Communication Support for Reliable
Distributed Computing*

Kenneth P. Birman
Thomas A. Joseph

TR 86-753
May 1986

Department of Computer Science
Cornell University
Ithaca, NY 14853

* This work was supported by the Defense Advanced Research Projects Agency (DoD) under
ARPA order 5378, Contract MDA903-85-C-0124, and by the National Science Foundation
under grant DCR-8412582. The views, opinions and findings contained in this report are those
of the authors and should not be construed as an official Department of Defense position, policy,
or decision.

ST ib) Lomr;oh~°‘ Srm»apv UP/hJ’

COMMUNICATION SUPPORT FOR RELIABLE
DISTRIBUTED COMPUTING

Kenneth P. Birman and Thomas A. Joseph

Department of Computer Science
Cornell University, Ithaca, New York

ABSTRACT

We describe a collection of communication primitives integrated with a mechanism for han-
dling process failure and recovery. These primitives fadilitate the implementation of fault-tolerant
process groups, which can be used to provide distributed services in an environment subject to
non-malicious crash failures.

1. Introduction

At Cornell, we recently completed a prototype of the ISIS system, which transforms abstract
type specifications into fault-tolerant distributed implementations, wiiile insulating users from the
mechanisms by which fault-tolerance is achieved [Birman-a]. A wide range of reliable communica-
tion primitives have been proposed in the literature, and we became convinced that by using such
-primitives when building the ISIS system, complexity could be avoided. Unfortunately, the exist-
ing protocols, which range from reliable and atomic broadcast [Chang] [Cristian] [Schneider] to
Byzantine agreement [Strong], either do not satisfy the ordering constraints required for many
fault-tolerant applications or satisfy a stronger constraint than necessary at too high a cost. In par-
ticular, these protocols have not attempted to minimize the latency (delay) incurred before mes-
sage delivery can occur. In ISIS, latency appears to be a major factor that limits performance.
Fault-tolerant distributed systems also need a way to detect failures and recoveries consistently,
and we found that this could be integrated into the communication layer in a manner that reduces
the synchronization burden on higher level algorithms. These observations motivated the develop-

ment of a new collection of primitives, which we present below.

*This work was supported by the Defense Advanced Research Projects Agency (DoD) under ARPA order 5378,
Contract MDA903-85-C-0124, and by the National Science Foundation under grant DCR-8412582. The views, opinions
and findings contained in this repart are those of the authors and should not be construed as an official Department of
Defense position, policy, or decision.

Our broadcast primitives are designed to respect several sorts of ordering constraints, and
have cost and latency that varies depending on the nature of the constraint required [Birman-b]
[Joseph-a] [Joseph-b]. Failure and recovery are integrated into the communication subsystem by
treating these events as a special sort of broadcast issued on behalf of a process that has failed or
recovered. The primitives are presented in the context of fault tolerant process groups: groups of
processes that cooperate to implement some distributed algorithm or service, and which need to
see consistent orderings of system events in order to achieve mutually consistent behavior. Our
primitives provide flexible, inexpensive support for process groups of this sort. By using these
primitives, the ISIS system achieved both high levels of concurrency and suprisingly good perfor-
mance. Equally important, its structure was made suprisingly simple, making it feasible to reason
about the correctness of our algorithms.

In the remainder of this paper we sumarize the issues and alternatives that the designer of a
distributed system is presented with, focusing on two styles of support for fault-tolerant comput-
ing: remote procedure calls coupled with a transactional execution facility, and the fault-tolerant
process group mechanism mentioned above. Next, our primitives are described. We conclude by
speculating on future directions in which this work might be taken.

2. Goals and assumptions

The difficulty of constructing fault-tolerant distributed software can be traced to a number of
interrelated issues. The list that follows is not exhaustive, but attempts to touch on the principal

considerations that must be addressed in any such system:

1. Synchronization. Distributed systems offer the potential for large amounts of concurrency,
and it is usually desirable to operate at as high a level of concurrency as possible. However,
when we move from a sequential execution environment to a concurrent one, it becomes
necessary to synchronize actions that may conflict in their access to shared data or entail
communication with overlapping sets of processes. Additional problems that can arise in this

context include deadlock avoidance or detection, livelock avoidance, etc.

