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The  Pandore  Data-Para l l e l  Compi ler  
and its Portab le  R u n t i m e  

Franw Andr6, Marc Le Fur, Yves Mah6o, Jean-Louis Pazat* 

IRISA, Campus de Beaulieu, F-35042 Rennes Cedex, FRANCE 

Abs t r ac t .  This paper presents an environment for programming dis- 
tributed memory computers using High Performance Fortran. Emphasis 
is put on compilation techniques and distributed array management. Re- 
sults are shown for some well known numerical algorithms. 

1 I n t r o d u c t i o n  

The difficulty of p rogramming massively parallel architectures with distributed 
memory  is a severe impediment  to the use of these parallel machines. In the past 
few years, we have witnessed a substantial  effort on the part  of researchers to 
define parallel p rogramming paradigms adapted to Distributed Memory Parallel 
Computers (DMPCs). 

Among then J, the Data Parallel model is an interesting approach: the pro- 
g rammer  is provided a familiar uniform logical address space and a sequentiM 
flow of control. He controls the distributed aspect of the computat ion by specify- 
ing the data  distribution over the local memories of the processors. The compiler 
generates code according to the SPMD model and the links between the code 
execution and the data distribution is enforced by the owner-writes rule: each 
processor executes only the s ta tements  that. modify the da ta  assigned to it by 
the distribution. This approach constitutes the basis of several compilers [15, 17] 
and is also applied in the PANDORE compiler. 

This paper  presents the PANDORE environment and focuses on some opti- 
mizations of the compilation scheme and the run-t ime support .  It is organized as 
follows: the next section presents the PANDORE environment.  Section 3 explains 
the compilation process and the optimizations used for parallel nested loops. The 
array management  is described in section 4 and results are discussed in section 
5. Future work and extensions of our system are presented in the conclusion. 

2 T h e  P a n d o r e  E n v i r o n m e n t  

The PANDORE environment is shown in figure 1. It  comprises a compiler, a 
machine-independent run-t ime and execution analysis tools including a profiler 
and a trace generator. The HPF  front-end is built upon a Fortran 90 precompiler 
designed at GMD [11]. The PANDORE run-t ime uses a generic message passing 
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library called POM (Parallel Observable Machine) [8]. This library offers limited 
but efficient services. It allows the same program to run on a wide range of 
distributed memory computers. 

The source language is a subset of High Performance Fortran. IIPF includes 
some "standard" extensions for data  parallelism and data  distribution into the 
Fortran 90 language. They permit to distribute arrays among virtual processor 
arrays. Examples of I tPF programs are shown in section 5, see [7] for a complete 
description of the language. 
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Fig. 1. The PANDORE Environment 

3 T h e  P a n d o r e  C o m p i l e r  

When we designed the compiler, one of our objectives was to build a modular 
and extensible compiler in order to be able to integrate new techniques easily. 
The compiler has been written using the C A M L  language [2] that is a dialect of 
the functional language ML. 

The first prototype of the PhNDORE compiler relied on the well-known run -  

l i m e  r e s o l u l i o n  technique [4] that has been proved correct [3]. This technique 
introduces masks and potential communications at the statement level. Conse- 
quently, it suffers from strong inefficiencies. So an optimized compilation scheme 
handling reductions and parallel loops with one statement has been added to the 
current version. A suitable run-time system completes these compilation tech- 
niques and permits to obtain efficient execution for a reasonably large class of 
programs. 

C o m p i l i n g  R e d u c t i o n s  a n d  P a r a l l e l  Loops .  The compilation scheme is based 
on the decomposition of the arrays into blocks; it performs the restriction of it- 
eration domains and the vectorization of messages. The mapping is taken into 
account at run-time. A complete description can be found in [13]. In this sec- 
tion, we only describe our approach through the following (somewhat contrived) 
example where arrays A and B are partit ioned into 8 blocks numbered from 0 
to 7: 
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A 0 o 0 

2 
Y 
4 
5 
6 

3999 7 

3999 

R E A L ,  D I M E N S I O N ( 0 : 3 9 9 9 , 0 : 3 9 9 9 )  :: A ,B  
!HPF$ PROCESSORS PROCS(P) 
! H P F $  D I S T R I B U T E  ( C Y C L I C ( 5 0 0 ) , * )  O N T O  P R O C S  :: A 
! H P F $  D I S T R I B U T E  (*, C Y C L I C ( 5 0 0 ) )  O N T O  P R O C S  :: B 

D O  I = l ,  1000 
D O  J = l ,  2 " I + 1  

A(I,J-1) = B(J,I+J-2) 
E N D  D O  

E N D  D O  

5OO 
B 0 0 ~ 3999 

! 

3999 IOL I 2 3 4 5 6 

For this parallel nested loop, the compiler produces a SPMD code tha t  comprises 
a communica t ion  par t  followed by a computa t ion  part .  

C o m m u n i c a t i o n  C o d e  G e n e r a t i o n .  First, the compiler performs a symbolic  
analysis on the i teration domMn and the array subscripts, allowing for the par- 
t i t ioning and the layout  of  the arrays, in order to construct  the following sys tem 
of attlne constraints:  

{ 0 < k A _ < 7  1 < i <  1000 u = j  
O<_kB<_7 i < _ _ j < 2 , i + l  v = i + j - 2  

5 0 0 , k A < i <  5 0 0 , ~ + 4 9 9  
5 0 0 , k B < v  < 5 0 0 , ~ + 4 9 9  

tha t  defines the set of vectors (kA, kB, v, u, i, j)  in which the array element 
B(u, v), located in the block number  kB of B, is needed to perform the writings 
on the the block number  kA of A. The  above system of constraints  defines a 
polyhedron P which is then projected along the i, j axis; this results in a new 
polyhedron Pij whose enumera t ion  code can be computed  by one of  the methods  
described in [12, 9, 6]. This yields the nested loop (in pseudo-code):  

f o r M = O ,  2 
f o r  kB = . ~ ( 0 ,  2 �9 ~4 - 1 ) ,  m i ~ ( 5 ,  3 �9 ~4  + 2) 

for  v = max(500 * kB, 1000 * "/cA - 2), rain(500 * kB + 499, 1500 * "kA + 1496) 
for  u = max(div(v + 3, 2), v - 998,-500 * kA -I- v - 497), 

.~ in(d i~(2  �9 ,, + 5, 3),  - 5 0 0  �9 ~ + ,, + 2) 

From this loop, the compiler generates the send code and the dual receive 
code for reference B(j,  i + j - 2). For the send code for instance, the compiler 
inserts send s ta tements  and appropr ia te  masks in the loop so tha t  the mapp ing  
of the blocks is taken into account  at run-t ime:  

for  kA = 0, 2 
i f  myself ~ owner_block(A, kA) 

f o r  ~B = max(O,  2 �9 ~ - 1 ) ,  rain(5,  3 * kA + 2) 
i f  myself = owner_block(B, kB) 

for  v = max(500 * kB, 1000 * kA - 2),  rain(500 * kB + 499, 1500 * kA + 1496) 
R Z R _ ~ e n a  { B ( u ,  v)  / u _> m a ~ ( d ~ ( v  + 3, 2) ,  ~ - 998, - 5 0 0  �9 ~A + ~ - 497)  

<_ m i , , ( d i v ( 2  �9 v + 5, 3 ) , - 5 0 0  �9 ~ + v + 2))  
to  owner_block(A, kA) 
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Although this loop contains masks, it is impor tan t  to notice that these masks 
are evaluated at the block level and not at the iteration vector level as in the run- 
time resolution. Furthermore the (kA, kB)-loop do not scan the whole cartesian 
product 0..7 x 0..7 and the location of the first mask  prevents from enumerating 
all the vectors described by the (kA, kB)-loop. 

From the description of the elements B(u, v) to be sent, the run-t ime li- 
brary routine RLR_send performs several communicat ion optimizations. Direct 
communication is performed when possible: what is transferred in this case is a 
memory  zone that  is contiguous both on the sender and the receiver side, thus 
eliminating any need of coding/decoding or copying between message buffers 
and local memories. Message aggregation is also carried out and reduces the 
effect of latency by grouping small messages into a large message. Finally, the 
redundant communications,  that  may occur when several references to the same 
distributed array appears  in the right hand side, are eliminated. 

C o m p u t a t i o n  C o d e  G e n e r a t i o n .  The SPMD computat ion code is generated 
as follows: the compiler analyzes the iteration domain, the subscripts and the 
array parti t ioning for the reference A(i, j - i )  to synthesize the set of constraints: 

0 < kA< 7 1 < i <  1000 
k A < i < 5 0 0 . . k A + 4 9 9  i < j < 2 , i + l  

that defines the set of vectors (kA, i, j) where iteration vector (i, j) is such that  
reference A ( i , j  - i) writes in block ]cA of A. The enumeration code for the 
polyhedron associated with the previous system is then computed as in the 
communication code generation: 

for kA = 0, 2 
for i = max(500 * kA, 1), rain(500 �9 "kA + 499, 1000) 

f o r j = i ,  2 . i + 1  

From this nested loop, the computat ion code is finally generated by inserting 
an adequate mask so that  the owner-writes rule is ensured at run-time: 

for kA = O, 2 
if  myself = owner_block(A, M) 

for i = max(500 �9 "kA, 1), rain(500 * kA -4- 499, 1000) 
f o r j = i ,  2 . i + 1  

A ( i , j - i )  := B(j,i  + j -  2) 

As in the communicat ion code, one can note that  the number of tests per- 
formed by each processor is very small. First, the mask used to take into account 
the mapping  at run-t ime is introduced at the block level and second, the outer 
M-loop does not scan the whole interval 0..7. 

4 M a n a g e m e n t  S c h e m e  f o r  D i s t r i b u t e d  A r r a y s  

Representation of distributed arrays as well as accesses to elements of these 
arrays is a critical issue for overall performance of the produced code. In the 
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PANDORE environment, arrays are managed by a software paging system. The 
run-time uses the addressing scheme of standard paging systems but is not a vir- 
tual shared memory: the compiler always generates communication when distant 
data are needed, so we do not need to handle page faults. 

The array management is based on the paging of arrays - not of memory: 
tile multi-dimensional index space of each array is linearized and then broken 
into pages. Pages are used to store local blocks and distant data received. If data 
have to be shared by two processors, each processor stores a copy of the page 
(or a part of the page) in its local memory. Array elements are accessed through 
a table of pages allocated on each processor. The compilation technique ensures 
that accessed pages are up to date, hence the consistency between copies of array 
elements does not need to be handled at run-time. 

D e s c r i p t i o n .  To access an element referred to by an index vector ( i0 , . . . ,  i~_ 1) 
in the source program, a page number and an offset (PG and OF) are computed 
from the index vector with the linearization function t; and the page size S: PG = 
C(io,... ,i,~-l) div S, OF = Z;(i0, . . . , i ,~-l)  rood S. For a given distributed 
array, the parameters we tune for paging are the page size S and the linearization 
function L:. Time consuming operations are avoided in the computation of the 
tuple (PG, OF) but also in the evaluation of the flmction t; by introducing powers 
of two, turning integer division, modulo and multiplication into simple logical 
operations (shift, and mask). We first choose the dimension 6 in which the size of 
the blocks is the largest. Function s is the C linearization function applied to a 
permutation of the access vector that puts index number 5 in last position. The 
page size S is then defined by the following (se is the block size in dimension 
5): if s~ is a power of two or dimension 5 is not distributed, S is the smaller 
power of two greater than s~; otherwise S is the largest power of two less than 
s~. Actually, an optimized computation of (PG, OF) is achieved by avoiding the 
explicit computation of the linear address Z;(i0,. . . ,  i,~-1): we express PG and 
OF directly as a function of the index vector, thus, when dimension ~ is not 
distributed, rood and div operations are removed. A more detailed description 
of this array management can be found in [14]. 

Benef i t s .  This management scheme leads to an efficient access mechanism. Ac- 
cess times remain very close to access times without index conversion and may 
be an order of magnitude faster than a "classical" index conversion involving a 
modulo or an integer division. The memory overhead induced by paging does 
not exceed a few percents for most distributions; it is almost entirely due to the 
tables of pages: when a page contains elements that have no equivalent in he 
original sequential space, or when just a part of a distant page is accessed in a 
loop, only a portion a the page is actually allocated. 

Apart from the performance aspects, paging distributed arrays offers several 
worthwhile characteristics. First, the scheme is always applicable. It is also inde- 
pendent of the analysis of the code: it only depends on distribution parameters, 
so no data re-arrangement or extra calculation is needed withing the scope of one 
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distribution even if different loop and access patterns are concerned. The scheme 
is uniform: as far as accesses are concerned, no difference is made between local 
elements and distant elements previously received. Finally, the memory contigu- 
ity is preserved in the direction of the pages: contiguous elements of the original 
array are still contiguous in the local representation, facilitating direct commu- 
nications and exploitation of caches and vector processors. 

To our knowledge, management of distributed arrays have not been studied 
independently of compilation techniques. Several techniques such as the over- 
lap, temporary buffers and hash tables are presently used in existing ItPF-like 
compilers [16, 15, 17]. Although they have not been integrated in complete pro- 
totypes, other techniques that aims at packing local data to decrease memory 
overhead have been proposed [10, 5]. None of these methods gather all the char- 
acteristics discussed above. 

5 E x p e r i m e n t a l  R e s u l t s  

The compilation of several well-known kernels and larger applications have been 
tested with the PANDORE environment. Performance results are shown here for 
three kernels: Cholesky factorization, Matrix-matrix product and Jacobi relax- 
ation; the description of the parallelization of a wave propagation application can 
be found in [1]. The source code of the HPF subroutines are given. Apart from 
the distribution specification, they include minor modifications compared with 
the original sequential code. These modifications are to a large extent aimed at 
taking advantage of collective communications. 

Measurements have been performed on a 32-node iPSC/2.  The presented 
graphs show the speedup against the number processors for several input sizes 
(the indicated number is the value of N).  Speedup is defined as the parallel time 
over the time of the original sequential program measured on one node. The 
obtained eificiencies are satisfactory, ranging from 85% to 95% on 8 processors 
and reaching around 80% on 32 processors for the largest data size. 
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S U B R O U T I N E  JAC, OBI  (B)  
I N T E G E R ,  P A R A M E T E R  :: N = 512 
R E A L ( K I N D = 8 ) ,  D I M E N S I O N ( 0 : N - 1 , 0 : N - 1 )  :: A, B 

!HPF$  P R O C E S S O R S  P R O C S ( 4 )  
! H P F $  D I S T R I B U T E  ( B L O C K ,  *) O N T O  P R O C S  :: A, B 

I N T E G E R  I, J 

D O  J = l ,  N-2 
DO I = l ,  N-2 

A ( I , J )  = 0 .5  * B ( U )  + o . 1 2 5  * 
a (B(I-I,J) + B(I+~,J) + B(I,J-1)+ B0,J+~)) 

E N D  D O  
E N D  D O  

B( I :N-2 ,  1:N-2)  = A ( I : N - 2 ,  l :N-2 )  
E N D  S U B R O U T I N E  J A C O B I  
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S U B R O U T I N E  M A T P R O D  (A,B,C) 
I N T E G E R ,  P A R A M E T E R  :: N = 5 1 2  
R E A L ( K I N D = 8 ) ,  DIMENSION(0:N-1 ,0 :N-1)  :: A, B, C 

!HPF$ P R O C E S S O R S  PROCS(4)  
! H P F $  D I S T R I B U T E  (BLOCK,  *) ONTO P R O C S  :: A, C 
! H P F $  D I S T R I B U T E  (*, B L O C K )  ONTO P R O C S  :: B 

I N T E G E R  I,J,K 
R E A L  (KIND=8) ,  D I M E N S I O N  (0:N-I)  :: COLJ  

C(0:N-I ,0 :N-1)  = 0 . 0  
DO J = 0 ,  N-1 

COLJ  = B(0 :N- I , J )  
DO I=0 ,  N-1 

DO K=0 ,  N-i  
(2(i,J) .-= C(1,J) + A(I ,K) * C O L J ( K )  

END DO 
END DO 

END DO 
END S U B R O U T I N E  MATPP~OD 
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Cholesky Factorization 
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S U B R O U T I N E  C H O L E S K Y  (A) 
I N T E G E R ,  P A R A M E T E R  :: N = 5 1 2  
R E A L ( K I N D = S ) ,  DIMENSION(0:N-1 ,0 :N-1)  :: A 

!HPF$ P R O C E S S O R S  P R O C S ( 4 )  
!HPF$ D I S T R I B U T E  (*, C Y C L I C )  ONTO P R O C S  :: A 

I N T E G E R  I,J ,K 
R E A L  ( K I N D = 8 ) ,  D I M E N S I O N  (0:N-I )  :: COLK 

DO K=0,  N-1 
A(K,K)  = SQRT(A(K,K) )  
DO J=Kq-1 ,  N-1 

A(J ,K)  = A(J ,K)  / A(K,K)  
END DO 
C O L K ( K + I : N - 1 )  = A ( K T I : N - 1 , K )  
DO J=K-t-1,  N-1 

DO I = J ,  N-1 
h ( I , J )  = i ( l , a )  - COLK(I )  * C, OLK(J )  

END DO 
END DO 

END DO 
END S U B R O U T I N E  C H O L E S K Y  

6 C o n c l u s i o n  

Thanks to the above described optimization techniques, the performances ob- 
tained on a series of numerical applications are already quite satisfactory even 
though enhancements can be made along several axis. For example, taking the 
mapping of the blocks into account at compile time will allow us to suppress 
masks in the loops generated in the communication and the computation codes. 
Moreover, we plan to enlarge the subset of HPF compiled, especially by adding 
alignments and nested subroutines calls. 

To handle very large applications, in particular applications that comprise 
multiple modules or necessitate intensive I/O, other techniques must be inte- 
grated to the existing environment. For this purpose, the joint study of redis- 
tribution, procedures and separate compilation is under way in the PANDOgE 
project. 
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We th ink  t ha t  these improvemen t s  will con t r ibu te  to a be t t e r  m a t u r i t y  for 
d a t a  para l le l  compi le rs  and so a u t o m a t i c  code genera t ion  for d i s t r ibu ted  mem-  
ory para l l e l  a rch i tec tures  will become a rea l i s t ic  means  of p r o g r a m m i n g  these 
a rch i tec tures  for app l i ca t ion  users. 
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