Engineering Fault-Tolerant
Distributed Computing Systemst

5zalp Babaoglu
86-755

May 1986
(Revised June 1987)

Department of Computer Science
Cornell University
Ithaca, New York 14853-7501

tPartial support for this work was provided by the National Science Foundation under
Grant DCR-86-01864 and AT&T under a Foundation Grant.

Engineering Fault-Tolerant
Distributed Computing Systems*

Ozalp Babaoglu

Department of Computer Science
Cornell University
Ithaca, New York 14853-7501

ABSTRACT

We view the design of fault-tolerant computing systems as an en-
gineering endeavor. As such, this activity requires understanding
the theoretical limitations and the scope of the feasible designs. We
survey the impact that various environment characteristics and
design choices have on the resultant system properties. We propose
a single metric—the system reliability—as an appropriate measure for
exploring tradeoffs among a potentially-large design space.

June 25, 1987

* Partial support for this work was provided by the National Science Foundation under
Grant DCR-86-01864 and AT&T under a Foundation Grant.

1. Introduction

Continued and correct operation in the presence of failures are required attributes for
an increasing number of computing systems [Kim84, Spec84]. Unfortunately, given a finite
amount of hardware, it is impossible to construct a computing system that never fails. The
best we can hope to achieve are systems that continue correct operation “with high proba-
bility.”

There are two complementary strategies for coping with failures. The first is to con-
struct a computing system from components that are less likely to fail—the fault-avoidance
approach. The second is to construct a system that continues to function correctly despite
failures—the fault-tolerance approach [RLT78]. The fault-avoidance approach by itself is
limited only by technological and economic factors, and presents no real conceptual chal-
lenges at the system design level. On the other hand, the fault-tolerance approach requires
techniques for transparently masking failures or restarting the computation from some past
state. In this paper, we consider only fault tolerance through replication in computing sys-
tems that are viewed at a level where the “components” consist of processors (each with
associated memory and input/output devices) and communication hardware. We do not con-
sider failures due to faulty software.

Informally, a distributed computing system is a collection of autonomous processors
that share no memory, do not have access to a global clock and communicate only by
exchanging messages. Recent developments in hardware technology, along with the
inherent distributed nature of many applications have made distributed systems a cost
effective alternative to centralized computing systems. Distributed algorithms rely on
cooperation among processors. The lack of shared memory and random communication
delays contribute to the difficulty of programming distributed systems. When processors
are allowed to fail, this task becomes even more difficult.

Recently, considerable effort has been devoted to identifying the appropriate primi-
tives and structures towards a “methodology” of fault-tolerant computing [Lamp84, SL85].
We now have the understanding necessary to incorporate fault tolerance into a large class
of applications without having to reinvent algorithms for each special case. Our goal is to
extend this methodology for designing fault-tolerant distributed computing systems so that
it resembles the traditional “engineering” endeavor. This entails solving the appropriate
sub-problems, understanding the interactions between the proposed solutions and the pro-
perties of the resulting system, and developing the measures necessary for exploring as
wide a range of designs as possible in searching trade-offs.

We make the analogy to engineering an aircraft. This activity is based on theoretical
foundations such as physics, aerodynamics, fluid mechanics, etc. It requires an understand-
ing of the interactions between the numerous design parameters (e.g., construction
material, wing span, number of engines, etc.) and the properties of the resultant design
(e.g., maximum speed, pay load capacity, maximum altitude, etc.). Whether the final
design resembles a hang glider or a wide-body Airbus is simply due to the tradeoffs that
are made among the many possible designs that satisfy the requirements. In engineering
fault-tolerant computing systems, we have the necessary theoretical foundations. What we
lack is an understanding of the interactions between the design parameters and the system
properties. This is essential if we hope to effectively explore the design space in search of
tradeoffs.

Typically, the properties of a fault-tolerant system design are given in terms of the
maximum number of processors that can fail (resiliency), the total number of messages that
are exchanged (communication complexity), the number of rounds of message exchanges
(time complexity) and the amount of computation performed during each round (computa-
tional complexity). Unfortunately, it is rarely the case that one design dominates another
with respect to all four of these measures. In most cases, one cost can be traded for another

cost. Consequently, it is quite difficult to say when one design is “better” than another
design. Ultimately, the design goal for a fault-tolerant system is to guarantee a lower
bound on the probability that it will perform the right action after it has been operating for
some length of time. This metric, which we call the system reliability, subsumes all four
cost measures defined above such that it is suitable for exploring tradeoffs. Certainly, for
many applications, other requirements such as total cost and performance may be equally
important. For simplicity, we only consider the system reliability in evaluating alternative
solutions.

