
HAL Id: hal-00426648
https://hal.science/hal-00426648

Submitted on 27 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Pandore Data Parallel Compiler and its Portable
Runtime

Françoise André, Marc Le Fur, Yves Mahéo, Jean-Louis Pazat

To cite this version:
Françoise André, Marc Le Fur, Yves Mahéo, Jean-Louis Pazat. The Pandore Data Parallel Compiler
and its Portable Runtime. International Conference on High-Performance Computing and Networking
(HPCN’95), May 1995, Milan, Italy. pp.176-183, �10.1007/BFb0046600�. �hal-00426648�

https://hal.science/hal-00426648
https://hal.archives-ouvertes.fr

The Pandore Data-Para l l e l Compi ler
and its Portab le R u n t i m e

Franw Andr6, Marc Le Fur, Yves Mah6o, Jean-Louis Pazat*

IRISA, Campus de Beaulieu, F-35042 Rennes Cedex, FRANCE

Abs t r ac t . This paper presents an environment for programming dis-
tributed memory computers using High Performance Fortran. Emphasis
is put on compilation techniques and distributed array management. Re-
sults are shown for some well known numerical algorithms.

1 I n t r o d u c t i o n

The difficulty of p rogramming massively parallel architectures with distributed
memory is a severe impediment to the use of these parallel machines. In the past
few years, we have witnessed a substantial effort on the part of researchers to
define parallel p rogramming paradigms adapted to Distributed Memory Parallel
Computers (DMPCs).

Among then J, the Data Parallel model is an interesting approach: the pro-
g rammer is provided a familiar uniform logical address space and a sequentiM
flow of control. He controls the distributed aspect of the computat ion by specify-
ing the data distribution over the local memories of the processors. The compiler
generates code according to the SPMD model and the links between the code
execution and the data distribution is enforced by the owner-writes rule: each
processor executes only the s ta tements that. modify the da ta assigned to it by
the distribution. This approach constitutes the basis of several compilers [15, 17]
and is also applied in the PANDORE compiler.

This paper presents the PANDORE environment and focuses on some opti-
mizations of the compilation scheme and the run-t ime support . It is organized as
follows: the next section presents the PANDORE environment. Section 3 explains
the compilation process and the optimizations used for parallel nested loops. The
array management is described in section 4 and results are discussed in section
5. Future work and extensions of our system are presented in the conclusion.

2 T h e P a n d o r e E n v i r o n m e n t

The PANDORE environment is shown in figure 1. It comprises a compiler, a
machine-independent run-t ime and execution analysis tools including a profiler
and a trace generator. The HPF front-end is built upon a Fortran 90 precompiler
designed at GMD [11]. The PANDORE run-t ime uses a generic message passing

* E-mail: pandore(~irisa.fr

:: : ' r t$ir

s ~iii~!~ i i!ii!ii!i:

library called POM (Parallel Observable Machine) [8]. This library offers limited
but efficient services. It allows the same program to run on a wide range of
distributed memory computers.

The source language is a subset of High Performance Fortran. IIPF includes
some "standard" extensions for data parallelism and data distribution into the
Fortran 90 language. They permit to distribute arrays among virtual processor
arrays. Examples of I tPF programs are shown in section 5, see [7] for a complete
description of the language.

177

Fig. 1. The PANDORE Environment

3 T h e P a n d o r e C o m p i l e r

When we designed the compiler, one of our objectives was to build a modular
and extensible compiler in order to be able to integrate new techniques easily.
The compiler has been written using the C A M L language [2] that is a dialect of
the functional language ML.

The first prototype of the PhNDORE compiler relied on the well-known run -

l i m e r e s o l u l i o n technique [4] that has been proved correct [3]. This technique
introduces masks and potential communications at the statement level. Conse-
quently, it suffers from strong inefficiencies. So an optimized compilation scheme
handling reductions and parallel loops with one statement has been added to the
current version. A suitable run-time system completes these compilation tech-
niques and permits to obtain efficient execution for a reasonably large class of
programs.

C o m p i l i n g R e d u c t i o n s a n d P a r a l l e l Loops . The compilation scheme is based
on the decomposition of the arrays into blocks; it performs the restriction of it-
eration domains and the vectorization of messages. The mapping is taken into
account at run-time. A complete description can be found in [13]. In this sec-
tion, we only describe our approach through the following (somewhat contrived)
example where arrays A and B are partit ioned into 8 blocks numbered from 0
to 7:

178

A 0 o 0

2
Y
4
5
6

3999 7

3999

R E A L , D I M E N S I O N (0 : 3 9 9 9 , 0 : 3 9 9 9) :: A ,B
!HPF$ PROCESSORS PROCS(P)
! H P F $ D I S T R I B U T E (C Y C L I C (5 0 0) , *) O N T O P R O C S :: A
! H P F $ D I S T R I B U T E (*, C Y C L I C (5 0 0)) O N T O P R O C S :: B

D O I = l , 1000
D O J = l , 2 " I + 1

A(I,J-1) = B(J,I+J-2)
E N D D O

E N D D O

5OO
B 0 0 ~ 3999

!

3999 IOL I 2 3 4 5 6

For this parallel nested loop, the compiler produces a SPMD code tha t comprises
a communica t ion par t followed by a computa t ion part .

C o m m u n i c a t i o n C o d e G e n e r a t i o n . First, the compiler performs a symbolic
analysis on the i teration domMn and the array subscripts, allowing for the par-
t i t ioning and the layout of the arrays, in order to construct the following sys tem
of attlne constraints:

{ 0 < k A _ < 7 1 < i < 1000 u = j
O<_kB<_7 i < _ _ j < 2 , i + l v = i + j - 2

5 0 0 , k A < i < 5 0 0 , ~ + 4 9 9
5 0 0 , k B < v < 5 0 0 , ~ + 4 9 9

tha t defines the set of vectors (kA, kB, v, u, i, j) in which the array element
B(u, v), located in the block number kB of B, is needed to perform the writings
on the the block number kA of A. The above system of constraints defines a
polyhedron P which is then projected along the i, j axis; this results in a new
polyhedron Pij whose enumera t ion code can be computed by one of the methods
described in [12, 9, 6]. This yields the nested loop (in pseudo-code):

f o r M = O , 2
f o r kB = . ~ (0 , 2 �9 ~4 - 1) , m i ~ (5 , 3 �9 ~4 + 2)

for v = max(500 * kB, 1000 * "/cA - 2), rain(500 * kB + 499, 1500 * "kA + 1496)
for u = max(div(v + 3, 2), v - 998,-500 * kA -I- v - 497),

.~ in(d i~(2 �9 ,, + 5, 3), - 5 0 0 �9 ~ + ,, + 2)

From this loop, the compiler generates the send code and the dual receive
code for reference B(j, i + j - 2). For the send code for instance, the compiler
inserts send s ta tements and appropr ia te masks in the loop so tha t the mapp ing
of the blocks is taken into account at run-t ime:

for kA = 0, 2
i f myself ~ owner_block(A, kA)

f o r ~B = max(O, 2 �9 ~ - 1) , rain(5, 3 * kA + 2)
i f myself = owner_block(B, kB)

for v = max(500 * kB, 1000 * kA - 2), rain(500 * kB + 499, 1500 * kA + 1496)
R Z R _ ~ e n a { B (u , v) / u _> m a ~ (d ~ (v + 3, 2) , ~ - 998, - 5 0 0 �9 ~A + ~ - 497)

<_ m i , , (d i v (2 �9 v + 5, 3) , - 5 0 0 �9 ~ + v + 2))
to owner_block(A, kA)

179

Although this loop contains masks, it is impor tan t to notice that these masks
are evaluated at the block level and not at the iteration vector level as in the run-
time resolution. Furthermore the (kA, kB)-loop do not scan the whole cartesian
product 0..7 x 0..7 and the location of the first mask prevents from enumerating
all the vectors described by the (kA, kB)-loop.

From the description of the elements B(u, v) to be sent, the run-t ime li-
brary routine RLR_send performs several communicat ion optimizations. Direct
communication is performed when possible: what is transferred in this case is a
memory zone that is contiguous both on the sender and the receiver side, thus
eliminating any need of coding/decoding or copying between message buffers
and local memories. Message aggregation is also carried out and reduces the
effect of latency by grouping small messages into a large message. Finally, the
redundant communications, that may occur when several references to the same
distributed array appears in the right hand side, are eliminated.

C o m p u t a t i o n C o d e G e n e r a t i o n . The SPMD computat ion code is generated
as follows: the compiler analyzes the iteration domain, the subscripts and the
array parti t ioning for the reference A(i, j - i) to synthesize the set of constraints:

0 < kA< 7 1 < i < 1000
k A < i < 5 0 0 . . k A + 4 9 9 i < j < 2 , i + l

that defines the set of vectors (kA, i, j) where iteration vector (i, j) is such that
reference A (i , j - i) writes in block]cA of A. The enumeration code for the
polyhedron associated with the previous system is then computed as in the
communication code generation:

for kA = 0, 2
for i = max(500 * kA, 1), rain(500 �9 "kA + 499, 1000)

f o r j = i , 2 . i + 1

From this nested loop, the computat ion code is finally generated by inserting
an adequate mask so that the owner-writes rule is ensured at run-time:

for kA = O, 2
if myself = owner_block(A, M)

for i = max(500 �9 "kA, 1), rain(500 * kA -4- 499, 1000)
f o r j = i , 2 . i + 1

A (i , j - i) := B(j,i + j - 2)

As in the communicat ion code, one can note that the number of tests per-
formed by each processor is very small. First, the mask used to take into account
the mapping at run-t ime is introduced at the block level and second, the outer
M-loop does not scan the whole interval 0..7.

4 M a n a g e m e n t S c h e m e f o r D i s t r i b u t e d A r r a y s

Representation of distributed arrays as well as accesses to elements of these
arrays is a critical issue for overall performance of the produced code. In the

180

PANDORE environment, arrays are managed by a software paging system. The
run-time uses the addressing scheme of standard paging systems but is not a vir-
tual shared memory: the compiler always generates communication when distant
data are needed, so we do not need to handle page faults.

The array management is based on the paging of arrays - not of memory:
tile multi-dimensional index space of each array is linearized and then broken
into pages. Pages are used to store local blocks and distant data received. If data
have to be shared by two processors, each processor stores a copy of the page
(or a part of the page) in its local memory. Array elements are accessed through
a table of pages allocated on each processor. The compilation technique ensures
that accessed pages are up to date, hence the consistency between copies of array
elements does not need to be handled at run-time.

D e s c r i p t i o n . To access an element referred to by an index vector (i0 , . . . , i~_ 1)
in the source program, a page number and an offset (PG and OF) are computed
from the index vector with the linearization function t; and the page size S: PG =
C(io,... ,i,~-l) div S, OF = Z;(i0, . . . , i ,~-l) rood S. For a given distributed
array, the parameters we tune for paging are the page size S and the linearization
function L:. Time consuming operations are avoided in the computation of the
tuple (PG, OF) but also in the evaluation of the flmction t; by introducing powers
of two, turning integer division, modulo and multiplication into simple logical
operations (shift, and mask). We first choose the dimension 6 in which the size of
the blocks is the largest. Function s is the C linearization function applied to a
permutation of the access vector that puts index number 5 in last position. The
page size S is then defined by the following (se is the block size in dimension
5): if s~ is a power of two or dimension 5 is not distributed, S is the smaller
power of two greater than s~; otherwise S is the largest power of two less than
s~. Actually, an optimized computation of (PG, OF) is achieved by avoiding the
explicit computation of the linear address Z;(i0,. . . , i,~-1): we express PG and
OF directly as a function of the index vector, thus, when dimension ~ is not
distributed, rood and div operations are removed. A more detailed description
of this array management can be found in [14].

Benef i t s . This management scheme leads to an efficient access mechanism. Ac-
cess times remain very close to access times without index conversion and may
be an order of magnitude faster than a "classical" index conversion involving a
modulo or an integer division. The memory overhead induced by paging does
not exceed a few percents for most distributions; it is almost entirely due to the
tables of pages: when a page contains elements that have no equivalent in he
original sequential space, or when just a part of a distant page is accessed in a
loop, only a portion a the page is actually allocated.

Apart from the performance aspects, paging distributed arrays offers several
worthwhile characteristics. First, the scheme is always applicable. It is also inde-
pendent of the analysis of the code: it only depends on distribution parameters,
so no data re-arrangement or extra calculation is needed withing the scope of one

1 8 1

distribution even if different loop and access patterns are concerned. The scheme
is uniform: as far as accesses are concerned, no difference is made between local
elements and distant elements previously received. Finally, the memory contigu-
ity is preserved in the direction of the pages: contiguous elements of the original
array are still contiguous in the local representation, facilitating direct commu-
nications and exploitation of caches and vector processors.

To our knowledge, management of distributed arrays have not been studied
independently of compilation techniques. Several techniques such as the over-
lap, temporary buffers and hash tables are presently used in existing ItPF-like
compilers [16, 15, 17]. Although they have not been integrated in complete pro-
totypes, other techniques that aims at packing local data to decrease memory
overhead have been proposed [10, 5]. None of these methods gather all the char-
acteristics discussed above.

5 E x p e r i m e n t a l R e s u l t s

The compilation of several well-known kernels and larger applications have been
tested with the PANDORE environment. Performance results are shown here for
three kernels: Cholesky factorization, Matrix-matrix product and Jacobi relax-
ation; the description of the parallelization of a wave propagation application can
be found in [1]. The source code of the HPF subroutines are given. Apart from
the distribution specification, they include minor modifications compared with
the original sequential code. These modifications are to a large extent aimed at
taking advantage of collective communications.

Measurements have been performed on a 32-node iPSC/2. The presented
graphs show the speedup against the number processors for several input sizes
(the indicated number is the value of N). Speedup is defined as the parallel time
over the time of the original sequential program measured on one node. The
obtained eificiencies are satisfactory, ranging from 85% to 95% on 8 processors
and reaching around 80% on 32 processors for the largest data size.

32

24

16

Jacobi
: I I I I

- 2 6o : y "

- lO24 - - -

0 8 16 24 32

S U B R O U T I N E JAC, OBI (B)
I N T E G E R , P A R A M E T E R :: N = 512
R E A L (K I N D = 8) , D I M E N S I O N (0 : N - 1 , 0 : N - 1) :: A, B

!HPF$ P R O C E S S O R S P R O C S (4)
! H P F $ D I S T R I B U T E (B L O C K , *) O N T O P R O C S :: A, B

I N T E G E R I, J

D O J = l , N-2
DO I = l , N-2

A (I , J) = 0 .5 * B (U) + o . 1 2 5 *
a (B(I-I,J) + B(I+~,J) + B(I,J-1)+ B0,J+~))

E N D D O
E N D D O

B(I :N-2 , 1:N-2) = A (I : N - 2 , l :N-2)
E N D S U B R O U T I N E J A C O B I

1 8 2

32

24

16

Matrix-matrix product
I I I I

256 o
512 o

-to24 / / S

0 8 16 24 32

S U B R O U T I N E M A T P R O D (A,B,C)
I N T E G E R , P A R A M E T E R :: N = 5 1 2
R E A L (K I N D = 8) , DIMENSION(0:N-1 ,0 :N-1) :: A, B, C

!HPF$ P R O C E S S O R S PROCS(4)
! H P F $ D I S T R I B U T E (BLOCK, *) ONTO P R O C S :: A, C
! H P F $ D I S T R I B U T E (*, B L O C K) ONTO P R O C S :: B

I N T E G E R I,J,K
R E A L (KIND=8) , D I M E N S I O N (0:N-I) :: COLJ

C(0:N-I ,0 :N-1) = 0 . 0
DO J = 0 , N-1

COLJ = B(0 :N- I , J)
DO I=0 , N-1

DO K=0 , N-i
(2(i,J) .-= C(1,J) + A(I ,K) * C O L J (K)

END DO
END DO

END DO
END S U B R O U T I N E MATPP~OD

32

24

16

Cholesky Factorization

I I I I

- 2 5 6 0 / -
5 1 2 o 1 7

-t024 /

0 8 16 24 32

S U B R O U T I N E C H O L E S K Y (A)
I N T E G E R , P A R A M E T E R :: N = 5 1 2
R E A L (K I N D = S) , DIMENSION(0:N-1 ,0 :N-1) :: A

!HPF$ P R O C E S S O R S P R O C S (4)
!HPF$ D I S T R I B U T E (*, C Y C L I C) ONTO P R O C S :: A

I N T E G E R I,J ,K
R E A L (K I N D = 8) , D I M E N S I O N (0:N-I) :: COLK

DO K=0, N-1
A(K,K) = SQRT(A(K,K))
DO J=Kq-1 , N-1

A(J ,K) = A(J ,K) / A(K,K)
END DO
C O L K (K + I : N - 1) = A (K T I : N - 1 , K)
DO J=K-t-1, N-1

DO I = J , N-1
h (I , J) = i (l , a) - COLK(I) * C, OLK(J)

END DO
END DO

END DO
END S U B R O U T I N E C H O L E S K Y

6 C o n c l u s i o n

Thanks to the above described optimization techniques, the performances ob-
tained on a series of numerical applications are already quite satisfactory even
though enhancements can be made along several axis. For example, taking the
mapping of the blocks into account at compile time will allow us to suppress
masks in the loops generated in the communication and the computation codes.
Moreover, we plan to enlarge the subset of HPF compiled, especially by adding
alignments and nested subroutines calls.

To handle very large applications, in particular applications that comprise
multiple modules or necessitate intensive I/O, other techniques must be inte-
grated to the existing environment. For this purpose, the joint study of redis-
tribution, procedures and separate compilation is under way in the PANDOgE
project.

183

We th ink t ha t these improvemen t s will con t r ibu te to a be t t e r m a t u r i t y for
d a t a para l le l compi le rs and so a u t o m a t i c code genera t ion for d i s t r ibu ted mem-
ory para l l e l a rch i tec tures will become a rea l i s t ic means of p r o g r a m m i n g these
a rch i tec tures for app l i ca t ion users.

R e f e r e n c e s

1. F. Andre, M. Le Fur, Y. Mah~o, and J.-L. Pazat. Parallelization of a Wave Prop-
agation Appfication using a Data Parallel Compiler. In IPPS '95, Santa Barbara,
Cafifornia, April 1995.

2~ M.V. Aponte, A. Lavaille, Mo Mauny, A. Suarez, and P. Weis. The CAML Refer-
ence Manual. Technical Report 121, INRIA, September 1990.

3. (I. Bareau, B. Caillaud, C. Jard, and R. ThoravM. Correctness of Automated
Distribution of Sequential Programs. Research Report 665, IRISA, France, June
1992.

4. D. Calahan and K. Kennedy. Compiling Programs for Distributed Memory Mul-
tiprocessors. The Journal of Supercomputing, 2:151-169, October 1988.

5. S. C, hatterjee, J.R. Gilbert, F.J.E. Schreiber, and S.H. Teng. Generating Local
Adresses and Communication Sets for Data-Parallel Program. In The Fourth
A CM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
pages 149 158, July 1993.

6. J.F. Collard, P. Feautrier, and T. Risset. Construction of DO Loops from Systems
of A]jine Constraints. Research Report 93-15, LIP, Lyon, France, 1993.

7. High Performance Fortran Forum. High Performance Fortran Language Specifica-
tion. Technical Report Version 1.0, Rice University, May 1993.

8. F. Guidec and Y. Mah~o. POM: a Virtual Parallel Machine Featuring Observation
Mechanisms. Research Report 902, IRISA, France, January 1995.

9. F. Irigoin and C. Ancourt. Scanning Polyhedra with DO Loops. In Third
A CM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
pages 39 50, April 1991.

10. F. Irigoin, C. Ancourt, F. Coelho, and R. Keryell. A Linear Algebra Framework
for Static HPF Code Distribution. In International Workshop on Compilers for
Parallel Computers, December 1993.

11. L. Jerid, F. Andre, O. Charon, J.-L. Pazat, and T. Ernst. HPF to C-Pandore
Translator. Technical Report 2283, INRIA, France, May 1994.

12. M. Le Fur. Parcours de poly~dre paramdtrd avec l'dlimination de Fourier'Motzkin.
Research Report 858, IRISA, Rennes, France, September 1994.

13. M. Le Fur, J.L. Pazat, and F. Andr& Static Domain Analysis for Compiling Com-
mutative Loop Nests. Research Report 2067, INRIA, France, October 1993.

14. Y. Mah6o and J.-L. Pazat. Distributed Array Management for HPF Compilers.
Research Report 2156, INR[A, France, December 1993.

15. C.W. Tseng. An Optimizing Fortran D Compiler for MIMD Distributed-Memory
Machines. PhD thesis, Rice University, January 1993.

16. H. P. Zima, t t .-J. Bast, and M. Gerndt. SUPERB: A Tool for Semi-Automatic
MIMD/SIMD ParMlelization. Parallel Computing, (6):1-18, 1988.

17. H. P. Zima and B. M. Chapman. Compiling for Distributed-Memory Systems. Re-
search Report A P C P / T R 92-17, Austrian Center for Parallel Computation, Uni-
versity of Vienna, November 1992.