Page 2

2. Fault detection. It is usually necessary for a fault-tolerant application to have a consistent
picture of which components fail, and in what order. Timeout, the most common mechanism
for detecting failure, is unsatisfactory, because there are many situations in which a healthy
component can timeout with respect to one component without this being detected by some
another. Failure detection under more rigorous requirements requires an agreement proto-
col that is related to Byzantine agreement [Strong] [Hadzilacos].

3. Consistency. When a group of processes cooperate in a distributed system, it is necessary to
ensure that the operational processes have consistent views of the state of the group as a

* whole. For example, if process p believes that some property P holds, and on the basis of
this interacts with process g, the state of ¢ should not contradict the fact that p believes P to
be true. This problem is closely related to notions of knowledge and consistency in distri-
buted systems [Halpern] [Lamport]. In our context, P will often be the assertion that a
broadcast has been received by g, or that ¢ saw some sequence of events occur in the same
order as did p.

4. Serializability. Many distributed systems are partitioned into data manager processes, which
implemented shared variables, and transaction manager processes, which issue series of
requests to data managers [Bernstein]. If transaction managers can execute concurrently, it
is often desirable to ensure that transactions produce serializable outcomes [Eswaren] [Papa-
dimitrou]. Serializability is increasingly viewed as an important property in ‘“object-
oriented” distributed systems that package services as abstract objects with which clients
communicate by remote procedure calls (RPC). On the other hand, there are systems for
which serializability is either too strong a constraint, or simply inappropriate.

Jointly, these problems render the design of fault-tolerant distributed software daunting.

The correctness of any proposed design and of its implementation become serious, if not insur-

mountable, concerns. We faced this range of problems in our work on the ISIS system, and

rapidly became convinced that in the absence of some systematic

Page 3

never be constructed. In Sec. 6, we will show how the primitives of Sec. 5 provide such an

The failure model that one adopts has considerable impact on the structure of the resulting
system. We adopted the model of fail-stop processors [Schneider]: when failures occur, a proces-
sor simply stops (crashes), as do all the processes executing on it. We rejected the extremely pes-
simistic assumptions of the malicious Byzantine failure models because they lead to slower, more
redundant software, and because the probability that a system failure will be undetectably mali-
cious seems vanishingly small in practice. Work based on Byzantine assumptions is described in
[Lamport] and [Schlicting]. We also assume that the communication network is reliable but sub-
ject to unbounded delay. Although network partitioning is an important problem, we do not
address it here.

Further assumptions are sometimes made about the availability of synchronized realtime
clocks. Here, we adopt the position that although reasonably accurate elapsed-time clocks are nor-
mally available, closely synchronized clocks frequently are not. For example, the 60Hz “line”
clocks commonly used on current workstations are only accurate to 16ms. On the other hand, 4-
8ms inter-site message transit times are common and 1-2ms are reported increasingly often. Thus,
it is impossible to synchronize clocks to better than 32-48ms, enough time for a pair of sites to
exchange between 4 and 50 messages. Thus, we assume that clock skew is “large” compared to

inter-site message latency.

3. Alternatives

Two different approaches to reliable distributed computing have become predominant. The
first approach involves the provision of a communication primitive, such as atomic broadcast,
which can be used as the framework on which higher level algorithms are designed. Such a primi-
tive seeks to deliver messages reliably to some set of destinations, despite the possibility that
failures might occur during the execution of the protocol. We term this the process group
approach, since it lends itself to the organization of cooperating processes into groups, as
described in the introduction. Process groups are an extremely flexible abstraction, and have been

Paoe 4

employed in the V Kernel [Cheriton] as well in the ISIS system. The idea of using process groups
to address the problems raised in the previous section seems to be new.