In the next section we outline the replicated system structure that constitutes the core
of the fault-tolerant computing system design methodology. In comparing alternative solu-
tions for the same problem, we distinguish between effects that are due to the characteris-
tics of the external environment (and, thus, are usually beyond the control of the designer)
and those that are due to choices made for the design parameters. In Section 3, we survey
the impact that the external environment characteristics have on fault-tolerant systems.
Then, in Section 4, we examine the alternative solutions that are possible by varying the
design parameters. The reliability metric we propose reveals some subtle and counterintui-
tive interactions between certain system design parameters and the resulting fault toler-
ance.

2. System Structure

Our goal is to reliably execute a single program that performs some arbitrary compu-
tation. Without loss of generality, we assume that the application cyclically reads data
from an input source, performs a deterministic computation based on this data, and writes
outputs. This structure for a computation has been called a state machine [Lamp78,
Schn87].

To achieve fault tolerance, the state machine (including the input sources) is repli-
cated and each instance executes on its own processor [Lamp84, SL85, GPD84]. Fault
tolerance requirements usually dictate that the replicated system not rely on the correct-
ness of any single component for its correct operation. Furthermore, the independence of
processor failures necessitates that the processors be isolated, both physically and electri-
cally. Consequently, when viewed at an appropriate level of abstraction, the replicated sys-
tem has the same properties as a distributed system—autonomous processors with no shared
resources that communicate through a network.

In the rest of the paper, we refer to a processor executing a state machine instance
simply as a processor. The entire ensemble is called the system. An application-dependent
threshold ¥ dictates the minimum number of correct processors that must exist to maintain
correctness in the presence of failures.

If the same result is to be generated by all correct processors, they must use the same
input value for their computation. This seemingly simple requirement is not always easy
to achieve. For example, at any given time, correct analog sensors may differ slightly in
their readings. In addition, processors may read their associated sensors at slightly
different times. Therefore, since the processors cannot simply compute based on local data,
they must execute a protocol to exchange local inputs and to decide on a common value to
use as the input for the computation. In the presence of processor failures, a protocol that
achieves this goal is called a distributed consensus protocol [PSL80, Fisc83, SD83, articles
in this book]. Formally, in a system with n processors where each processor i has an initial
local value v;, a protocol achieves consensus if upon termination each processor computes
an n-element vector such that the following two conditions are satisfied:

C1: (Agreement) All correct processors compute a common vector W=(w,,wsy, -, w,);

C2: (Validity) The jth component of the vector is equal to the initial local value of proces-
sor j if j is correct (i.e., w;=v, for each j corresponding to a correct processor).

Typically, the common input value to be used for the computation is obtained by each
processor’s applying the same deterministic function (such as arithmetic mean or median)
to the vector W. This protocol for input dissemination can be easily extended to ensure
that all elements of the consensus vector correspond to input values for the same iteration
of the state machines [Schn82].

The correctness specification for each state machine replica is given as an input-
output relation defined over all possible input vectors W. We assume that each processor is
correctly programmed in the sense that it implements this relation in the absence of
failures. We say that a system is correct if at least ¥ processors generate an output for the
computation that is consistent with the input-output specification. The reliability of a sys-
tem at time 7 is the probability that it is correct at time 7T given that it was initially
correct.

Each of the n processors in the system can be in two states: correct and faulty. Each
processor starts out in the correct state in which its behavior conforms to the specification
encoded as a program. After some time, a processor may fail; thereafter it is called faulty.
Note that “correctness” and “faultiness” are only classifications of the internal state of a
processor. A faulty processor may deviate from its specification. We classify failures
according to the deviations that are permitted.

We assume that the times processors spend in the correct state before becoming faulty
are independent and identically distributed exponential random variables with rate A. In
other words, each processor fails independently of all the others at a common constant
failure rate. The exponential distribution assumption for failure times has been empiri-
cally justified for a large class of components, including electronic hardware, that do not
“age” [SS82]. The independence of failures is typically achieved through physical and
electrical isolation of the processors. Without loss of generality, we assume that A=1 in
the rest of the paper by scaling all time variables in our discussion by 1/\. Since 1/ is the
expected value of an exponential random variable with rate A, the unit of time in our
results is the mean-time-to-failure interval of a single processor. We do not consider the
possibility of repairing faulty processors.

