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ABSTRACT. This paper retraces, collects, summarises, and mildly extends the contri-
butions of the authors — both together and individually — on the theme of representing
the space of computations of Petri nets in its mathematical essence.

Introduction

Among the semantics proposed Ratri netg10] (see also]1, 13), arelevant role
is played by the various notions pfocesse.g. [L2, 5, 1, whose merit is to provide a
faithful account of computations involving many different transitions and ot thesal
connectiondetween the events occurring in computations. Bare process models, how-
ever, fail to bring to the foreground ttedgebraic structureof the space of computations
of a net. Our interest, instead, resides on abstract models that capture the mathematical
essence of such spaces, possibly axiomatically, roughly in the same way as a prime
algebraic domain (or, equivalently, a prime event structure) models the computations
of a safe net9]. The research detailed 6] 3, 4, 14, 7, 8, 1identifies such struc-
tures assymmetric monoidal categories- where objects are states, i.e., multisets of
tokens, arrows are processes, and the tensor product and the arrow composition model,
respectively, the operations of parallel and sequential composition of processes.

At a higher level of abstraction, the next important question concerngltioal
structureof the collection of such spaces, i.e., the axiomatisatiomhe largé of net
computations. In other words, the space of the spaces of computations of Petri nets.
Building on [3, 4, 164, the work presented inlp, 17 shows that the so-callesiym-
metric Petri categoriesa class of symmetric strict monoidal categories with free (non-
commutative) monoids of objects, provide one such an axiomatisation.

In this paper, we retrace and illustrate the main results achieved so far along these
lines of research by the authors, both in joint work and individually. Also, we give a
new presentation of the results dff, already hinted at in17], but never spelled out
in detail before. Due to space limitations, we shall omit any discussion on related work
in the literature.
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1. Petri Nets as Monoids

The idea of looking at nets adgebraic structurese.g. [L3, 9, 18, 2, has been
given an original interpretation ir6], where nets are viewed essentially as internal
graphs in categories of sets with structure, and monoidal categories are first used as a
suitable semantic framework for them. Concerning the algebraic representation of net
computations, along the lines described in the introduction, the following is the main
result of [6].

THEOREM. The commutative processes (§&p of a net N are the arrows of (N),
the free strictly symmetric strict monoidal category on N.

Observe that, as a free constructidr{N) provides an axiomatisation of the com-
mutative processes bf as aralgebraic theoryand thus moves a step towardsrafica-
tion of the process and the algebraic view of net computations. As already mentioned,
the algebra here consists of the operations of a monoidal category: tensor product and
the arrow composition representing, respectively, parallel and sequential composition
of processes.

Commutative processes, however, are somehow marginal in net theory. The next
step was therefore to extend the result to tle@sequential processed N [5], the
currently best-established notion of noninterleaving computation for nets.

2. Concatenable Processes

Concatenable processe$ Petri nets have been introduced 8 f]] to account, as
their name indicates, for the issue of process sequential concatenation. The starting
observation ofoc. cit. is that such an operation has to do with mergiokens i.e.,
instances of places, rather thaglaces In fact, due to the ambiguity introduced by mul-
tiple instance of places (multiple tokens in places), two procesS¢sah be composed
sequentially in many ways, each of which gives a possibly different procéés of
Therefore, any attempt to structure processeN afs an algebra which includes
sequential composition must disambiguate each token in a process. This is exactly the
idea of concatenable processes, which are simply nonsequential processes in which,
when needed, instances of places (tokens) are distinguished by appropriate decora-
tions. This immediately yields an operation of concatenation: the ambiguity about
multiple tokens is resolved using such additional information. The main resut 4ff
is an axiomatisation of such a category, stated here in the improved enunciation proved
in[14, 14.

THEOREM. The concatenable processes of a net N are the arrowqNj, obtained
from the free symmetric strict monoidal categbryN) on N by imposing the axioms

Cap = Idagp, ifaandb are different places of N
st;d = t, if t is a transition of N and s and sre symmetries df (N),

where ¢, id,®, and_;_ are, respectively, the symmetry isomorphism, the identities, the
tensor product, and the compositionfofN).

This result matches the one for commutative processes in describing net behaviours
asalgebrasin terms ofuniversalconstructions. Here, of course, a more complex al-
gebraic structure — namely, symmetries and the related axioms above — is needed.



Places: Sy ={ab,c,d}

Transitions: Ty = {to:a—c,
ti:b—c,
t:c—d}
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FIGURE 1. A netN and its concatenable procass-ty®1t;;t ®@id¢

Observe that, in fact, the strictness of the symmetric structure of the monoidal category
has disappeared.

ExamMPLE . Figure 1 shows a concatenable process a netN that corresponds to
the arrowtg ®t1;t ® idc of P(N). To exemplify the algebra of processesNf 1t is
expressed as parallel$ ) and sequential () composition of simpler processes. Such
operations are matched precisely by operations and axiorR{Mf, and this is the
essence of the theorem above.

The constructiorP (_), however, is somehow unsatisfactory, since it is not func-
torial: given asimulationbetween two nets, it may not be possible to identify a cor-
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FIGURE 2. The netN andN

responding monoidal functor between the respective categories of computations. This
fact, besides showing that the understanding of nets providdti(byis still incom-

plete, prevents us from identifying tleategory(of the categories)f net computations

i.e., from axiomatising the behaviour of nets “in the large'.

DEFINITION . Given netsN andN, a morphismf: N — N is a pair(fr, fs), where

fr: Tn — Ty is a function — the transition component bf— and, denoting byi(S)

the free commutative monoid @) fs: W(Sy) — U(SY) is @ monoid homomorphism —

the place component df — mappingmultisetsof places ofN to multisetsof places of

N in such a way that for all transitionts u — v of N, we havefr (t): fs(u) — fg(v).
This defines the categoBetri of Petri nets.

EXAMPLE . Consider the nethl andN in Figure 2 andf: N — N where fr(t) =t

fs(a) = a and fg(by) = by, fori = 0,1. Then,f cannot be extended to a monoidal

functorP (f): P(N) — P(N). In fact, for any such extensidh, by monoidality we

must have- (to®ty) = F (to) ® F(t1) = to ® 11, and sincey ®t; = t; o, it follows that
ooty =F(th ®to) =t ®1o,

which is impossible, since the leftmost and rightmost processadifégaentin P (N).

3. Strongly Concatenable Processes

Strongly concatenable processae a slight refinement of concatenable processes
introduced in 15, 17 to yield afunctorial algebraic description of net computations.
The refinement, which consists simply of decorating selected places in honsequential
processes more strongly than in concatenable processes (see Figure 3), is shown to
be — in a very precise mathematical sense (4é¢ 11) — the slightestrefinement
that yields a functorial construction. As for their predecessors, strongly concatenable
processes admit an axiomatisation in terms of a universal algebraic construction based
on symmetric monoidal categories.

THEOREM. The strongly concatenable processes of a net N are the arroQ< s,
obtained from the symmetric strict monoidal category freely generated from the places
of N and, for each transitiont of N, an arrowt: u — v for each pair of linearisations

(as strings) u and v of the pre- and post- sets (multisets) of t, by quotienting modulo the
axiom

(®) Sty y =tuv:s, fors: u— U and $: vV — v symmetries
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The key feature of) (_) is that, differently fromP (_), it associates to the nét
a monoidal category whose objects form a fresm-commutativenonoid {iz. §; as
opposed tu(Sy)), i-e., it deals withstringsas explicitrepresentativesf multisets. As
hinted above, renouncing to such commutativity, a choice that at first may seem odd,
can be proved to be necessary in order to obtain a functor. As a consequence of this
choice, each transition dff has many corresponding arrows@(N); such arrows,
however, are “related’ to each other bylagurality condition(®), in the precise sense
that, when collected together, they form a natural transformation between appropriate
functors. In fact{®) asserts that any diagram@(N) of the kind

u——"m———
g (sands symmetries)

(7]
<<

~

_
u t

tyy
v

commutes, which, as we shall see, can be equivalently expressed in terms of func-
tors and natural transformations. This naturality axiom is the second relevant fea-
ture of Q (L), actually the one that keeps the computational interpretation of the cate-
goryQ (N), i.e., the strongly concatenable processes, surprisingly close to thapf
i.e., to the concatenable processes (cf. Figures 1 and 3).

Concerning functoriality, I5] shows thatQ () extends to aoreflectionfunctor
from the category of Petri nets tbcategory of symmetric monoidal categories. The
latter is constructed bguotientingthe category of symmetric monoidal categories in
such away as to identify all the symmetric monoidal functors that, informally speaking,
differ only by the “representatives of multisets' chosen. Here, we proceed along the
way hinted at in17] using2-categoriegmore preciselygroupoid-enricheaategories),
the role of the 2-structure being to carry information about multisets, thus making an
explicit quotient construction unnecessary.



DEFINITION . A symmetric Petri categong a symmetric strict monoidal categoy
whose monoid of objects §, the free monoid o1$, for some sef. We shall letSym

denote its subcategory of symmetries, @y ,, for v a multiset iny(S), the full

subcategory o8ym consisting of those € S* whose underlying multisei(u), isv.

The relevance of symmetric Petri categories for our purposes resides in that they
allow us to capture the essence of the arrows gener&ifid), i.e., the instances of
the transitions oN. Such arrows, in fact, have two very special properties that char-
acterise them completely: (1) they are decomposable as tensors only trivially, and as
compositions only by means of symmetries, and (2), as already mentioned, they form
natural transformations between appropriate functors. Following the usual categorical
paradigm, we then use such properties, expressed in abstract categorical terms, to define
the notion oftransitionin a general symmetric Petri category.

DEFINITION . Let C be a symmetric Petri category aBtlits monoid of objects. An
arrowt in C is primitive if (denoting bye the empty word irS*)

> T is nota symmetry;

» T=0;B implies aisasymmetryang is primitive, or viceversa;

» T=0®[B Iimplies o=idsandp is primitive, or viceversa.
A transitionof C is a natural transformation Tlg’\w, = T[éw, whose components,y
areprimitive arrows ofC, where, forv,v' in u(S), and the functorsg , , andTi s
are defined by the diagram

n?:.v.v’ = inyoTo

( N, SYym iny
0__~ Y \
C

Synt\, X Syn&N,

k o Sym, Ciny j

T%.v.v’ = inyomy

Observe that the definition above captures the esserf@€dj: the transitions of
Q (N) areall andonly the families{t,y | t: p(u) — p(v) € Tn}. This leads us to the
following result.

THEOREM. Let SPetriCat be the 2-category whose objects are the symmetric Petri
categories, whose arrows are the symmetric strict monoidal functors that respect tran-
sitions, and with a 2-cell = G if there exists a monoidal natural isomorphism between
F and G whose components are all symmetries.

Then,Q (.): Petri — SPetriCat is a pseudo 2-functor (considering the category
Petri of Petri nets as a trivial 2-category) that admits a pseudo right adjdint.)
forming withQ (_) a pseudo coreflection.

The latter terminology means precisely that the natural family of isomorphisms
between homsets that defines an adjunction is relaxed to a (pseudo) natural family of
equivalencedetweerhomcats Finally, concerning theategory(of the categories)f
net computationswe have the following result that characterises abstractly the cate-
gories corresponding to algebras of Petri net causal behaviours.



THEOREM. Let FSPetriCat be the full subcategory dPetriCat consisting of those
symmetric Petri categorigswhose arrows can be generated by tensor and composition
from symmetries, and components of transitionofuniquely up to the axioms of
symmetric strict monoidal categories and the naturality of transitions, i.e., ad@m
Then,FSPetriCat and Petri are pseudo equivalent vid [_] andQ [].

In the rest of the paper we shall provide a sketch of the proofs of these results.

Let FMon be the category with objects the free mond&iswhereS € Set ranges
over sets, and morphisms the monoid homomorphisms. Similarldbton be the
category with objects the free commutative monqi@S), S € Set, and morphisms
the monoid homomorphisms. Consider the obvious quotient funjc}@r FMon —
FCMon. Explicitly, (S")* = u(S), whilst the action of(_)’ on f: S* — S gives the
unique homomorphisnf’: p(S) — W(S) such thatf’(a) = u(f(a)) for allae S. If
we regard(_)’: FMon — FCMon as areflexive graph homomorphism, we can de-
fine a reflexive graph homomorphisfn)?: FCMon — FMon in the other direction

such that(())")’ = idecmon. Indeed, we can define)? on objects by(u(S))! = S
and for each nonidentity monoid homomorphismu(S) — u(S) we can choose a
monoid homomorphisni: S — S* by selecting for each € Sa word f(a) such
thatp(%(a)) = f(a). For the identity homomorphisms we can defitkg))? = ids-.

Fixed one sucli_)?, we can define the action & (_) on Petri net morphisms.

Letf:N— Nbea morphism of Petri nets. Sinégis a monoid homomorphism
from u(Sy) to u(Sy), we consider the homomorphisi‘gl: S\ — §- By the freeness of
Symy () such a morphism can be extended (uniquely) to a symmetric strict monoidal
functorFs: Symg (v) — Q (N) and, therefore, to a functér: Q (N) — Q (N), defined
as the unique symmetric strict monoidal functor which coincides #tbn Syng
and mapdyy: U— V1o (fr(t)rw)rv: F(u) = F(v). Since monoidal functors map
symmetries to symmetries, and sinig€t) is a transition ofNy, it follows immediately
thatF respects axiomd®), i.e., thatF is well defined. Concerning the (trivial) 2-cells
of Petri, the action o (_) on them is clearly forced) (id: f = f) must necessarily
be (the unique) (f) = Q (f).

SinceQ (f) is uniquely determined b and f&, by the propert)(idu(s))h —idg
of (L)%, it follows thatQ (idn): Q (N) — Q (N) is the identity functor. However, since
in generalgso fs)t # g“so fé, we have thaf (go f) #Q (g)oQ (). The whole point
about considering the 2-structureSfetriCat is, in fact, to show that such functors are
isomorphicin SPetriCat, i.e., thatQ [ ] is a pseudo 2-functor. We proceed as follows.

Let f: N— N’ andg: N’ — N be morphisms of nets. Observe that for eaehSy,
the string(gso fs)!(a) is a permutation og“s( fg(a)) and that, therefore, there exists a
symmetryss: Q (go f)(@) — Q (9)oQ (f)(a) in Q (N). Then, foru=u;---un € &,
takes, to besy, ® ---®@ sy, Q (go f)(u) = Q (g) o Q ()(u). We claim that the family
{su}ues;, is a natural transformatio (go f) = Q (g) o Q (f). Sincesis clearly a
monoidal natural transformation and eaghs a symmetry isomorphism, this proves

1A reflexive graph has a sé& of edges, a sel of nodes, function®)y,d,: E — N and a function
id: N — E with 0;(id(x)) = x. Homomorphisms preserve tBeandid.
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thatQ (go f) =2 Q (g) o Q (f) in SPetriCat. We proceed by induction on the structure
of a to show that, for ang: u— vin Q (N), we have

Q (gof)(a);sy=5u;Q (9) o Q (f)(ar).

The key to the proof is that is monoidal, i.e. sy = Sy ® Sy, as a simple inspection
of the definition shows. I& is an identity, then the claim is obvious. Moreovergif
is a transitiont,,y, thenQ (go f)(a) andQ (g) o Q (f)(a) are instances of the same
transition ofN, and the thesis follows immediately from axiom)( Suppose now that
a = cyy, @ symmetry of) (N). SinceQ (go f) andQ (g) o Q (f) are symmetric strict
monoidal functors, the equation that we have to prove reduces to

CQ (go)(1,Q (gof)(v) + v & T = B Sv5 € (g)Q ()(1),Q (9)oQ (F)(W)>
which certainly holds sinc@cuﬂ,}u’vesil is a natural transformatioxy ® X, = X ® X3.
If o =a0p®aq, with a;: u — v, then, fori = 0,1, we have by induction hypothesis
thatQ (go f)(ai);s; =su:Q (9) 0 Q (f)(ai) whence
Q (gof)(00) ®Q (gof)(01) ; Svpev; = Supzuy : Q (9)0Q () (o) ®Q (9)oQ (f)(ay),

whichisQ (go f)(a);sy =s,;Q (9) o Q (f)(a). Finally, in the case = 0g; 01, where
Og: U— wanday: w— v, the induction is proved by pasting the two commutative
squares in the following diagram, which exists by the induction hypothesis

Q(go f)(u) —2—Q (g)oQ (f)(u)
Q(gof)(awl lQ (9)0Q (f)(a
Q (g0 (W) —=—Q (9)0Q (H(W)

Q(gof)(ul)l lQ (9)0Q (f)(a
Q(gof)(V) —5—Q(9)Q (f)(v) v

In principle, of course, choosing two different sections (fof, say(_)" and (_)?,
gives twodifferentpseudo functor§ “(_),Q #(_): Petri — SPetriCat (that, however,
coincide on the objects). Another use for the 2-structurgRefriCat is to show that
the choice of the “choice mapping))! is actually, in a precise mathematical sense,
irrelevant



EXAMPLE . Let N andN be the nets of Figure 4, and It N — N be the morphism
such thatfr (t) =1, fs(a) = ca d, andfs(b) = e. In the hypothesis that!(a) = cd and
fﬁ(a) =dc, we have thaQ tl(_f)(ta,b) :_tcd,e # tace = Q ﬁ(f)(ta,b)-

Observe, however, thagge andtyce are simply different instances of the same
transition ofN, namelyt: ¢ d — e, related by axion{®) via the symmetries, 4 and
ide. In other wordsfcd’e andt_dQe are components of the same transitiofQofN). This
fact holds in full generality: for each net morphismQ “(f) andQ #(f) differ at most
by the correspondence between components of transitions, and coincide when consid-
ered as maps of transitions Qf(N) to transitions ofQ (N) (cf. [15, 17); formally,
there exists a 2-ceQ) ?(f) = Q #(f) in SPetriCat that makes therisomorphic In this
sense !(_) andQ f(_) areequivalentfunctors, and the choice of the section(of is
irrelevant.

In order to make this precise, lef)? and(_)? be sections of_)” and letf : N — N
be a morphism of nets. Since for eathp(S) — W(S) any such section can only differ
in the choice of the linearization of each multigén), a € S, the stringf?(a) is a per-
mutation off#(a) for eacha € Sy. Then, we can choose a symmesgy Q *(f)(a) —
Q¥(f)(a) in Q (N), takes,, ® -~ @ sy, Q4(f)(u) — Q#(f)(u) ass, for eachu =
Ui---Un € &, and — proceeding as before — prove tisat {su}uegﬁ is a natural
transformatior (f) = Q #(f). Sincesis monoidal and each, is a symmetry iso-
morphism, this proves th& () = Q {(f) in SPetriCat. v

Let us now turn our attention tN (_). There is now an obvious way to extract a
netN (C) from a symmetric Petri categofy, namely:

» the places oN (C) are the generatoof the monoid of objects§* of C;
» atransitiont: v — V' of N (C) is a transitiont: 1@ |, = ¢, ., of C.

Let F: C — C be a morphism of symmetric Petri categories, andSleand S*
be the monoid of objects of, respectivefandC. The object component d%, say
Fs, induces a monoid homomorphisfg: u(S) — W(S). Moreover, sincé= respects
transitions, i.e., since for each transitionf C there exists a (necessarily unique) tran-
sition T of C such thatF (tyy) = TE(u),F(v) ItS @rrow component restricts to a mep
from the transitions o€ to those ofC in such a way that, it: v — v’ in N (C), then
Fr(t): R2(v) = F&(V') in N (C). Therefore(Fr,Fs): N (C) — N (C) is a morphism
of nets, which we will denot® (F). It follows easily from the functoriality of )’
that N (), as defined above, is a (1-)functor. Concerning 2-cells, it can be proved
that wheneveF = G in SPetriCat, i.e.,F andG are isomorphic via a monoidal nat-
ural transformation composed exclusively of symmetries, FFgeﬁ GbS andFy = Gr,
which means thall (F) = N (G). Therefore, definindN (F = G) = idy () vields a
2-functorN (.): SPetriCat — Petri. v

The last argument shows tHst(_), althoughfull, is not faithful Observe now that
N andN (Q (N)) are isomorphic via the Petri net morphigf: N — N (Q (N)) whose
place component igls, and whose transition component mags Ty to the transition
{tuy € Q (N)} € Ty (@ (ny)- These two facts imply thddl (-) cannotbe adjoint tdQ (-),
as the homcatSPetriCat(Q (N),C) and Petri(N,N (C)) = Petri(N (Q (N)),N (C)
are not isomorphic. Actually, sindd (_) performs a quotient of monoidsijz. ()°,



whilst Q (1) chooses an arbitrary linearisation for the place components of net mor-
phismsyiz. (_)?, one could not expect otherwise. We shall see nextth@ identifies
only isomorphic functors or, equivalently, that the catego$istriCat(Q (N),C) and
Petri(N,N (C)) areequivalent
Let C be a symmetric Petri catego€y letec: Q N (C) — C be the (unique) sym-
metric strict monoidal functor that acts identitically on objects and sends the component
at(u,v) of the transitiorr: v — v' of N (C) to the component, of the corresponding
natural transformation: TQ\) o= T[év » 0f C. Sincet is a transition ofC, ¢ is well
defined. Since it preserveé transitions, it is a morphism of symmetric Petri categories.
SinceN (1) is a 2-functor and (_) acts functorially on 2-cells, for eadthin Petri
and eachC in SPetriCat, the functorsny andec induce a pair of functors between
homcats as follows.

ecoQ (o)

— T
Petri(N, N (C)) SPetriCat(Q (N),C)
-

N(-)onn

Let us prove that such functors form aquivalencef categories.

For f: N — N (C), letgbeN (gc 0Q (f)) onn. Sinceg(a) = (f¥)’(a) = f(a)
andg(t) =N (ec o Q (f))({tuv}) = f(t), we have thag = f. In the opposite direction,
for F: Q (N) — C, let G stand forec o Q (N (F) ony), and considen € Sy. Since
N (F)onn(a) = F(a), we have thaG(a) = Q (N (F) onn(a)) = (F2)*(a) and, thus,
there exists a symmetss: F(a) — G(a) in C. Then, foru=u;---uy € §, lets, be
Sy, ® - @Sy, F(u) = G(u). An inductive argument completely analogous to the one
exploited previously shows that the famgy= {sj}uegﬁ is a monoidal natural isomor-
phismF = G whose components are all symmetries. Therefore G in SPetriCat,
completing the proof thadll (ecoQ (1)) onn =id andecoQ (N () ony) =2id, i.e., that
€coQ (-) andN (.) ony form an equivalence of categories. v

To show thaf) (1) 4N (L), i.e., thatN (_) is pseudo right adjoint t (_), we need
to show that the above family of equivalences is pseudo natural — tinatisal up
to isomorphism— in N andC. This amounts to showing that, for eaghN — N and
G: C — C, the following diagrams of functors commute up to isomorphism.

Petri(N,N (C)) —<°2, SpetriCat(Q (N),C) "™, petri(N,N (C))
|

N(G)o_oﬂ o\l_/oQ(_) l (G)o_og
Petri(N,N (C)) W SPetriCat(Q (N),C) T) Petri(N,N (C))

It is in fact routine to prove thaBogcoQ (og) =€z 0Q (N (G)o_og) and that

N (Go.)onnog=N (Go_oQ (g)) ony:. v
Finally, concerningFSPetriCat, by general arguments in category theory, it is

enough to show thaf belongs toFSPetriCat if and only if ec: Q N (C) — C, the

component a€ of the counit ofQ (_) 4 N (_) is aniso. Sinceec is an isomorphism on

the objects, it is iso if and only if it is an isomorphism on each homset. Then the result

follows, since each arrow df can be written as tensor and composition of symmetries



and component of transitions if and onlysi is surjective on each homset, and this
can be done uniquely (up to the equalities that necessarily hold in any symmetric Petri
category) if and only ik is injective on each homset. v
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