A higher level approach is to provide mechanisms for transactional interactions between
processes that communicate using remote procedure calls {Birrell]. This has lead to work on
nested transactions (due to nested RPC’s) [Moss], support for transactions at the language level
[Liskov], transactions within an operating systems kernel [Spector] [Allchin] [Popek] [Lazowska],
and transactional access to higher-level replicated services, such as resilient objects in ISIS or rela-
tions in database systems. The primitives in a transactional system provide mechanisms for distri-
buﬁng the request that initiates the transaction, accessing data (which may be replicated), perform-
ing concurrency control, and implementing commit or abort. Additional mechanisms are normally
needed for orphan termination, deadlock detection, etc. The issue then arises of how these
mechanisms should themselves be implemented. Our work in ISIS leads us to believe that transac-
tions are easily implemented on top of fault-tolerant process groups; lacking such a mechanism a
number of complicated protocols are needed and the assodiated system support can be substantial.
Moreover, transactions represent a relatively heavy-weight solution to the problems surveyed in
the previous section. We now believe that transactions are inappropriate for casual interactions
between processes in typical distributed systems. The remainder of this paper is therefore focused

on the process group approach.

4. Existing broadcast primitives

The considerations outlined above motivated us to examine reliable broadcast primitives.
Previous work has been reported on this problem, under assumptions comparable with those of
Sec. 2, and we begin by surveying this research. In [Schneider], an implementation of a reliable
broadcast primitive is described. Such a primitive ensures that a designated message will be
transmitted from one site to all other operational sites in a system; if a failure occurs but any site
has received the message, all will eventually do so. [Chang] and [Cristian] describe implementa-
tions for atomic broadcast, which is a reliable broadcast with the additional property that messages

Page §

are delivered in the same order at all overlapping destinations, and this order preserves the
transmission order if messages originate in a single site.

Atomic broadcast is a powerful abstraction, and essentially the same behavior is provided by
one of the primitives we discuss in the next section. However, it has several drawbacks which
made us hesitant to adopt it as the only primitive in the system. Most serious is the latency that is
incurred in order to satisfy the delivery ordering property. Without delving into the implementa-
tions, which are based on a token scheme in [Chang] and an acknowledgement protocol in
[Schneider], we observe that the delaying of certain messages is fundamental to the establishment
of é unique global delivery ordering; indeed, it is easy to prove that this must always be the case.
In [Chang] a primary goal is to minimize the number of messages sent, and the protocol given
performs extremely well in this regard. However, a delay occurs while waiting for tokens to
arrive and the delivery latency that results may be high. [Cristian] assumes that clocks are closely
synchronized and that message transit times are bounded by well-known constants, and uses this to
derive atomic broadcast protocols tolerant of increasingly severe classes of failures. The protocols
explicitly delay delivery to achieve the desired global ordering on broadcasts. Hence for poorly
synchronized clocks (which are typical of existing workstations), latency would be high in com-
parison to inter-site message transit times.

Another drawback of the atomic broadcast protocols is that no mechanism is provided for
ensuring that all processes observe the same sequence of failures and recoveries, or for ensuring
that failures and recoveries are ordered relative to ongoing broadcasts. We dec.ded to look more

closely at these issues.

5. Our broadcast primitives

We now describe three broadcast protocols - GBCAST, BCAST, and OBCAST - for transmit-
ting a message reliably from a sender process to some set of destination processes. Details of the
protocols and their correctness proofs can be found in [Birman-b]. The protocols ensure “all or

nothing” behavior: if any destination receives a message, then unless it fails, all destinations will

Paoe 6

receive it.

5.1. The GBCAST primitive

GBCAST (group broadcast) is the most constrained, and costly, of the three primitives. It is
used to transmit information about failures and recoveries to members of a process group. A
recovering member uses GBCAST to inform the operational ones that it has become available.
Additionally, when a member fails, the system arranges for a GBCAST to be issued to group
members on its behalf, informing them of its failure. Arguments to GBCAST are a message and a
process group identifier, which is translated into a set of destinations as described below (Sec.
5.6).