3. Environment Characteristics

The global system structure implied by the methodology presented in the previous sec-
tion is as follows. An application which is not tolerant to processor failures is replicated on
each of the n processors. Each processor reads a value from its local input source. The
ensemble executes a consensus protocol to exchange input values and to agree on the
unique value to be used for the computation. Each processor independently computes the
output corresponding to the input value. If there are sufficiently many processors generat-
ing correct outputs, the system state is correct.

While the computation itself is performed by each processor in isolation, the consensus
protocol requires cooperation among the processors and is highly sensitive to the properties
of the environment in which it is formulated. We survey these properties below.

3.1. Synchrony

We say that a system is synchronous if the relative processor speeds and the network
message delivery delays are bounded and these bounds are known by the processors. A sys-
tem is called completely asynchronous if neither the relative processor speeds nor the mes-
sage delivery delays are bounded. A deterministic protocol is one that takes only

deterministic steps in its computation. Alternatively, a randomized protocol can take com-
putational steps based on non-deterministic events (such as coin tosses). It is known that
the consensus problem has no deterministic solution in completely asynchronous systems in
the presence of even a single failure [FLP85] t. Fortunately, most realistic systems do
exhibit bounded relative processor speeds and message delivery delays. We consider only
synchronous systems in the rest of our discussions.

3.2. Faulty Processor Behavior

Before we can proceed with the design of a fault-tolerant system, we must decide on
an adequate characterization of the behavior of faulty processors. We describe such
behavior as deviations from the protocol that they are supposed to be executing. Based on
this classification, we distinguish three failure models:

1. Crash Failure: A processor stops executing its protocol, never to resume again. Note
that, since the only externally-visible behavior of processors in a distributed system is
the messages they send, a crash failure is equivalent to a processor stopping to send
any more messages. Internally, it could be doing any arbitrary computation (e.g., exe-
cuting an infinite loop).

2. Omission Failure: A processor fails to send some of the messages it is supposed to
send. The messages it does send are always correct.

3. Byzantine (Malicious) Failure: A faulty processor exhibits arbitrary behavior. In par-
ticular, it may send messages not prescribed by its protocol, fail to send others, collude
with other faulty processors to confound the system and behave in any other arbitrary
manner.

While crash failures are more restrictive than omission failures, the two failure
models are equivalent with respect to the consensus problem in the sense that a solution
for one can be transformed into a solution for the other [Hadz84]. For both failure models,
consensus can be achieved in the presence of any number of faulty processors. The lower
and upper bounds for the time complexity of consensus under these fault models coincide at
¢t +1 rounds, where ¢ is the protocol resiliency [Fisc83, Hadz84).

Byzantine failures represent a “non-assumption” about the behavior of faulty proces-
sors. Achieving consensus in the presence of Byzantine processor failures is considerably
more expensive than with the other two failure models. In general, at least 3¢ +1 proces-
sors are required to tolerate up to ¢ faulty ones [SPL80]. Any protocol must execute for at
least ¢ +1 rounds to reach consensus [FL82]. While ¢ +1 rounds is a lower bound, currently
no consensus protocol for Byzantine failures achieves this time complexity while exchang-
ing only a polynomial number of bits.

The reliability of the system when subjected to crash or omission failures is simply
the probability that at least one out of the n processors generates an output at the end of
the computation. In other words, we have the correctness threshold ¥=1. Therefore, the
reliability of a replicated system for these failure models will always be greater than that
of a single processor, independent of the level of replication. On the other hand, the system
reliability in the presence of Byzantine processor failures is given as the probability that
the consensus protocol succeeds and that at least ¥ of the processors remain correct
throughout the computation phase. We will evaluate these expressions in Section 4. Note
that if the desired response from the system is a single output to the external world despite
up to ¢ Byzantine failures, the replicated system cannot have a correctness threshold less

T Recently, Dolev ef al. have given a much finer characterization of the minimal syn-
chrony necessary for the solvability of the consensus problem [DDS87].

than majority (i.e., ¥>¢) and it must rely on a single voter to implement it [GPD84].

3.3. Authentication

The results we presented above are relevant for systems in which a faulty processor
can both undetectably forge messages on behalf of other processors and also tamper with
the contents of messages it is forwarding. If the system supports an authentication
mechanism (such as digital signatures [DH76]), then the undetectable behavior of even
Byzantine processors is severly restricted. In fact, in a system with authentication, a con-
sensus protocol can tolerate any number of Byzantine processor failures [LSP82]. Further-
more, consensus can be reached in ¢ +1 rounds, thus matching the lower bound for time
complexity [DS83].

Let us examine the reliability of the state machine ensemble with authentication and
Byzantine processor failures. While the consensus protocol for input dissemination can
tolerate any number of failures, the correctness of the system can be guaranteed only if the
number of faulty processors by the end of the computation phase represents a minority of
the total number of processors. Unlike crash or omission failures, a processor exhibiting
Byzantine failure can still lie about its own state even with authentication.

3.4. Communication Model

Up to this point, we have assumed that the network used for communication among
processors is a perfectly-reliable, fully-connected point-to-point graph. Even if the network
remains perfectly reliable, we cannot achieve consensus in systems that communicate
through sparsely-connected networks. It is known that the connectivity of the network
must be at least 2¢ +1 without authentication and ¢ +1 with authentication [Dole82].

One simple technique to deal with unreliable network components is to model the
failure of a link between two processors as the failure of one of the processors. While not
requiring any new mechanisms, this technique results in overly-pessimistic designs, since ¢
is now the sum of the number of processor and link failures. More realistic designs can be
obtained by introducing new failure models that explicitly deal with communication
failures [PT86].

Recently, we have studied the time complexity of consensus protocols in systems that
communicate through networks other than point-to-point graphs [BSD87]. A typical archi-
tecture for distributed systems consists of several processor clusters on a common network
in which the intra-cluster communication takes place over a shared, multiple-access media
that support broadcasts [Stal84]. This broadcast network-based architecture encompasses a
wide range of designs. For example, the clusters could represent geographically distant
local area networks connected through gateways (such as the Xerox Internet comprising a
large number of Ethernets [MB76]). Alternatively, each cluster could be a single, tightly-
coupled multiprocessor with an internal bus interconnect and inter-cluster links imple-
mented as bus adaptors.

Regardless of the physical realization of the architecture, we can abstract the behavior
of communication in such systems as follows:

BNP: (Broadcast Network Property) In response to a broadcast, all processors that receive
a message receive the same message.

This property ensures that for all possible failures, a processor cannot send conflicting mes-
sages to other processors in a single broadcast. For a given broadcast network, the set of
processors that receive the (same) message in response to a broadcast is called the receiving
set. The broadcast degree of a network is defined to be a lower bound on the size of the
receiving sets for all broadcasts in the network. The receiving sets may vary from one

broadcast message to another as well as from one sender to another. For a network to have
broadcast degree b, all we require is that each of these sets contain at least b processors.
We assume that every processor receives its own broadcasts regardless of failures. Note
that communication failures manifest themselves in defining a particular broadcast degree
for the network.

Given this framework, we have shown that in a system with n processors where the
broadcast degree is b, consensus can be achieved in 2 rounds in the presence of Byzantine
failures and no authentication as long as b>¢ +n/2 [BD85]. For broadcast degrees smaller
than ¢, achieving consensus in the presence of Byzantine failures requires ¢ +1 rounds, just
as it does in point-to-point networks [BDS87]. For omission failures, the condition b=¢
suffices to achieve a 2-round solution. Furthermore, in the case of omission failures, we
were able to obtain a parametrized solution that achieves consensus in ¢ —b +3 rounds for
any broadcast degree 2<b <t [BDS87]. The networks that are characterized by this range
of broadcast degrees span the entire spectrum from point-to-point graphs to full broadcast
networks. These results reveal a new dimension in the design space of fault-tolerant
systems—performance and resiliency can be traded for network cost and complexity.

4. Design Parameters

Having defined the context in which a fault-tolerant system is to be designed, we next
examine the properties of the resultant system as a function of the choices that are made
for the various design parameters.

4.1. Replication Level

Perhaps the first question that the designer of a fault-tolerant computing system must
answer is: How many times should the state machine be replicated? Although this ques-
tion has economic as well as reliability implications, we will address only the reliability
issues. Recall that if the design specification of the system is given in terms of the resi-
liency (¢), then the characteristics of the external environment dictate the minimum level of
replication. For example, with Byzantine failures and no authentication, n>3¢. If the sys-
tem supports authentication, then n >2¢ If the failures are restricted to crash or omission,
then the replication level need only be one greater than the resiliency (n >¢).

If the design specification of the system is given in terms of reliability, the answer to
the replication level question is not so clear. It is well known that replicated systems can
have worse reliability than their non-replicated counterparts for certain system parameters
[SS82]. Intuitively, as there are more processors in the system due to replication, there are
more sources of failures. Consequently, the probability that enough processors will be
correct arbitrarily late in the computation phase will be smaller than the probability of a
single processor’s being correct.

The reliability of state machine ensembles indeed exhibit this behavior as a function
of the replication level. Let a denote the time required for the system to implement a
round. In Figure 1, we plot the reliability of systems subject to Byzantine failures with
authentication and with various levels of replication and round lengths where the correct-
ness threshold, ¥, is majority. In the figures, m denotes the number of rounds that the con-
sensus protocol is executed to disseminate the input. For the derivations of the expressions
used to generate the figures in this paper, we refer the reader to [Baba87b]. Recall that the
unit of time in our results is the mean-time-to-failure of a single processor. With today’s
technology, it is trivial to achieve mean-time-to-failures for processors in excess of 100
hours. Typically, processor and communication network speeds allow rounds to be realized
in at most several seconds. Consequently, realistic normalized (i.e., after scaling by the
mean-time-to-failure) values for a are of the order 107°. The figures include larger values

n=3,m=2

Reliability

0.2 04 0.6 0.8 1

Computation Time
(a)

n=13,m =5

Reliability

e single

0.2 04 0.6 0.8 1

Computation Time
(b)

Fig. 1. Reliability of state machine ensembles.

for the round length simply to explore as large a design space as possible.

The reliability of the non-replicated design alternative is labeled “single” in the
figures. We note that for different parameter values, there are distinct intervals for the
computation time in which the non-replicated single processor has higher reliability than
the replicated system. In fact, for sufficiently long computation times (perhaps unrealisti-
cally long), the single processor has uniformly higher reliability than the replicated system.
As the replication level is increased, the computation time that delineates highly reliable
systems from highly unreliable systems becomes more sharply defined. We can formally
show that as n - and a—0, the system remains perfectly reliable during computation
times up to In(n/(¥—1)) and is incorrect with certainty for computations that last longer
than this time [Baba87b]. In case of majority threshold, this transition time has the limit
In(2)=0.693. '

4.2. Consensus Protocol Running Time

In a system with n processors and Byzantine failures, an m-round consensus protocol
execution is at least m —1 resilient in the sense that consensus is guaranteed provided
there are no more than m —1 faulty processors (i.e., t<m). Given our model where proces-
sors fail independently according to an exponential distribution, there could be m-round
executions where consensus is achieved despite the fact that protocol resiliency is violated
(e, t=m). In [Baba87a] we characterize such executions and derive expressions for the
probability of their occurrence. Using these results, in this section we will explore the
tradeoffs that are involved in selecting the running time of the input consensus protocol.

All other factors being equal, an (m +1)-round execution has a higher probability of
achieving consensus than an m-round execution. Figure 2a displays the probability with
which an m-round execution achieves consensus in a system with 13 processors and various
round lengths. Note that for small (realistic) values of a, a 2 to 3-round execution defines
the point diminishing returns—the system achieves consensus with high probability for this
execution length and any additional rounds of execution result in negligible gain. How-
ever, for large values of a, each additional round of execution increases the probability of
consensus by a significant amount.

Next we investigate the effect of input consensus protocol execution time on the relia-
bility of a state machine ensemble. Although the consensus protocol itself always benefits
from additional rounds of execution, this benefit is gained at the expense of having fewer
correct processors available for the application computation. Thus, the increase in the pro-
bability of the consensus phase succeeding may be offset by the decrease in the probability
of the system achieving the correctness threshold. Figure 2b is the reliability of a system
with 13 processors as a function of the input consensus protocol running time and various
computation times. When the computation time is short with respect to the consensus
phase, the system reliability increases for up to about 5 rounds of consensus execution and
then starts to decrease. For computation times that are longer, the consensus protocol exe-
cution length that maximizes system reliability becomes shorter. In fact, for sufficiently
long computations, the reliability is a monotone decreasing function of m, suggesting that
the system is better off not wasting its time with consensus and commencing the computa-
tion immediately after a single round of input data exchange.

4.3. Fault Detection

In Section 4.2 we saw that in a system with Byzantine failures, a state machine
ensemble became arbitrarily unreliable after sufficiently long computation times. This is
due to the accumulation of faulty processors in the system such that there comes a time
when the failure of a single additional processor tips the scale away from the correctness

n=13

0.8

Probability
of 0.6 -
Consensus

04|

1 2 3 4 5 6 7 8 9 10 11

Number of Rounds
(a)

n=13, a=0.03

0.8}

Reliability 0.6 |-

04}

02

1 2 3 4 5 6 7 8 9 10 11

Number of Rounds
(b)

Fig. 2. Effect of consensus protocol running time.

10

n =13, «a=0.00001, m1=3

& 0=02,m2=6

Reliability 0.6 |-

04—

0=08m2=10 . - single

02
6=0.1,m2=5

]] l | l
0.2 0.4 0.6 0.8 1

Computation Time

Fig. 3. The effect of fault detection.

threshold. Intuitively, we need to be able to periodically identify the processors that have
failed and remove them from the system.

In this section, we study system reliability in the presence of a protocol that can
detect all processors that have failed by # time units into the application computation and
remove them from the system. In [Baba87b] we discuss methods that are suitable for
implementing such a fault detector based on consensus protocols. In Figure 3 we illustrate
the effect of executing a fault detection protocol # units into the application computation
for a system with 13 processors. The consensus protocol used for input dissemination is
always executed for m 1 rounds (m 1=3 in the example) while that used for fault detection
is executed a variable number of rounds (denoted m 2) depending on the value of §. Note
that the system in Figure 3 has reliabilities similar to those depicted in Figure 1b until
time 7'=6@. At this point, the system maintains its current reliability level for some time
and then resumes deterioration. If fault detection is performed early enough in the compu-
tation, high system reliability can be maintain much longer than is possible without fault
detection. Obviously, the technique could be extended to perform fault detection every 6
units of the computation rather than only once.

5. Conclusions

We have presented the reliability of a fault-tolerant computing system as a metric
that is more suitable than resiliency in evaluating different designs. Not only is the relia-
bility metric more in tune with the design specifications for most applications, it also cap-
tures most of the subtle and counterintuitive interactions between design parameters and
system properties.

We surveyed the implications of external environment characteristics such as failure
models, synchrony, authentication and communication models on fault-tolerant system

11

properties. We then examined the properties of alternative solutions due to design deci-
sions. We showed that increases in the replication level serve to more sharply delineate
computation times that separate highly reliable systems from highly unreliable ones. One
of our counterintuitive results involves selecting the running time of the consensus protocol
that is used to disseminate the inputs to the state machine replicas. For certain system
parameters, we have seen that increasing the protocol running time actually decreases the
overall system reliability. Finally, we have shown that the ability to detect faulty proces-
sors and remove them from the system is extremely effective with respect to reliability.

Our results are a first step towards completing the design methodology for building
fault-tolerant computing systems. Although we were able to evaluate several design
choices individually using the system reliability as the criterion, a realistic design endeavor
has to cope with alternatives resulting from varying several parameters simultaneously.
Furthermore, the evaluation criterion has to include measures other than reliability such
as performance. We feel that our approach is suitable for extension in any one of these
directions.

Acknowledgments

I am grateful to Fred Schneider, Rogério Drummond and Pat Stephenson for discus-
sions that helped me formulate many of the ideas surveyed in this paper. Comments from
Barbara Simons helped improve the presentation.

References

Baba87a 0. Babaoglu, Stopping times of distributed consensus protocols: a probabilistic
analysis. Information Processing Letters, vol. 25, no. 3, pp. 163-169, (May 1987).

Baba87b 0. Babaoglu, On the reliability of consensus-based fault-tolerant distributed com-
puting systems. ACM Trans. on Computer Systems, (to appear).

BD85 0. Babaoglu and R. Drummond, Streets of Byzantium: Network architectures
for fast reliable broadcasts. IEEE Trans. Software Eng., vol. SE-11, no. 6, pp.
546-554, June 1985.

BDS87 0. Babaoglu, R. Drummond and P. Stephenson, Reliable broadcast protocols and
communication models: Tradeoffs and lower bounds. Springer-Verlag Distributed
Computing, (to appear).

DH76 W. Diffie and M. Hellman, New directions in cryptography. IEEE Trans. on Inf.
Theory, vol. IT-22, pp. 644-654, 1976.

Dole82 D. Dolev, The Byzantine Generals strike again. Journal of Algorithms, vol. 3,
no. 1, pp. 14-30, 1982.

DDS87 D. Dolev, C. Dwork and L. Stockmeyer, On the minimal synchronism needed for
distributed consensus. Journal of the ACM, vol. 34, no. 1, pp. 77-97, January
1987.

DS83 D. Dolev and H. R. Strong, Authenticated algorithms for Byzantine Agreement.

12

Fisc83

FL82

FLP85

GPD84

Hadz84

Kim84

Lamp84

MB76
PSL80

PT86

RLT78
Schn82
Schn87
SL85
SS82
Spec84
Stal84

SD83

SIAM J. Comput., vol. 12, no. 4, pp. 656-666, November 1983.

M. J. Fischer, The consensus problem in unreliable distributed systems (A Brief
Survey). Tech. Rep. YALEU-DCS-RR-273, Dept. of Computer Science, Yale
University, New Haven, Connecticut, June 1983.

Fischer, M. and Lynch, N. A lower bound for the time to assure interactive con-
sistency. Inform. Proc. Letters 14, no. 4, pp. 183-186, April 1982.

M.J. Fischer, N.A. Lynch and M.S. Paterson, Impossibility of distributed con-
sensus with one faulty process. Journal of the ACM, vol. 32, no. 2, pp. 374-382,
April 1985.

H. Garcia-Molina, F. Pittelli and S. Davidson, Applications of Byzantine Agree-
ment in database systems. Tech. Rep. TR 316, Princeton University, Princeton,
New Jersey, June 1984.

V. Hadzlacos, Issues of fault tolerance in concurrent computations. Ph.D Thesis,
Tech. Rep. TR-11-84, Aiken Computation Laboratory, Harvard University, Cam-
bridge, Mass., June, 1984.

W. Kim, Highly available systems for database applications. ACM Computing
Surveys, vol. 16, no. 1, pp. 71-98, March 1984.

L. Lamport, Using time instead of timeout for fault-tolerant distributed systems.
ACM Trans. on Programming Languages and Systems, vol. 6, no. 2, pp. 254-280,
April 1984.

R. Metcalfe and D.R. Boggs, Ethernet: Distributed packet switching for local
computer networks. Commun. ACM, vol. 19, no. 7, pp. 396-403, July 1976.

M. Pease, R. Shostak and L. Lamport, Reaching agreement in the presence of
faults. Journal of the ACM, vol. 27, no. 2, pp. 228-234, April 1980.

K.J. Perry and S. Toueg, Distributed agreement in the presence of processor and
communication faults. IEEE Trans. on Software Engineering, vol. SE-12, no. 3,
pp. 477-482, March 1986.

B. Randell, P.A. Lee, and P.C. Treleaven, Reliability issues in computing system
design. ACM Computing Surveys, vol. 10, no. 2, pp. 123-166, June 1978.

F. B. Schneider, Synchronization in distributed programs. ACM Trans. Pro-
gramming Languages and Systems, vol. 4, pp. 125-148, April 1982,

F. B. Schneider, The state machine approach: A tutorial. This volume.

F. B. Schneider and L. Lamport, Paradigms for distributed programs. In Distri-
buted Systems: Methods and Tools for Specification, Paul, M. and Siegert H.J.
(Eds.), Springer-Verlag Lecture Notes in Computer Science Vol. 190.

D. P. Siewiorek and R. S. Swarz, The Theory and Practice of Reliable System
Design. Digital Press, Belford, Mass. (1982).

A. Z. Spector, Computer software for process control. Scientific American, vol.
251, no. 3, pp. 174-187, September 1984.

Stallings, W. Local networks. ACM Computing Surveys, vol. 16, no. 1, pp. 3-41,
March 1984.

H.R. Strong and D. Dolev, Byzantine agreement. In Digest of Papers, Spring
Compcon 83, San Francisco, California, pp. 77-81, March 1983.

13

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif

