
[21] M. Sch�a�ter, Drawing Graphs on Rectangular Grids with at most 2 Bends
per Edge, Discr. Appl. Math. (to appear), preliminary version available via
WWW from http://winnie.math.tu-berlin.de/�shefta.

[22] J. Storer, On minimal node-cost planar embeddings, Networks 14 (1984),
pp. 181{212.

[23] R. Tamassia, On embedding a graph in the grid with the minimum number
of bends, SIAM J. Comput. 16 (1987), pp. 421-444.

[24] R. Tamassia, and I.G. Tollis, E�cient embedding of planar graphs in linear
time, Proc. IEEE Int. Symp. on Circuits and Systems, Philadelphia, pp.
495{498, 1987.

[25] R. Tamassia, I.G. Tollis, and J.S. Vitter, Lower bounds for planar orthog-
onal drawings of graphs, Inf. Proc. Letters 39 (1991), pp. 35{40.

[26] L.G. Valiant, On non-linear lower bounds in computational complexity,
Proc. 7th Symp. on Theory of Computing, 1975, pp. 45{53.

17



[5] P.F. Dietz, and D.D. Sleator, Two algorithms for maintaining order in a
list, in: Proc. 19th Annual ACM Symp. Theory of Computing, 1987, pp.
365{372.

[6] S. Even, and G. Granot, Rectilinear Planar Drawings with Few Bends in
Each Edge, Manuscript, Faculty of Comp. Science, the Technion, Haifa
(Israel), 1993.

[7] S. Even, and R.E. Tarjan, Computing an st-numbering, Theoretical Comp.
Science 2 (1976), pp. 436{441.

[8] M. Formann, and F. Wagner, The VLSI layout problem in various embed-
ding models, Graph-Theoretic Concepts in Comp. Science (16th Workshop
WG'90), Springer-Verlag, Berlin/Heidelberg, 1992, pp. 130{139.

[9] A. Garg, and R. Tamassia, On the Computational Complexity of Upward
and Rectilinear Planarity Testing, Proc. Graph Drawing '94, Lecture Notes
in Comp. Science 894, Springer-Verlag, 1995, pp. 286{297.

[10] G. Kant, Drawing planar graphs using the lmc-ordering, Extended Ab-
stract in: Proc. 33th Ann. IEEE Symp. on Found. of Comp. Science, Pitts-
burgh, 1992, pp. 101-110. Extended and revised version to appear in Algo-
rithmica, special issue on Graph Drawing.

[11] M.R. Kramer, and J. van Leeuwen, The complexity of wire routing and
�nding minimum area layouts for arbitrary VLSI circuits, Advances in
Computer Research, Vol. 2: VLSI Theory, F.P. Preparata (Ed.), JAI Press,
Reading, MA, 1992, pp. 129{146.

[12] Th. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout,
Teubner/Wiley & Sons, Stuttgart/Chichester, 1990.

[13] F.T. Leighton, New Lower Bounds Techniques for VLSI, Proc. 22nd Ann.
IEEE Symp. on Found. of Comp. Science 1981, pp. 1-12

[14] C.E. Leiserson, Area-e�cient graph layouts (for VLSI-Design), Proc. 21st
Ann. IEEE Symp. on Found. of Comp. Science 1980, pp. 270-281

[15] A. Lempel, S. Even, and I. Cederbaum, An algorithm for planarity testing
of graphs, Theory of Graphs, Int. Symp. Rome (1966), pp. 215{232.

[16] Y. Liu, P. Marchioro, and R. Petreschi, At most single-bend embeddings
of cubic graphs, Applied Mathematics, 1994, to appear.

[17] Y. Liu, P. Marchioro, R. Petreschi, and B. Simeone, Theoretical Results on
at most 1-bend embeddability of Graphs, Tech. Report, Dept. of Statistics,
University \La Sapienza" Roma, 1990.

[18] Y. Liu, A. Morgana, and B. Simeone, A Linear Algorithm for 3-Bend
Embeddings of Planar Graphs in the Grid, Manuscript, University \La
Sapienza", Rome, 1994

[19] A. Papakostas, and I.G. Tollis, Improved algorithms and bounds for orthog-
onal drawings, Proc. Graph Drawing '94, Lecture Notes in Comp. Science
894, Springer-Verlag, 1995, pp. 40{51. A revised version is in progress.

[20] P. Rosenstiehl, and R.E. Tarjan, Rectilinear planar layouts and bipolar
orientations of planar graphs, Discr. and Comp. Geometry 1 (1986), pp.
343{353.

16



We end this paper by mentioning some open problems and directions for
further research:

� Valiant proved that a grid-area of 
(n2) is necessary for drawing non-
planar graphs, since the crossing number can be 
(n2) [26]. However, the
involved constants are very small. For planar graphs (crossing number 0)
a drawing with grid-area O(n log2 n) is possible [14, 26], and the best
known lower bound is 
(n logn) [13]. Are there lower bounds with bigger
constants, and can a trade-o� between grid-area and crossing number be
made?

� Lower bounds on the number of bends, as presented in [25] for instance,
are not transferable to non-planar drawings. We managed to �nd a class
of simple biconnected graphs which need at least 10

6 n bends in any or-
thogonal drawing [1]. Is there something better?

� Storer [22] gave embedded 4-planar graphs requiring an (n� 2)� (n� 2)
grid. Tamassia, Tollis & Vitter [25] proved that there exist embedded 4-
planar graphs requiring 2n� 2 bends, and their graph in fact requires an
(n � 1)� (n � 1)-grid. However, when changing the embedding, a lower
number of bends and a smaller grid can be obtained. The graph of [25]
requires an (n�3)� (n2 �1)-grid and 2n�4 bends in any embedding, but
it is unclear what the precise lower bounds are for orthogonal drawings
of non-embedded 4-planar graphs.

� Very recently, Papakostas & Tollis [19] presented an algorithm for drawing
non-planar connected 4-graphs with 1:9n bends on a grid of size 0:8n2,
hence an improvement of our results. However, the proof of the crucial
Lemma 3 seems to be wrong, as shown in [1]. The natural question is to
prove this theorem, and to improve these bounds.

References

[1] T. Biedl, Orthogonal Graph Drawings, Diplomarbeit, Fachbereich Mathe-
matik, Technische Univ. Berlin, 1995, to appear, Preliminary version also
availabe via WWW from http://new-rutcor.rutgers.edu/�therese

[2] N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa, A linear algorithm for
embedding planar graphs using PQ-trees, J. of Comp. and System Sciences
30 (1985), pp. 54{76.

[3] G. Di Battista, P. Eades, R. Tamassia, and I.G. Tollis, Algorithms for
Automatic Graph Drawing: An Annotated Bibliography, to appear in
Comp. Geom.: Theory and Applications, Preliminary version also avail-
able via anonymous ftp from wilma.cs.brown.edu (128.148.33.66), �les
/pub/gdbiblio.tex.Z and /pub/gdbiblio.ps.Z.

[4] G. Di Battista, G. Liotta, and F. Vargiu, Spirality of orthogonal rep-
resentations and optimal drawings of series-parallel graphs and 3-planar
graphs, Proc. Workshop on Algorithms and Data Structures, Lecture Notes
in Comp. Science 709, Springer-Verlag, 1993, pp. 151{162.

15



7 Conclusion

In this paper we have considered the problem of orthogonal drawings of graphs.
A general linear time algorithm has been presented to construct an orthogonal
representation of a connected graph. The results are summarized in the following
table, where all results not proved here can be found in [1]. Our results are a
big improvement for non-planar graphs and for non-biconnected planar graphs.

Gridsize & Bends Non-planar Planar

Simple

Biconnected

4-regular n� n n � n

2n+ 2 2n+ 2

m = 2n� 1 (n� 1)� (n� 1) (n� 1)� (n� 1)

2n� 1 2n� 1

m � 2n� 2 (n� 2)� (n� 2) (n� 1)� (n� 1)

m� 2 m� 1

(m� n + 2)� (n� 2) (m� n + 1)� (n� 1)

2m� 2n+ 2 2m� 2n+ 3

Not Biconn.

4-regular (n� 1)� (n� 1) (n� 1)� (n� 1)

2n 2n

m � 2n� 1 (n� 1)� (n� 1) (n� 1)� (n� 1)

2n� 1 2n� 1

No Loops

Biconnected

4-regular (n+ 1)� (n+ 1) (n+ 1)� (n+ 1)

2n+ 4 2n+ 4

m = 2n� 1 n� n n � n

2n+ 1 2n+ 1

m � 2n� 2 (m� n + 1)� (n� 1) (m� n+ 1)� n

2m� 2n+ 2 2m� 2n+ 3

Not Biconn. (43n� 1)� (43n� 1) (32n � 1)� (32n � 1)
8
3n 3n

Non-simple (2n� 1)� (2n� 1) (2n� 1)� (2n� 1)

4n 4n

Table 1: Overview of the achieved bounds.

In our algorithm the 3-bent edge only occurs for the octahedron. Even &
Granot [6] proved that this graph indeed requires a 3-bent edge. Hence the
octahedron is the only 4-graph which cannot be drawn with at most two bends
per edge.

14



6.2 Graphs with higher maximum degree

Of course it is not possible to embed graphs of maximum degree exceeding 4 in
an orthogonal fashion. The usual way out of this dilemma is to split the vertices
of higher degree into cycles or chains of vertices such that in the new graphs
all vertices have maximum degree 4. Assume our graph is biconnected. Find
an st-ordering. When we want to embed a vertex v with deg(v) > 4 we split it
into a chain of vertices. The chain can be drawn as a vertical or horizontal line.
Notice that in the horizontal case we get a visibility representation in the planar
case (e.g., see [20]). However, in the non-planar case the horizontal chain can
be crossed by many edges. This will not be the case when the chain is drawn
vertically, which we will explain now in more detail.

Let fe1; : : : ; erg (r = bdeg(v)) be the incoming edges of v in the order of
their assigned columns and let k = d r+12 e. We draw v as a straight vertical line
which is placed above the column of ek . By adding k � 1 rows we can connect
all incoming edges of v with this vertical line.

Let ff1; : : : ; fsg (s = fdeg(v)) be the outgoing edges of v (in the planar case
let them be sorted in clockwise order). If r was even we can add the outgoing
edge to fs in the last row and have to add d s�22 e more rows for the other
outgoing columns. Otherwise we need d s�12 e more rows. Doing case analysis

one can see that we need exactly ddeg(v)�22 e rows.

f1 fs

e1 ek er ereke1

fsf1

e1 ek er

fsf1

Figure 10: Conversion of a vertex: Cases odd/odd, odd/even, and even/even

What is the obtained gridsize? Every vertex of degree exceeding 4 now needs
ddeg(v)�22 e � deg(v)�1

2 new rows. This in fact holds for all vertices of degree at
least 3. Let V2 be the set of all vertices of degree 2 and let n2 be their number.
The drawing has at most a height of

n2 +
X

v2V�V2

deg(v)� 1

2
=
X

v2V

deg(v)

2
� (n� n2)

1

2
= m�

n

2
+

n2

2
:

At the very most we may need fdeg(v)� 1 new columns (note that for most
vertices we need less). Also every vertex needs deg(v) � 2 bends. Hence the
estimation of the width and bends remain valid. In all we have at most an
(m� n + 1)� (m� n

2 +
n2
2 )-grid and at most 2m� 2n+ 4 bends.

13



To compute the �nal coordinates we traverse the graph in top-down fashion.
Assume that v = father (G0) is already in its �nal position (xv; yv). For every
vertex w 6= v in G0 depending on rotate(G0) we set xw = xv � distx(w); yw =
yv�disty(w) or xw = xv�disty(w),yw = yv�distx(w) to get the �nal coordinate
of w. Before we proceed in the subgraphs we add rotate(G0) to the \topmost"
block of every Gi. Doing so we can compute all �nal coordinates in linear time.

6 Extensions

6.1 Graphs with multiple edges

If the input-graph has a vertex v of degree 2 then the following heuristic can be
used to get fewer bends: remove v and add a new edge ev between its neighbors.
Embed the resulting graph G0. Now quite likely the drawing of ev will have a
length of two or more. In this case we can add v into the drawing without
adding rows and columns at all, quite often also reducing the number of bends.
If ev did have length 1 we can add v by adding at most one row.

However, this approach can lead to non-simple graphs. Therefore we will
now show how to embed general biconnected graphs with multiple edges in an
(n + 1) � (n + 1)-grid with 2n + 4 bends. If G has a triple edge (v; w) then
we delete v and w and add an edge evw between the other neighbors v0 of v
and w0 of w. If v0 = w0 then G is a subdivision of the quadruple graph Q (see
Figure 9(a)), which can be embedded in a 3� 3-grid with 8 bends. Otherwise
we iterate until we either end at Q or a subdivision of it or at a graph without
triple edges. If the resulting graph is now embedded we can add v and w into
the drawing by adding two rows and two columns next to a vertical segment of
the drawing of evw (see Figure 9(b)).

The remaining question now is how to embed graphs that have double edges
(but no triple edges). This is very easy with the algorithm of Section 3.1: we only
need the simplicity of the graph to embed v1; v2. If those vertices are connected
by a double edge then we change the drawing as shown in Figure 9(c), and
save one column and two bends. However, if other vertices have multiple edges,
then the optimization step in Section 3.2 to reduce the width by one cannot
be applied. This yields an (n + 1) � n-grid and 2n + 4 bends for biconnected
graphs. This cannot be generalized to non-biconnected graphs, since there are
non-biconnected non-simple graphs that need 7

3n bends in any drawing [1].

v

w

Figure 9: How to handle quadruple, triple, and double edges

12



The crucial observation now is that we need not know the values of xi to
�nd the x-coordinate of v. Instead we can maintain a list Columns. Every used
gridpoint p contains a pointer x(p) to one element of Columns signifying that
later all vertices with a pointer to the same element of Columns receive the
same x-coordinate. When embedding v we let x(v) point to the same element
in Columns as xk points to. Whenever we want to add a column we add a new
element in Columns. The columns are added directly left and right of the column
of v. Since we know x(v) adding requires O(1) time. The �nal x-coordinates
are computed by traversing Columns and assigning ascending values to each
element. Every vertex then checks the value of the element it points to and
stores that value as its x-coordinate.

The method of adding the new columns directly neighboring the vertex we
are dealing with is also interesting from a practical point of view for the non-
planar case: the shape of the outerface of the drawing is a rectangle instead
of a triangle and less crossings are to be expected. However, the ordering of
x1; : : : ; xs in Columns has to be computed to �nd the x-coordinate of v.

This problem is called the order maintenance problem: determining which
of two elements comes �rst in a list under a sequence of Insert and Delete
operations. Dietz & Sleator [5] presented a linear space data structure for this
problem, answering the order queries in O(1) time. This yields a linear time
algorithm for the non-planar drawing algorithm (though less simple), where new
columns are added directly neighboring the vertex. We used the fact that new
columns are added at the border for our small improvement. However, when we
allow just one column to be added at the extreme this can still be upheld.

For non-biconnected graphs we store the coordinates implicitly. Let B be
a block. We denote by father(B) the vertex that was embedded as �nal ver-
tex of block B (in the notation of Section 4 father(G0) = v). We also store
a value rotate(B) which denotes the angle of rotation when B is merged. As-
sume we have an embedding of B together with all its subgraphs. Denote by
width(B); height(B) the width and height of this drawing and by cut(B) the
x-coordinate of father (B) (this is the place where we will have to cut the draw-
ing B when merging it later). By visiting all vertices w 2 B in the drawing we
can calculate distx(w) and disty(w), the distance of w to father(B) in either
coordinate.

Assume we have a block G0 and we want to merge the drawing of Gi at
vertex vi. First assume that vi is not connected to Gi by a bridge and let Bi be
the block containing vi in Gi. We set rotate(Bi) = 180� and add height(Bi) + 1
rows. Furthermore we add cut(Bi) columns to the left and width(Bi)� cut(Bi)
columns to the right of the incoming edge of vi. Then we add one more column
for the outgoing edge of vi. We update only the coordinates of vi, not of the other
vertices in Bi. If vi is in one bridge let wi be the other endpoint of it and let Bi

be the block in Gi containing wi. We set rotate(Bi) = 90�. We add height(Bi)+1
columns to the right of the incoming edges of vi. We add cut(Bi) rows, then one
row into which we place both vi and wi and then width(Bi) � cut(Bi) further
rows. If vi is part of two bridges we add the other subgraph in a similar fashion
to the left.

11



5 Linear time complexity

In this section we describe how to implement the algorithm so that it works in
linear time. There are two items to consider here: (i) how to embed G and to
�nd an st-ordering for a planar G such that (v1; v2) and (vn�1; vn) are on the
outerface (this statement is also valid for graphs of higher maximum degree),
and (ii) how to compute all coordinates e�ciently.

5.1 Computing the st-ordering for planar graphs

The �rst problem is how to compute an st-ordering of a biconnected planar
graph G such that the edges (v1; v2) and (vn�1; vn) are on the outerface. We
assume that v1 and vn are given in advance (important for the non-biconnected
case) and belong to the outerface. We �rst have to �nd an ordering with edge
(v1; v2) lying on the outerface. First determine the cutting pairs fv1; wg, with
w a neighbor of v1, as follows. We mark all faces incident to v1. Every neighbor
w of v1 belonging to more than 2 marked faces forms a cutting pair with v1.
For every such w mark a face that contains w but not the edge (v1; w).

Let v� 6= vn be a neighbor of v1 on the outerface. If fv1; v
�g is not a cutting

pair we can contract edge (v1; v
�) without losing biconnectivity. Compute an st-

ordering for G with the contracted vertex as �rst and vn as last vertex. Extract
edge (v1; v

�), give vertex v1 number 1, vertex v
� number 2 and increase the other

numbers by 1 to get the desired st-ordering. If fv1; v
�g is a cutting pair, then

we swap edge (v1; v
�) inside the marked face of v�. Then a new neighbor of v1

appears on the outerface and we repeat the argument with it. No neighbor of v1
will be processed twice, so after at most deg(v1) steps we have found a neighbor
of v1 that does not form a cutting pair with v1 and lies on the outerface. We
apply the above argument to �nd an appropriate st-ordering.

Assume now that the outerface contained at least four vertices and let v̂ 6=
v1; v

� be a neighbor of vn on the outerface. Using the same argument with vn
and v̂ we can show that there is an st-ordering with (v1; v2) and (vn�1; vn) on
the outerface. We needed the edge (vn�1; vn) on the outerface only to avoid the
3-bent edge for 4-regular biconnected graphs in which case we are free to choose
vn. Every planar graph with at least seven vertices and at most 2n edges has a
face with at least four vertices. So we can choose vn to belong to this face and
avoid for all such graphs the 3-bent edge.

5.2 Computing the coordinates

In the biconnected case remark �rst that the y-coordinate of a vertex is never
changed later. The same holds for the x-coordinates in the non-planar case, so
we only have to worry about the x-coordinates in the planar case. Let v be
the vertex we are dealing with. Let e1; : : : ; es be the incoming edges of v in
clockwise order in the adjacency list of v. Let fx1; : : : ; xsg be the x-coordinates
associated with e1; : : : ; es. Notice that if the graph is planar then x1; : : : ; xs are
descending and the x-coordinate of v is xk, where k = d s2e.

10



In the embedding of G0 every edge is bent at most once at each endpoint.
Since we do not change the embedding of Gi this holds for all of G, so clearly
we have at most two bends per edge.

If G is 4-regular we split G at a cutvertex v to obtain G1 and G2. Since
we have no bridge we know degGi

(v) = 2. Embed G1 and G2 with the above
algorithm with v as �nal vertex. Rotate and move the drawing of G2 such
that the two drawings of v coincide. The width and height are then at most
n1 � 1 + n2 � 1 = n� 1 and the number of bends is 2n1 � 1 + 2n2 � 1 = 2n.

v

1

G2

G

Figure 7: The drawing of a non-biconnected 4-regular graph

If our graph now has bridges then we add them after the rest of the drawing
is �nished. To be precise, assume that we have a bridge (u; w). Removing it
splits G into two graphs G1 and G2 (denote again by ni the number of their
vertices, but this time n1 + n2 = n). Assume G1 contains u and the prescribed
�nal vertex v. Delete all vertices of G2 in the original graph and embed the
resulting graph (this has one bridge less, so we repeat the argument until we
have no bridge left and then apply the above algorithm).

After all this is done, u has a connection in one direction free, assume it
is to the right. Embed G2 with w as �nal vertex in an (n2 � 1) � (n2 � 1)-
grid. Add n2 columns to the right of u and n2 � 1 rows above and below it.
Rotate the drawing of G2, place it in the space to the right of u and connect
u and w. The resulting grid has width n1 � 1 + n2 = n � 1, height n � 2, and
2n1 � 1 + 2n2 � 1 = 2n� 2 bends.

v

u w
1

2G
G

wu

1G

2G

Figure 8: How to merge a subgraph connected by a bridge

Theorem 4.3 Let G = (V;E) be a not biconnected simple 4-graph with n ver-
tices. Then G can be embedded in an (n � 1) � (n � 1)-grid with at most 2n
bends. Every edge is 2-bent. If G is planar then so is the drawing.

9



fdeg(vi) = bdeg(vi) = 1. We �rst add one row and place vi above its predecessor.
Then we add ni�1 more rows. There we will add the drawing of Gi�vi, which
we cut vertically to the left and right of the column of vi. Let the two slices
have k and l columns (k + l = ni � 1). We add l columns to the left and k

columns to the right of the incoming edge of vi, rotate the drawing of Gi and
place it in them. We add one more column and place the outgoing edge of vi in
it. Figure 6 shows this for the non-planar case. In the planar case we again add
the columns right next to the incoming edge and hence get a planar drawing.

vi

G1 � v1

G0G0

Gi � viGi � vi

vi

v1

Figure 6: Cutting and merging Gi when embedding vi

We will show here only an estimation of the width. An estimation of the
height is quite easy (every vertex needs one row) and an estimation of the
number of bends is very similar to that of the width.

Lemma 4.1 The width is at most n.

Proof: This is of course true for the base case (here the width is even n� 1),
so consider the case when we split G into G0 and the Gi's. To embed a vertex
w 6= w1; wn0 of G0 we need an increase in width of fdeg(w)� 1 (we count the
increase of ni for embedding vi later). For w = w1; wn0 we need fdeg(w) many
columns. So for embedding G0 (not considering the mergings) we need a width
of m0�n0+2. In order to draw G1; : : : ; Gs we add

Ps
i=1 ni columns. Applying

(�1) and (�2) we bound the number of columns by m0 � n0 + 2 +
Ps

i=1 ni �
n0 � s+ 1 +

Ps
i=1 ni = n + 1 and the width is one less than that. 2

Lemma 4.2 The width can be improved to n � 1.

Proof: The estimation of the previous lemma is tight only for a few cases.
Namely, if w1 = v1 is a cutvertex then to embed w1 we need only fdeg(w1)� 1
new columns and hence get a width of n� 1. If (�2) is not tight, then again we
get a width of n � 1. So the only remaining case is that all vertices (except v)
in G0 are either a cutvertex or have degree at least 3. We now apply the same
idea as in Subsection 3.2 to reduce the width of G0 by one. Let l be the smallest
index such that wl has at least two predecessors in G0 and embed wl together
with its last predecessor wib. This always saves one unit of width since the last
predecessor of wl either has three neighbors (and hence another outgoing edge)
or is a cutvertex (hence its column can be used to draw the subgraph). 2

8



4 Non-biconnected graphs

In this section we describe how to embed simple graphs which are not bicon-
nected with bounds similar to those in Theorem 3.5. To do so we split the graph
into its blocks and embed them separately. As we will show later we can assume
that G has no bridges, i.e. edges whose deletion disconnects G. Let us say that
we draw a graph with v as \�nal vertex" if v and its incident edges are drawn
in the last row. We then keep the following invariant:

Invariant: Let G be a simple 4-graph without bridges. Let v with deg(v) � 3 be
given (and on the outerface in the planar case). G can be drawn with v as �nal
vertex in an (n� 1)� (n� 1)-grid with 2n� 1 bends. Every edge is 2-bent.

We show the invariant by induction on the number of vertices. In the base
case G is biconnected and we apply the algorithm of the previous section with v
as last vertex. Note that this gives the desired bound since m � 2n� 1. For the
induction step note �rst that v cannot be a cutvertex (otherwise by deg(v) � 3
it would be contained in a bridge). Let G0 be the unique block containing v. We
will embed the biconnected G0 with v as last vertex as in the previous section
and merge the rest of G at appropriate places.

Let v1; : : : ; vs be the cutvertices of G in G0. Let Gi be the subgraph of G
consisting of vi and the connected components of G � vi not containing G0.
Notice that the intersection of G0 and Gi (1 � i � s) is vi, and that the
intersection of Gi and Gj is empty if i 6= j. Hence if we de�ne ni = jV (Gi)j
then

(�1)
sX

i=0

ni = n+ s :

De�ne m0 to be the number of edges in G0. As degG0
(v) � 3 we know m0 �

2n0 � 1. Furthermore, every cutvertex has degree 2 in G0 and we know

(�2) m0 � 2n0 � 1� s:

Gi has fewer vertices than G. If G was planar and we take as embedding of
Gi the one that is induced by G then (since v was on the outerface of G)
also vi is on the outerface of Gi. So by induction Gi can be embedded in an
(ni � 1)� (ni � 1)-grid with 2ni � 1 bends and vi as �nal vertex.

Compute an st-ordering fw1; : : : ; wn0g of G0 with v as last vertex. If G is
non-planar, or if G is planar and one cutvertex, say v1, is on the outerface of G,
then we also choose v1 as the �rst vertex (by the above v 6= v1). For all w 2 G0

denote by fdeg(w) (resp. bdeg(w)) the number of predecessors (resp. successors)
with respect to this ordering (so only w's neighbors in G0 are counted).

If w1 = v1 we start with the embedding of G1. Add fdeg(v1) � 1 columns
to the side of the drawing of G1 and connect v1 with them. Now all un�n-
ished edges end in a column which is empty above this point. So the invariant
of the algorithm for biconnected graphs holds. Otherwise we embed w1 as in
the biconnected case and need fdeg(w1) columns for it. Every following vertex
w 2 G0 which is not in fv1; : : : ; vsg is embedded as in the biconnected case.

Assume we want to embed a cutvertex vi. We know that degG0
(vi) = 2

(otherwise we had a bridge in G), and since we have an st-ordering we have

7



3.2 Embedding in an n� n-grid

It seems tedious to spend extra e�ort in order to reduce the width by 1. However,
this will be used when embedding non-biconnected graphs. Here each block will
be embedded separately, so in all we achieve a reduction in width equal to the
number of blocks.

Assume that all vertices but vn have degree 3 (as we will show presently we
need to reduce the width only in this case). Let l be the smallest index such
that bdeg(vl) � 2. It is not possible that l = n since otherwise we had vertices
of degree 2. Therefore we know that b = bdeg(vl) � 3. Let the predecessors of
vl be vi1 ; : : : ; vib with i1 < : : : < ib. We now embed both vl and vib in one step,
as shown in Figure 5.

lv vi2 lv vi3

vl v2

Figure 5: Drawing vj and vl, and the special case j = 2

To be able to do so it is required that the incoming edge of vib is to the
left or to the right of all other incoming edges of vl. It is clear that this is so
if b = 2. But it is even ensured for b = 3. Notice that for any j < l we have
deg(vj) � 3 and bdeg(vj) � 1, therefore fdeg(vib) � 2. Hence if G is planar
the other outgoing edge of vib must be on the outerface of Gl, since vl has no
predecessor with an st-number bigger than ib. So after vl was placed vib must
still be part of the outerface and hence (vib; vl) is the left- or rightmost incoming
edge of vl. Consequently also the incoming edge of vib is to the left or to the
right of the other incoming edges of vl.

If the graph is non-planar, then let vk be the predecessor of vib . When
embedding vk we added a new column (since fdeg(vk) � 3) and we added it
at the extreme left or right. Assign the edge (vk; vib) to this column. Then by
de�nition it is to the right or left of all other incoming edges of vl.

What width and how many bends did we produce? We need a width of
fdeg(vib) � 2 for vib . If deg(vib) = 3, then no bends are introduced for vib,
otherwise one bend. Similarly for vl we need a width of fdeg(vl)�1 and deg(vl)�3
bends. Hence we save one column and two bends. Applying this for 4-regular
graphs we get an n� n grid and 2n+ 2 bends. For m = 2n� 1 we chose vn to
have minimal degree. So all other vertices have degree at least 3 and we get an
(n � 1)� (n � 1)-grid and 2n� 1 bends. For m � 2n � 2 the algorithm of the
previous subsection already gave an (n � 1) � (n � 1)-grid and 2n � 1 bends
since deg(vn) � 3. The bounds for the special cases are summarized in Table 1
in the concluding section.

Theorem 3.5 Let G be a biconnected simple 4-graph with n vertices. Then G

can be embedded in an n � n-grid with at most 2n + 2 bends. Every edge is
2-bent. If G is planar then so is the drawing.

6



Lemma 3.2 There are at most 2m� 2n+4 bends; at most one edge is 3-bent,
all others are 2-bent.

Proof: We have deg(v)�2 new bends with the embedding of v 6= v1; v2; vn. Em-
bedding v1 and v2 gives deg(v1) + deg(v2)� 2 bends, and vn requires deg(vn)
bends if deg(vn) = 4 and deg(vn)�1 bends otherwise. So we have

P
v2V (deg(v)�

2) + 4 = 2m� 2n + 4 bends if deg(vn) = 4 and 2m� 2n+ 3 bends otherwise.

Every edge (vi; vj); i < j is bent at most once when vi is embedded. Com-
pleting the edge needs at most one additional bend if vj 6= vn. Embedding vn
bends one edge twice, all others at most once, thus only this edge can have
three bends. 2

Lemma 3.3 The 3-bent edge can be avoided unless the graph is the octahedron.

Proof: Consider �rst graphs with less than 2n edges. These have at least one
vertex of degree less than 4. Since t is chosen with minimum degree there is no
3-bent edge. For non-planar 4-regular graphs we can (by drawing di�erently)
choose which incoming edge we want to be bent twice with the embedding of
vn. We choose the edge that is outgoing from vn�1 (this exists by the property
of an st-ordering) and is not bent at vn�1. Therefore this edge is 2-bent, too.

For planar graphs 4-regular with at least 7 vertices we show in Section 5
that we can assume that the edge (vn�1; vn) is on the outerface. This edge then
is the leftmost or rightmost incoming edge of vn. So again we can bend this
edge twice with the embedding of vn. The only graphs which are not covered
by these arguments are those which are planar, 4-regular, and have at most 6
vertices. But there is only one such graph: the octahedron. 2

Lemma 3.4 For planar graphs the resulting drawing is planar.

Proof: Remember that we chose v1 and vn to be on the outerface. As we will
show in Section 5 we can assume that the edge (v1; v2) is on the outerface, too.
The construction then guarantees that the resulting embedding has the same
set of rotations around each vertex and the same outerface boundary as the
planar graph G. In particular we know that the incoming (outgoing) edges of
any vertex v are consecutive in the rotation around v [24].

Let Gi be the subgraph induced by v1; : : : ; vi. Notice that Gi is connected.
Let E0

i be the set of edges from Gi toG�Gi, ordered according to their clockwise
order around the outerface boundary of Gi. We now state that the incoming
edges of vi form a consecutive sequence in E0

i�1. Assume not, i.e. there is an
edge (vj ; vk); j < i < k between two consecutive incoming edges of vi, say
(u; vi) and (w; vi). Consider the cycle C = vi � u � P (u; w) � w � vi, where
P (u; w) is the path from u to w on the outerface of Gi�1. Then C is a face
boundary of Gi, and vk is in its inner domain. Let l > i be the highest number
such that vl is in the inner domain of this face. Then vl has no successor by
planarity, but it also cannot be vn since vn is chosen to be on the outerface of
G. Contradiction.

Hence when adding vi to G, the columns of incoming edges are an interval
and we do not cross other edges. As we add new columns directly neighboring
the added vertex vi there is no vertical line that could be crossed. 2

5



3.1 Embedding in an (m� n + 1)� n-grid

Given a biconnected 4-graph G = (V;E). Choose some vertices s and t, namely
choose t to have minimum degree and, in the planar case, s to be on one face
with t which then becomes the outerface. Obtain an st-ordering for G and
embed the vertices consecutively. We hold the invariant that at every stage
every uncompleted edge (i.e. an edge where exactly one endpoint is drawn) is
associated to a column. The drawing of the edge ends in that column which is
empty above that point.

Figure 2: Embedding of the �rst two vertices and appearance after some more
vertices

The �rst two vertices are embedded as shown above. For every following
vertex we add a new row on top and as many columns as necessary to maintain
the invariant. If G is planar then we add the new columns directly neighboring
the current vertex. Otherwise they are added at the border. The last vertex
might have four predecessors, in which case we add two rows to accomodate it.

Figure 3: Embedding a vertex v with four neighbors (bdeg(v) = 1; 2; 3; 4)

Figure 4: The changed drawing for fdeg(v) = 3; 2 in the planar case

Lemma 3.1 The gridsize is (m� n + 1)� n

Proof: We use a height of one for v1 and v2. Every following vertex increases
the height by one, the last vertex by at most two. Therefore the height is n� 1
if deg(vn) � 3 and n otherwise. When embedding v1 and v2 we use a width
of fdeg(v1) + fdeg(v2) � 2 (observe that the width is #fcolumnsg�1). Every
following vertex vi 6= vn increases the width by fdeg(v)� 1 and vn increases it
by 0 = fdeg(vn)� 1+1. So the width is

P
v2V (fdeg(v)� 1)+1 = m�n+1. 2

4



An orthogonal drawing is called an embedding in the (rectangular) grid if
all vertices and bendpoints are drawn on integer points. If the drawing can be
enclosed by a quadrangle of width n1 and height n2 we call it an embedding
with gridsize n1 � n2 and area n1 � n2.

Figure 1: The octahedron in a 7�6 grid with 16 bends

Call a graph biconnected if it has no loops and removing any vertex and
its incident edges leaves a connected graph. Unless otherwise speci�ed we con-
sider only simple graphs, i.e. graphs without loops and multiple edges. The
biconnected components (or blocks) of a connected graph are (a) its maximal
biconnected subgraphs, and (b) its bridges together with their endpoints. If re-
moving v disconnects the graph we call v a cutvertex. Every vertex that is not
a cutvertex is in exactly one block of G. If removing fv1; v2g disconnects the
graph we call fv1; v2g a cutting pair of G.

A (combinatorial) embedding of a planar graph is a representation in which
at every vertex all edges are sorted in clockwise order with respect to the planar
embedding. Testing biconnectivity, �nding all cutting pairs, and constructing
an embedding of a planar graph can be done in linear time (see e.g. [2]). The
octahedron is the unique planar 4-regular graph with 6 vertices. An st-ordering
is an ordering fv1; v2; : : : ; vng of the vertices such that every vj (2 � j � n� 1)
has at least one predecessor and at least one successor, i.e. neighbors vi; vk with
i < j < k.

Theorem 2.1 (Lempel, Even & Cederbaum [15], Even & Tarjan [7])

Let G be biconnected and s; t 2 V . Then there exists an st-ordering such that s
is the �rst and t is the last vertex. It can be computed in O(m) time.

If G is planar then in any st-ordering fv1; : : : ; vng the predecessors of vi
appear as an interval in the adjacency list of vi in any embedding [24]. The
edges from vi to its predecessors (successors) are called incoming (outgoing)
edges of vi. Their number is the backdegree bdeg(vi) (forwarddegree fdeg(vi)).
A straightforward calculation shows

Pn
i=1 bdeg(vi) =

Pn
i=1 fdeg(vi) = m.

3 Drawing biconnected graphs

The basic idea for drawing biconnected graphs is the same for planar and non-
planar graphs. Independently, Liu et al. [18] came up with a similar technique
for planar biconnected graphs. However, we will show how to handle the non-
planar case with our technique while maintaining the same bounds.

3



If G is planar it can be embedded in an n � n grid with 2n + 4 bends
if it is biconnected, and 2:4n + 2 bends otherwise [22, 24]. The number of
bends along each edge is at most 4. For 3-planar and triconnected 4-planar
graphs better bounds are known [10, 16, 17]. Very recently and independently
of this work, Liu, Morgana & Simeone [18] presented a linear-time algorithm
for drawing biconnected planar graphs with at most 2 bends per edge (except
the octahedron) and at most 2n + 4 bends in total on an grid of size at most
(n+ 1)� (n + 1).

In [25] a lower bound of 2n � 2 is presented on the number of bends in
an orthogonal drawing of a certain biconnected planar graph. If a combina-
torial embedding of a planar graph is given, an orthogonal representation of
it with minimal number of bends can be computed in O(n2 log n) time [23].
However, the number of bends per edge can be large which makes the drawing
unattractive. If the planar embedding is not given, the problem is polynomial
time solvable for 3-planar graphs [4] and NP-hard for 4-planar graphs [9]. In
particular, Garg & Tamassia showed that it is even NP-hard to approximate
the minimum number of bends in a planar orthogonal drawing with an O(n1��)
error for any � > 0 [9].

The latter motivates the research for a simple and very general heuristic to
construct orthogonal representations of planar and non-planar graphs. In this
paper we present a new algorithm that runs in O(n) time and produces orthog-
onal drawings of connected planar and non-planar graphs with the following
properties: (i) the total number of bends is at most 2n + 2; (ii) the number
of bends along each edge is at most 2 (unless the graph is the octahedron)
(iii) the area of the embedding is n � n. In particular for non-planar and non-
biconnected planar graphs, this is a big improvement. The result is obtained by
constructing orthogonal drawings of the biconnected components using the so-
called st-ordering and merging all these drawings into one orthogonal drawing
of the entire graph.

The paper is organized as follows: Section 2 gives some de�nitions and in-
troduces the st-ordering. In Section 3 the algorithm for biconnected graphs is
explained. It is extended to non-biconnected graphs in Section 4. In Section 5
we explain how to arrive at a linear time implementation. In Section 6 we show
how the algorithm can be used to draw graphs with multiple edges and graphs
with higher maximum degree. Section 7 contains remarks and open problems.

2 De�nitions

Let G = (V;E) be a graph, n = jV j; m = jEj. We consider only 4-graphs, i.e.
graphs of maximum degree 4. Here m = 1

2

P
v2V deg(v) � 2n. Call such a graph

4-regular if all vertices have exactly 4 neighbors. An orthogonal drawing of G is
an embedding of G in the plane such that all edges are drawn as sequences of
horizontal and vertical lines. A point where the drawing of an edge changes its
direction is called a bend of this edge. If the drawing of an edge has at most k
bends we call this edge k-bent.

2



A Better Heuristic for Orthogonal Graph Drawings�

Therese Biedl Goos Kant
RUTCOR { Rutgers University Department of Computer Science

P.O. Box 5062 Utrecht University
New Brunswick Padualaan 14, 3584 CH Utrecht

NJ 08903-5062 USA the Netherlands
therese@rutcor.rutgers.edu goos@cs.ruu.nl

Abstract

An orthogonal drawing of a graph is an embedding in the plane such

that all edges are drawn as sequences of horizontal and vertical segments.

We present a linear time and space algorithm to draw any connected graph

orthogonally on a grid of size n� n with at most 2n+ 2 bends. Each edge

is bent at most twice.

In particular for non-planar and non-biconnected planar graphs, this is

a big improvement. The algorithm is very simple, easy to implement, and

it handles both planar and non-planar graphs at the same time.

1 Introduction

The research area of graph drawing has become an extensively studied �eld
which presents an exciting connection between computational geometry and
graph theory. The wide spectrum of applications includes VLSI-layout, soft-
ware engineering, and project management (see [3] for an up-to-date overview
with more than 300 references). The aesthetic quality of a drawing cannot be
precisely de�ned, and depending on the application di�erent criteria have been
used. Important characteristics of a \readable" representation are the number
of bends, the number of crossings, the sizes of the angles, and the required area.

In this paper we study the problem of orthogonal drawings, i.e. the drawing
of a graph G = (V;E) where each edge is represented by a sequence of alter-
nating horizontal and vertical segments. Such a representation is possible only
when every vertex has at most 4 incident edges. In [11, 8] it was shown that de-
ciding whether G can be embedded in a grid of prescribed area is NP-complete.
Lengauer [12] posed it as an exercise to show that G can be embedded in a
2n � 2n grid such that there are at most �ve bends per edge. In [21] this was
improved to an embedding of same size with at most two bends per edge.

�Research of the second author was supported by the ESPRIT Basic Research Actions
program of the EC under contract No. 7141 (project ALCOM II). An extended abstract of
this paper was presented at the 2nd Annual European Symp. on Algorithms, Utrecht, 1994.

1



ISSN: 0924{3275



A Better Heuristic for Orthogonal Graph

Drawings

Therese Biedl Goos Kant

RUTCOR { Rutgers University Department of Computer Science

P.O. Box 5062 Utrecht University

New Brunswick Padualaan 14, 3584 CH Utrecht

NJ 08903-5062 USA the Netherlands

therese@rutcor.rutgers.edu goos@cs.ruu.nl

Technical Report UU-CS-1995-04

February 1995

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands



A Better Heuristic for Orthogonal Graph

Drawings

Therese Biedl Goos Kant

RUTCOR { Rutgers University Department of Computer Science

P.O. Box 5062 Utrecht University

New Brunswick Padualaan 14, 3584 CH Utrecht

NJ 08903-5062 USA the Netherlands

therese@rutcor.rutgers.edu goos@cs.ruu.nl

UU-CS-1995-04

February 1995

�
Utrecht University
Department of Computer Science

Padualaan 14, P.O. Box 80.089,

3508 TB Utrecht, The Netherlands,

Tel. : + 31 - 30 - 531454