Our GBCAST protocol ensures that if any process receives a broadcast B before receiving a
GBCAST G, then all overlapping destinations will receive B before G. This is true regardless of
the type of broadcast involved. Moreover, when a failure occurs, the corresponding GBCAST
message is delivered after any other broadcasts from the failed process. Each member can there-
fore maintain a view listing the membership of the process group, updating it when a GBCAST is
received. Although views are not updated simultaneously in real time, all members observe the
same sequence of view changes. Since, GBCAST’s are ordered relative to all other broadcasts, all
members receiving a given broadcast will have the same value of view when they receive it.!
Members of a process group can use this value to pick a strategy for processing an incoming
request, or to react to failure or recovery withcut having to run any spedal protocol first. Since
the GBCAST ordering is the same everywhere, their actions will all be consistent. Notice that
when all the members of a process group may have failed, GBCAST also provides an inexpensive
way to determine the last site that failed: process group members simply log each new view that
becomes defined on stable storage before using it; a simplified version of the algorithm in [Skeen-

A problem arises if a process p fails without receiving some message after that message has already
been delivered to some other process g: g's view when it received the message would show p to be operatian-
al; hence, ¢ will assume that p received the message, although p is physically incapable of doing so. Howev-
er, the state of the system is now equivalent to one in which p did receive the message, but failed before act-
ing on it. In effect, there exists an interpretation of the actual system state that is consistent with ¢’s as-

a] can then be executed when recovering from failure.

5.2. The BCAST primitive

The GBCAST primitive is too costly to be used for general communication between process
group members. This motivates the introduction of weaker (less ordered) primitives, which might
be used in situations where a total order on broadcast messages is not necessary. Our second
primitive, BCAST, satisfies such a weaker constraint. Spedifically, it is often desired that if two
broadcasts are received in some order at a common destination site, they be received in that order
at all other common destinations, even if this order was not predetermined. For example, if a
process group is being used to maintain a replicated queue and BCAST is used to transmit queue
opcraﬁonstoallcopim,theoperaﬁons“dﬂbcdoneinthesameordaeverywhcre,hcncetlw
copies of the queue will remain mutually consistent. The primitive BCAST(msg, label, dests),
where msg is the message and label is a string of characters, provides this behavior. Two BCAST’s
having the same label are delivered in the same order at all common destinations. On the other
hand, BCAST’s with different labels can be delivered in arbitrary order, and since BCAST is not
used to propagate information about failures, no flushing mechanism is needed. The relaxed syn-

chronization results in lower latency.

5.3. The OBCAST primitive

Our third primitive, OBCAST (ordered broadcast), is weakest in the sense that the it involves
less distributed synchronization then GBCAST or BCAST. OBCAST(msg, dests) atomically delivers
msg to each operational dest. If an OBCAST potentially causally dependent on another, then the
former is delivered after the latter at all overlapping destinations. A broadcast B, is potentially
causally dependent on a broadcast B, if both broadcasts originate from the same process, and B, is
sent after By, or if there exists a chain of message transmissions and receptions or local events by

which knowledge could have been transferred from the process that issued B, to the process that

sumption.

issued B, [Lamport). For causally independent broadcasts, the deliver ordering is not constrained.

OBCAST is valuable in systems like ISIS, where concurrency control algorithms are used to
synchronize concurrent computations. In these systems, if two processes communicate con-
currently with the same process the messages are almost always independent ones that can be pro-
cessed in any order: otherwise, concurrency control would have caused one to pause until the other
was finished. On the other hand, order is clearly important within a causally linked series of
broadcasts, and it is precisely this sort of order that OBCAST respects.

5.4. Other broadcast primitives

A weaker broadcast primitive is reliable broadcast, which provides all-or-nothing delivery,
but no ordering properties. The formulation of OBCAST in [Birman-b] actually includes a
mechanism for performing broadcasts of this sort, hence no spedial primitive is needed for the
purpose. Additionally, there may be situations in which BCAST protocols that also satisfy an
OBCAST ordering property would be valuable. Although our BCAST primitive could be changed
to respect such a rule, when we considered the likely uses of the primitives it seemed that BCAST
was better left completely orthogonal to OBCAST. In situations needing hybrid ordering behavior,
the protocols of [Birman-b] could easily be modified to implement BCAST in terms of OBCAST,

and the resulting proiocol would behave as desired.

