of the identifier on a request received directly from each client c, then sm i can know when to stop relay-

ing to sm new requests from c.

The complete integration protocol is summarized in the following.

Integration with Fail-stop Processors and Logical Clocks. A state machine copy sm i can

integrate an element e at request rjo~ into a running system as follows.

8Duplicate copies of some requests might be received by sm,,,,w.

38

If e is a client or output device, sm i sends the relevant portions of its state variables to e

and does so before sending any output produced by requests with unique identifiers larger than

the one on r join.

If e is a state machine copy smnew, then sm i

(1) sends the values of its state variables and copies of any pending requests to s m , ~ ,

(2) sends to srnnew every subsequent request r received from each client c such that

u i d (r) < u i d (r c) , where rc is the first request Smnew received directly from c after being

restarted.

The existence of synchronized real-time clocks permits this protocol to be simplified because smi

can determine when to stop relaying messages based on the passage of time. Suppose, as in section 4,

there exists a constant A such that a request r with unique identifier u id (r) will be received by every

(correct) state machine copy in the configuration no later than time u/d(r)+A according to the local

clock at the receiving processor. Let sm new jo in the configuration at time Xjoin. By definition, srnnew is

guaranteed to receive every request that was made after time "¢join o n the requesting client's clock.

Since unique identifiers are obtained from the real-time clock of the client making the request, smnew is

guaranteed to receive every request r such that uid(r)>Xjo~. The first such a request r must be received

by sm i by time "Cjoin-I- A according to its clock. Therefore, every request received by smi after "Cjoin q-A
must also be received directly by smnew. Clearly, smi need not relay such requests, and we have the fol-

lowing protocol.

Integration with Fail .stop Processors and Real-time Clocks. A state machine copy smi can

integrate an element e at request r join into a running system as follows.

If e is a client or output device, then smi sends the relevant portions of its state variables to

e and does so before sending any output produced by requests with unique identifiers larger than

the one o n r join.

If e is a state machine copy smnew then sm i

(1) sends the values of its state variables and copies of any pending requests to sm new,

(2) sends to smnew every request received during the next interval of size A.

When processors can exhibit Byzantine failures, a single state machine copy srn i is not sufficient

for integrating a new element into the System. This is because state information furnished by smi is not

necessarily correc t - - smi might be executing on a faulty processor. To tolerate f failures in a system

with 2f+ 1 state machine copies, f + 1 identical copies of the state information and f + 1 identical copies of

relayed messages must be obtained. Otherwise, the protocol is as described above for real-time clocks.

Stability Revisited

The stability tests of section 4 do not work when requests made by a client can be received from

two sources--the client and via a relay. During the interval that messages are being relayed, s rnn~ , the

state machine copy being integrated, might receive a request r directly from c but later receive r ' ,

another request from c, with u i d (r) > u i d (r ') , because r ' was relayed by sm i. The solution to this prob-
lem is for sm,~.w to consider requests received directly from c stable only after no relayed requests from

$9

c can arrive. Thus, the stability test must be changed:

Stability Test During Restart. A request r received directly from a client c by a restarting

state machine copy smngw is stable only after the last request from c relayed by another proces-

sor has been received by smnew.

An obvious way to implement this is for a message to be sent to sm,~ when no further requests from c
will be relayed.

10. Related W o r k

The state machine approach was first described in [Lamport 78a] for environments in which
failures could not occur. It was generalized to handle fail-stop failures in [Schneider 82], a class of
failures between fail-stop and Byzantine failures in [Lamport 78b], and full Byzantine failures in [Lam-
port 84]. The vm-ious abstractions proposed for these models are unified in [Schneider 85]. A critique

of the approach for use in database systems appears in [Garcia-Molina et al 84]. Experiments evaluat-
ing the performance of various of the stability tests in a network of SUN Workstations are reported in
[Pittelli & Garcia-Molina 87].

The state machine approach has been used in the design of significant fault-tolerant process control

applications [Wensley et al 78]. It has also been used to implement distributed synchronization--

including read/write locks and distributed semaphores [Schneider 80], input/output guards for CSP and
conditional Ada SELEC~ statements [Schneider 82J--and, more recently, in the design of a fail-stop
processor approximations in terms of processors that can exhibit arbitrary behavior in response to a

failure [Schlichting & Schneider 83] [Schneider 84]. The state machine approach is rediscovered with
depressing frequency, though rarely in its full generality. For example, the (late) Auragen 4000 series
system described in [Borg et al 83] and the Publishing crash recovery mechanism [Powell & Presotto

83], both use variations of the approach. A stable storage implementation described in [Bernstein 85]

exploits properties of a synchronous broadcast network to avoid explicit protocols for Agreement and

Order and employs Transmitting a Default Vote (as described in section 7). The notion of A common
storage, suggested in [Cristian et al 85], is a state machine implementation of memory that uses the
Real-time Clock Stability Test. The method of implementing highly available distributed services in
[Liskov & Ladin 86] uses the state machine approach, with clever optimizations of the stability test and

Agreement abstraction that are possible due to the semantics of the application and the use of fail-stop
processors.

The ISIS project [Birman & Joseph 87] has recently been investigating fast protocols to support
fault-tolerant process groups--in the terminology of this paper, state machines in a system of fail-stop
processors. Their ABCAST protocol is a packaging of our Agreement and Order abstractions based on
the Logical Clock Stability Test Tolerating Fail-stop Failures; CBCAST allows more flexibility in mes-
sage ordering and permits designers to specify when requests commute.

Another project at Comell, the Realtime-Reliabitity testbed, is investigating semantics-dependent

optimizations to state machines. The goal of that project is to systematically develop efficient, fault-
tolerant, process control software for a hard real-time environment. Starting with a system structured as
state machines and clients, various optimizations are performed to combine state machines, thereby
obtaining an fast, yet provably fault-tolerant distributed program.

40

Acknowledgments

Discussions with O. Babaoglu, K. Birman, and L. Lamport over the past 5 years have helped me to formulate these ideas.
Helpful comments on a draft of this paper were provided by J. Aizikowitz, O. Babaoglu, A. Bernstein, K. Birman, D. Giles,
and B. Simons.

References

[Babaoglu 86] Babaoglu, O. On the reliability of consensus-based fault-tolerant distributed systems. ACM TOCS 5, 4
(Nov. 1987), 394-416.

[Bernstein 85] Bemstein, A.J. A loosely coupled system for reliably storing data. IEEE Trans. on Software Engineering
SE-11, 5 (May 1985), 446-454.

[Birman 85] Birman, K.P. Replication and fault tolerance in the ISIS system. Proc. Tenth ACM Symposium on Operating
Systems Principles. (Oreas Island, Washington, Dec. 1985), ACM, 79-86.

[Birman & Joseph 87] Birman, K.P. and T. Joseph. Reliable communication in the presence of failures. ACM TOCS 5, 1
(Feb. 1987), 47-76.

[Borg et al 83] Borg, A., J. Banmbach, and S. Glazer. A message system supporting fault tolerance. Proc. of Ninth ACM
Symposium on Operating Systems Principles, (Bretton Woods, New Hampshire, October 1983), ACM,
90-99.

[Cooper 84] Cooper, E.C. Replicated procedure call. Proc. of the Third ACM Symposium on Principles of Distributed
Computing, (Vancouver, Canada, August 1984), ACM, 220-232.

[Cristian et al 85] Cristian, F., H. Aghili, H.R. Strong, and D. Dolev. Atomic Broadcast: From simple message diffusion to
Byzantine agreement. Proc. Fifteenth International Conference on Fault-tolerant Computing, (Ann
Arbor, Mich., June 1985), IEEE Computer Society.

[Dijkstra 74] Dijkstra, E.W. Self Stabilization in Spite of Distributed Control. CACM 17, 11 (Nov. 1974), 643-644.

[Fischer et al 85] Fischer, M., N. Lynch, and M. Paterson. Impossibility of distributed consensus with one faulty process.
JACM 32, 2 (April 1985), 374-382.

[Garcia-Molina et al 84] Garcia-Molina, H., F. Pittelli, and S. Davidson. Application of Byzantine agreement in database
systems. TR 316, Department of Computer Science, Princeton University, June 1984.

[Gray 78] Gray, J. Notes on Data Base Operating Systems. Operating Systems: An Advanced Course, Lecture Notes in
Computer Science, Vol. 60, Spilnger-Verlag, New York, 1978, 393-481.

[Hammer and Shipman 80] Hammer, M. and D. Shipman. Reliability mechanisms for SDD-I: A system for distributed
databases. ACM TODS 5, 4 (December 1980), 431-466.

[Lamport 78a] Lamport, L. Time, clocks and the ordering of events in a distributed system. CACM 21, 7 (July 1978), 558-
565,

[Lamport 78b] Lamport, L. The implementation of reliable distributed multiprocess systems. Computer Networks 2 (1978),
95-114.

[Lamport 84] Lamport, L. Using time instead of timeout for fault-tolerance in distributed systems. ACM TOPLAS 6, 2
(April 1984), 254-280.

[Lampert et al 82] Lamport, L., R. Shostak, and M. Pease. The Byzantine generals problem. ACM TOPLAS 4, 3 (July
1982), 382-401.

[Liskov 85] Liskov, B. The Argus language and system. Distributed Systems----~ethods and Tools for Specification, Lec-
ture Notes in Computer Science, Vol. 190, Springer-Verlag, New York, N.Y, 1985, 343.430.

[Liskov & Ladin 86] Liskov, B. and R. Ladin. Highly-available distributed services and fault-tolerant distributed garbage
collection. Proc. of the Fifth ACM Symposium on Principles of Distributed Computing, (Calgry, Alberta,
Canada, August 1986), ACM, 29-39.

[Pittelli & Garcia-Molina 87] Pittelli, F.M. and H. Garcia-Molina. Efficient scheduling in a TMR database system. Proc.
Seventeenth International Symposium on Fault-tolerant Computing, (Pittsburgh, Pa, July 1987), IEEE.

[Powell & Presotto 83] Powell, M. and D. Presotto. PUBLISHING: A reliable broadcast communication mechanism.
Proc. of Ninth ACM Symposium on Operating Systems Principles, (Bretton Woods, New Hampshire,
October 1983), ACM, 100-109.

41

[Schlichting & Schneider 83] Schlichting, R.D. and F.B. Schneider. Fail-Stop processors: An approach to designing fault-
tolerant computing systems. ACM TOCS 1, 3 (August 1983), 222-238.

[Schneider 80] Schneider, F.B. Ensuring Consistency on a Distributed Database System by Use of Distributed Semaphores.
Proc. International Symposium on Distributed Data Bases (Paris, France, March 1980), INRIA, 183-189.

[Schneider 82t Schneider, F.B. Synchronization in distributed programs. ACM TOPLAS 4, 2 (April 1982), 179-195.

[Schneider 84] Schneider, F.B. Byzantine generals in action: Implementing fail-stop processors. ACM TOCS 2, 2 (May
1984), 145-154.

[Schneider 85] Schneider, F.B. Paradigms for distributed programs. Distributed Systems---Methods and Tools for
Specification, Lecture Notes in Computer Science, Vol. 190, Springer-Verlag, New York, N.Y. 1985,
343-430.

[Schneider 86] Schneider, F.B. A paradigm for reliable clock synchronization. Proc. Advanced Seminar on Real-Time
Local Area Networks (Bandol, France, April 1986), INRIA, 85-I04.

[Schneider et al 84] Schneider, F.B., D. Gries, and R.D. Schlichting. Fault-Tolerant Broadcasts. Science of Computer Pro-
gramming 4 (1984), 1-15.

[Siewiorek & Swarz 82] Siewiorek, D.P. and R.S. Swarz. The Theory and Practice of Reliable System Design. Digital
Press, Bedford, Mass, 1982.

[Skeen 82] Skeen, D. Crash Recovery in a Distributed Database System. Ph.D. Thesis, University of California at Berke-
ley, May 1982.

[Spector 85] Spector, A.Z. Distributed transactions for reliable systems. Proc. Tenth ACM Symposium on Operating Sys-
tems Principles, (Orcas Island, Washington, Dec. 1985), ACM, 127-146.

[Slrong & Dolev 83] Strong, H.R. and D. Dolev. Byzantine agreement. Intellectual Leverage for the Information Society,
Digest of Papers, (Compcon 83, IEEE Computer Society, March 1983), 1EEE Computer Society. 77-82.

[Wenstey et a178] Wensley, J., et al. SIFT: Design and Analysis of a Fault-Tolerant Computer for Aircraft Control. Proc.
IEEE 66, 10 (Oct. 1978), 1240-1255.