5.5. Synchronous versus asynchronous broadcast abstractions

Many systems employ RPC internally, as a lowest level primitive for interaction between
processes. It should be evident that all of our broadcast primitives can be used to implement
replicated remote procedure calls [Cooper]: the caller would simply pause until replies have been
received from all the participants (observation of a failure constitutes a reply in this case). We
term such a use of the primitives synchronous, to distinguish it from from an asynchronous broad-

cast in which no replies, or just one reply, suffices.

Page 9

In our work on ISIS, GBCAST and BCAST are norinally invoked synchronously, to imple-
ment a remote procedure call by one member of an object on all the members of its process
group. However, OBCAST, which is the most frequently used overall, is almost never invoked
synchronously. Asynchronous OBCAST's are the source of most concurrency in ISIS: although the
delivery ordering is assured, transmission can be delayed to enable a message to be piggybacked
on another, or to schedule IO within the system as a whole. While the system cannot defer an
asynchronous broadcast indefinitely, the ability to defer it a little, without delaying some computa-
tion by doing so, permits load to be smoothed. Since OBCAST respects the delivery orderings on
which a computation might depend, and is ordered with respect to failures, the concurrency intro-
duced does not complicate higher level algorithms. Moreover, the protocol itself is extremely
cheap.

A problem is introduced by our decision to allow asynchronous broadcasts: the atomic recep-
tion property must now be extended to address causally related sequences of asynchronous mes-
sages. If a failure were to result in some broadcasts being delivered to all their destinations but
others that precede them not being delivered anywhere, inconsistency might result even if the des-
tinations do not overlap. We therefore extend the atomicity property as follows. If process ¢
receives a message m from process s, and s subsequently fails, then unless ¢ fails as well, m’ must
be delivered to its remaining destinations. This is because the state of ¢+ may depend on any mes-

sage m' received by s before it sent m. The costs of the protocols are not affected by this change.

A second problem arises when the user-level implications of this atomidty rule are con-
sidered. In the event of a failure, any suffix of a sequence of aysnchronous broadcasts could be
lost and the system state would still be internally consistent. A process that is about to take some
action that may leave an externally visible side-effect will nced a way to pause until it is
guaranteed that such broadcasts have actually been delivered. For this purpose, a flush primitive
is provided. Occasional calls to flush do not eliminate the benefit of using OBCAST asynchro-
nously. Unless the system has built up a considerable backlog of undelivered broadcast messages,

Page 10

which should be rare, flush will only pause while transmission of the last few broadcasts com-

pletes.

5.6. Group addressing protocol
Since group membership can change dynamically, it may be difficult for a process to com-
pute a list of destinations to which a message should be sent, for example, as is needed to perform

a GBCAST. In [Birman-b] we report on a protocol for ensuring that a given broadcast will be
delivered to all members of a process group in the same view. This view is either the view that

was operative when the message transmission was initiated, or a view that was defined subse-
quently. The algorithm is a simple iterative one that costs nothing unless the group membership
changes, and permits the caching of possibly inaccurate membership information near processes
that might want to communicate with a group. Using the protocol, a flexible message addressing
scheme can readily be supported.

5.7. Example

Figure 1 illustrates a pair of computations interacting with a process group while its member-
ship changes dynamically. One client issues a pair of OBCAST’s, then uses BCAST to perform a
third request on the group. A second client interacts only once, using BCAST. Note that unless
the first client invoked flush before issuing the BCAST, the BCAST might be received before the
prior OBCAST’s at some sites. Arrows showing reply messages have been omitted to simplify the
figure, but it would normally be the case that one or more group members reply to each request.

6. Using the primitives
The reliable communication primitives described above dramatically simplify the solution of
the problems cited in Sec. 2:
1. Synchronization. Many synchronization problems are subsumed into the primitives them-
selves. For example, consider the use of GBCAST to implement recovery. A recovering

process would issue a GBCAST to the process group members, requesting that state

Page 11

OBCAST 04
Oa Os GBCAST: B joins
0BCAST O, A:\I

i
GBCAST: Cjoins

BCAST B !

ﬁ‘\'
_— “"?l\. |
ras
BCAST B, crash X > s GBCAST: A fails

1]

1 1

iL VL 1 1
P Q v v

Figure 1: Client processes interacting with a process group

information be transferred to it. In addition to sending the current state of the group to the
recovering process, group members update the process group view at this time. Subsequent
messages to the group will be delivered to the recovered process, with all necessary syn-
chronization being provided by the ordering prope:ties of GBCAST. In situations where
other forms of synchronization are needed, BCAST provides a simple way to ensure that
several processes take actions in the same order, and this form of low-level synchronization
simplifies a number of higher-level synchronization problems. For example, if BCAST is
used to request write-locks from lock-manager processes, two write-lock requests on the
same item can never deadlock by being granted in different orders by a pair of managers.
Fault detection. Consistent failure (and recovery) detection are trivial using our primitives: a
process simply waits for the appropriate process group view to change. This fadilitates the
implementation of algorithms in which one processes monitors the status of another process.
A process that acts on the basis of a process group view change does so with the assurance
that other group members will (eventually) observe the same event and will take consistent
actions.

Pace 12

Consistency. We believe that consistency is generally expressible as a set of atomicity and
ordering constraints on message delivery, particularly causal ones of the sort provided by
OBCAST. Our primitives permit a process to specify the communication properties needed
to achieve a desired form of consistency. Continued research will be needed to understand
precisely how to pick the weakest primitive in a designated situation.

Serializability. To achieve serializability, one implements a concurrency control algorithm
and then forces computations to respect the serialization order that this algorithm choses.
The BCAST primitive, as observed above, is a powerful tool for establishing an order
" between concurrent events. Having established such an order, OBCAST can be used to dis-
tribute information about the computation and also its termination (commit or abort). Any
process that observes the commit or abort of a computation will only be able to interact with
data managers that have received messages preceding the commit or abort, hence a highly
asynchronous transactional execution results. This problem is discussed in more detail in

[Birman-a] [Joseph-a] [Joseph-b].

7. Implementation

The communication primitives can be built in layers, starting with a bare network providing

unreliable datagrams. A site-to-site acknowledgement protocol converts this into a sequenced,

error-free message abstraction, using timeouts to detect apparent failures. An agreement protocol

is then used to order the site-failures and recoveries consistently. If timeouts cause a failure to be

detected erroneously, the protocol forces the affected site to undergo recovery.

Built on this is a layer that supports the primitives themselves. OBCAST has a very light-

weight implementation, based on the idea of flooding the system with copies of a message: Each

process buffers copies of any messages needed to ensure the consistency of its view of the system.

If message m is delivered to process p, and m is potentially causally dependent on a message m’,

then a copy of m’ is sent to p as well (duplicates are discarded). A garbage collector deletes

superfluous copies after a message has reached all its destinations. By using extensive

Page 13

piggybacking and a simple scheduling algorithm to control message transmission, the cost of an
OBCAST is kept low - often, less than one packet per destination. BCAST employs a two-phase
protocol based on one suggested to us by Skeen [Skeen-b]. This protocol has higher latency than
OBCAST because delivery can only occur during the second phase; BCAST is thus inherently syn-
chronous. In ISIS, however, BCAST is used rarely; we believe that this would be the case in other
systems as well. GBCAST is implemented using a two-phase protocol similar to the one for
BCAST, but with an additional mechanism that flushes messages from a failed process before
delivering the GBCAST announcing the failure. Although GBCAST is slow, it is used even less

often than BCAST. Preliminary performance figures appear in [Birman-b].

8. Applications of the approach

Our work with communication primitives has convinced us that the resilient objects provided
by the ISIS system exist at too high a level for many sorts of distributed application. For exam-
ple, consider the cognac still shown in figure 2. If independent, non-identical computer systems
were used to control distillation, two aspects would have to be addressed. First, it would be
necessary to design the hardware itself in a way that admits safe actions in all possible system
states. Second, however, one would need to implement the control software in each processor in a

way that ensures mutual consistency of the onerational computing units. That is, given that the

- pressure/temp
- heater

liquid source
,5 - valves

- bottling unit

(o)W SN TN I N
1

Lo v ok 2
Figure 2: An sutomated cognac still

Page 14

specification describes a sequence of actions to take in some scenario (for example, detection of
excessive pressure in the distillation vessel), can we be assured that the operational processors will
jointly act to avert a disastrous spill of cognac? We believe that fault-tolerant process groups pro-
vide a simple, elegant way to address problems such as this one. We plan to complete an imple-

mentation of the protocols by the summer of 1986, and then to develop a collection of software

subsystems running on top of them.

9. Acknowledgement
The authors are grateful to Pat Stephenson and Fred Schneider for many suggestions that are
reflected in the presentation of this material, and to Dale Skeen, with whom we colaborated on

many aspects of the work reported here.

10. References

[Alichin] Allchin, J., McKendry, M. Synchronization and recovery of actions. Proc. 2nd ACM
SIGACTISIGOPS Principles of Distributed Computing, Montreal, Canada, 1983.

[Babsoglu] Babaoglu, O., Drummond, R. The streets of Byzantium: Netwark architectures for fast reli-
able broadcast. IEEE Trans. on Sqftware Engineering TSE-11, 6 (JTune 198S).

[Bernstein] Bernstein, P., Goodman, N. Concurrency control algorithms for replicated database systems.
ACM Computing Surveys 13, 2 (June 1981), 185-222.

[Birman-a] Birman, K. Replication and fault-tolerance in the ISIS system. Proc. 10th ACM SIGOPS Sym-
posium on Operating Systems Principles. Orcas Island, Washington, Dec. 198S, 79-86.

[Birman-b] Birman, K., Joseph, T. Reliable communication in an unreliable environment. Dept. of Com-
puter Science, Cornell Univ., TR 85-694, Aug. 1985.

[Birrell] Birrell, A., Nelson, B. Implementing remote procedure calls. ACM Transactions on Computer
Systems 2, 1 (Feb. 1984), 39-59.

[Chang] Chang, J., Maxemchuck, M. Reliable broadcast protocols. ACM TOCS 2, 3 (Aug. 1984), 251-
273.

[Cheriton] Cheriton, D. The V Kernel: A software base for distributed systems. IEEE Software 1 12,
(1984), 19-43.

[Cooper] Cooper, E. Replicated procedure call. Proc. 3rd ACM Symposiwn on Principles of Distributed
Computing., August 1984, 220-232. (May 1985).

[Cristian] Cristian, F. et al Atomic broadcast: From simple diffusion to Byzantine agreement. IBM
Technical Report RJ 4540 (48668), Oct. 1984.

[Eswaren] Fswaren, K.P., et al The notion of consistency and predicate locks in a database system.

Page 15

[Liskav]

[Moes]

Comm. ACM 19, 11 (Nov. 1976), 624-633.

Hadzilacos, V. Hadzilacos, V. Byzantine agreement under restricted types of failures (not
telling the truth is different from telling of lies). Tech. ARep. TR-19-83, Aiken Comp. Lab.,
Harvard University (June 1983).

Halpern, J., and Moses, Y. Knowledge and common knowledge in a distributed environment.
Tech. Report RI-4421, IBM San Jose Research Laboratory, 1984.

Joseph, T. Low cost management of replicated data. Ph.D. dissertation, Dept. of Computer
Science, Cornell Univ., Ithaca (Dec. 198S).

Joseph, T., Birman, K. Low cost management of replicated data in fault-tolerant distributed
systems. ACM TOCS 4, 1 (Feb 1986), 54-70.

Lampart, L. Time, clocks, and the ardering of events in a distributed system. CACM 21, 7,
July 1978, 558-565.

Lazowska, E. et al The architecture of the EDEN system. Proc. 8th Symposium on Operating
Systems Principles, Dec. 1981, 148-159.

Liskov, B., Scheifler, R. Guardians and actions: Linguistic suppart for robust, distributed pro-
grams. ACM TOPLAS 8, 3 (July 1983), 381-404.

Moss, E. Nested transactions: An approach to reliable, distributed computing. Ph.D. thesis,
MIT Dept of EECS, TR 260, April 1981.

[PapadimitrouPapadimitrou, C. The serializability of concurrent database updates. JACM 26, 4 (Oct. 1979),

[Popek]
[Schlicting]
[Schneider]

[Skeen-a)
[Skeen-b]
[Spector]

[Strong]

631-653.

Popek, G. et al. Locus: A network transparent, high reliability distributed system. Proc. 8th
Symposium on Operating Systems Principles, Dec. 1981, 169-177.

Schlicting, R, Schneider, F. Fail-stop processars: An approach to designing fault-tolerant dis-
tributed computing systems. ACM TOCS 1, 3, August 1983, 222-238.

Schneider, F., Gries, D., Schlicting, R. Reliable broadcast protocols. Science of computer pro-
gramming 3, 2 (March 1984).

Skeen, D. Determining the last process to fail. ACM TOCS 3, 1, Feb. 1985, 15-30.

Skeen, D. A reliable broadcast protocol. Unpublished.

Spectar, A., et al Distributed transactions for reliable systems. Proc. 10th ACM SIGOPS Sym-
posium on Operating Systems Principles, Dec. 1985, 127-146.

Strang, H.R., Dolev, D. Byzantine agreement. Digest of papers, Spring Campcon 83, San Fran-
cisco, CA, March 1983, 77-81.

Page 16

IVl WEiNE

W W WA IVIEmI W s ST T mr e v v v

| Exp. Date: Jun 30, 1986

REPORT _SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS

JECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION /AVAILABILITY OF REPORT
Approved for Public Release

DECLASSIFICATION / DOWNGRADING SCHEDULE

Distribution Unlimited

IRFORMING ORGANIZATION REPORT NUMBER(S)
TR86-753

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6b. OFFICE SYMBOL

NAME OF PERFORMING ORGANIZATION
(If applicablie)

Kenneth Birman, Dept. of CS
Cornell University

7a. NAME OF MONITORING ORGANIZATION

Defense Advanced Research Projects Agency/IP

ADDRESS (City, State, and ZIP Code)
Dept. of Computer Science, 405 Upson Hall
Cornell University

7b. ADDRESS (City, State, and ZIP Code)
Defense Advanced Research, Project Agency
Attn: TIO/Admin, 1400 Wilson Blvd.

Ithaca, NY 14853 Arlington, VA 22209

NAME OF FUNDING / SPONSORING 8b OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable) ARPA order 5378

DARPA/IPTO Contract MDA-903-85-C-0124

ADDRESS (City, State, and ZIP Code)
Defense Advanced Research, Project Agency
Arlington, VA 22209

10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT
ELEMENT NO NO.

WORK UNIT
ACCESSION NC

TASK
NO.-

TITLE (Include Security Classification)

Communication Support for Reliable Distributed Computing

Approved for Public Rele
Distributed Unlimited

PERSONAL AUTHOR(S)
Kenneth P. Birman and Thomas A. Joseph

TYPE OF REPORT 13b TIME COVERED

15 PAGE COUNT
16

14. DATE OF REPORT (Year, Month, Day)

Special Technical FROM TO May 1986
SUPPLEMENTARY NOTATION

. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by biock number)
FIELD GROUP SUB-GROUP

ABSTRACT (Continue on reverse if necessary and identify by block number)

We describe a collection of communication primitives integrated with a mechanism

>r handling process failure and recovery.

These primitives facilitate the implementation

f fault-tolerant process groups, which can be used to provide distributed services in an
avironment subject to non-malicious crash failures.

DISTRIBUTION / AVAILABILITY OF ABSTRACT

X uncLASSIFIED/UNLIMITED [J SAME AS RPT 3 oTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION

1. NAME OF RESPONSIBLE INDIVIDUAL

22b. TELEPHONE (Include Area Code) | 22¢ OFFICE SYMBOL

FORM 1473, 8amAR

83 APR edition may be used until exhausted

SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif

