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ABSTRACT. This paper retraces, collects, summarises, and mildly extends the contri-
butions of the authors — both together and individually — on the theme of representing
the space of computations of Petri nets in its mathematical essence.

Introduction

Among the semantics proposed forPetri nets[10] (see also [11, 13]), a relevant role
is played by the various notions ofprocess, e.g. [12, 5, 1], whose merit is to provide a
faithful account of computations involving many different transitions and of thecausal
connectionsbetween the events occurring in computations. Bare process models, how-
ever, fail to bring to the foreground thealgebraic structureof the space of computations
of a net. Our interest, instead, resides on abstract models that capture the mathematical
essence of such spaces, possibly axiomatically, roughly in the same way as a prime
algebraic domain (or, equivalently, a prime event structure) models the computations
of a safe net [9]. The research detailed in [6, 3, 4, 14, 7, 8, 16] identifies such struc-
tures assymmetric monoidal categories— where objects are states, i.e., multisets of
tokens, arrows are processes, and the tensor product and the arrow composition model,
respectively, the operations of parallel and sequential composition of processes.

At a higher level of abstraction, the next important question concerns theglobal
structureof the collection of such spaces, i.e., the axiomatisation `in the large' of net
computations. In other words, the space of the spaces of computations of Petri nets.
Building on [3, 4, 16], the work presented in [15, 17] shows that the so-calledsym-
metric Petri categories, a class of symmetric strict monoidal categories with free (non-
commutative) monoids of objects, provide one such an axiomatisation.

In this paper, we retrace and illustrate the main results achieved so far along these
lines of research by the authors, both in joint work and individually. Also, we give a
new presentation of the results of [15], already hinted at in [17], but never spelled out
in detail before. Due to space limitations, we shall omit any discussion on related work
in the literature.
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1. Petri Nets as Monoids

The idea of looking at nets asalgebraic structures, e.g. [13, 9, 18, 2], has been
given an original interpretation in [6], where nets are viewed essentially as internal
graphs in categories of sets with structure, and monoidal categories are first used as a
suitable semantic framework for them. Concerning the algebraic representation of net
computations, along the lines described in the introduction, the following is the main
result of [6].

THEOREM . The commutative processes (see[1]) of a net N are the arrows ofT (N),
the free strictly symmetric strict monoidal category on N.

Observe that, as a free construction,T (N) provides an axiomatisation of the com-
mutative processes ofN as analgebraic theory, and thus moves a step towards aunifica-
tion of the process and the algebraic view of net computations. As already mentioned,
the algebra here consists of the operations of a monoidal category: tensor product and
the arrow composition representing, respectively, parallel and sequential composition
of processes.

Commutative processes, however, are somehow marginal in net theory. The next
step was therefore to extend the result to thenonsequential processesof N [5], the
currently best-established notion of noninterleaving computation for nets.

2. Concatenable Processes

Concatenable processesof Petri nets have been introduced in [3, 4] to account, as
their name indicates, for the issue of process sequential concatenation. The starting
observation ofloc. cit. is that such an operation has to do with mergingtokens, i.e.,
instances of places, rather thanplaces. In fact, due to the ambiguity introduced by mul-
tiple instance of places (multiple tokens in places), two processes ofN can be composed
sequentially in many ways, each of which gives a possibly different process ofN.

Therefore, any attempt to structure processes ofN as an algebra which includes
sequential composition must disambiguate each token in a process. This is exactly the
idea of concatenable processes, which are simply nonsequential processes in which,
when needed, instances of places (tokens) are distinguished by appropriate decora-
tions. This immediately yields an operation of concatenation: the ambiguity about
multiple tokens is resolved using such additional information. The main result of [3, 4]
is an axiomatisation of such a category, stated here in the improved enunciation proved
in [14, 16].

THEOREM . The concatenable processes of a net N are the arrows ofP (N), obtained
from the free symmetric strict monoidal categoryF (N) on N by imposing the axioms

ca;b = ida
b; if a and b are different places of N;

s;t;s0 = t; if t is a transition of N and s and s0 are symmetries ofF (N);

where c, id,
, and ; are, respectively, the symmetry isomorphism, the identities, the
tensor product, and the composition ofF (N).

This result matches the one for commutative processes in describing net behaviours
asalgebrasin terms ofuniversalconstructions. Here, of course, a more complex al-
gebraic structure — namely, symmetries and the related axioms above — is needed.
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FIGURE 1. A netN and its concatenable processπ = t0
 t1 ;t
 idc

Observe that, in fact, the strictness of the symmetric structure of the monoidal category
has disappeared.

EXAMPLE . Figure 1 shows a concatenable processπ of a netN that corresponds to
the arrowt0
 t1 ;t 
 idc of P (N). To exemplify the algebra of processes ofN, π is
expressed as parallel (
 ) and sequential (; ) composition of simpler processes. Such
operations are matched precisely by operations and axioms ofP (N), and this is the
essence of the theorem above.

The constructionP ( ), however, is somehow unsatisfactory, since it is not func-
torial: given asimulationbetween two nets, it may not be possible to identify a cor-
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responding monoidal functor between the respective categories of computations. This
fact, besides showing that the understanding of nets provided byP ( ) is still incom-
plete, prevents us from identifying thecategory(of the categories)of net computations,
i.e., from axiomatising the behaviour of nets `in the large' .

DEFINITION . Given netsN andN̄, a morphismf : N ! N̄ is a pairh fT ; fSi, where
fT : TN ! TN̄ is a function — the transition component off — and, denoting byµ(S)
the free commutative monoid onS, fS: µ(SN)! µ(SN̄) is a monoid homomorphism —
the place component off — mappingmultisetsof places ofN to multisetsof places of
N̄ in such a way that for all transitionst : u! v of N, we havefT(t) : fS(u)! fS(v).

This defines the categoryPetri of Petri nets.

EXAMPLE . Consider the netsN andN̄ in Figure 2 andf : N ! N̄ where fT(ti) = t̄i ,
fS(ai) = ā and fS(bi) = b̄i , for i = 0;1. Then, f cannot be extended to a monoidal
functor P ( f ) : P (N) ! P (N̄). In fact, for any such extensionF , by monoidality we
must haveF(t0
 t1) = F(t0)
F(t1) = t̄0
 t̄1, and sincet0
 t1 = t1
 t0, it follows that

t̄0
 t̄1 = F(t1
 t0) = t̄1
 t̄0;

which is impossible, since the leftmost and rightmost processes aredifferentin P (N̄).

3. Strongly Concatenable Processes

Strongly concatenable processesare a slight refinement of concatenable processes
introduced in [15, 17] to yield a functorial algebraic description of net computations.
The refinement, which consists simply of decorating selected places in nonsequential
processes more strongly than in concatenable processes (see Figure 3), is shown to
be — in a very precise mathematical sense (see [15, 17]) — the slightestrefinement
that yields a functorial construction. As for their predecessors, strongly concatenable
processes admit an axiomatisation in terms of a universal algebraic construction based
on symmetric monoidal categories.

THEOREM . The strongly concatenable processes of a net N are the arrows ofQ (N),
obtained from the symmetric strict monoidal category freely generated from the places
of N and, for each transition t of N, an arrow tu;v : u! v for each pair of linearisations
(as strings) u and v of the pre- and post- sets (multisets) of t, by quotienting modulo the
axiom

(Φ) s;tu0;v = tu;v0 ;s
0
; for s: u! u0 and s0 : v0 ! v symmetries:
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FIGURE 3. Two strongly concatenable processes corresponding toπ of Figure 1

The key feature ofQ ( ) is that, differently fromP ( ), it associates to the netN
a monoidal category whose objects form a freenon-commutativemonoid (viz. S�N as
opposed toµ(SN)), i.e., it deals withstringsas explicitrepresentativesof multisets. As
hinted above, renouncing to such commutativity, a choice that at first may seem odd,
can be proved to be necessary in order to obtain a functor. As a consequence of this
choice, each transition ofN has many corresponding arrows inQ (N); such arrows,
however, are `related' to each other by thenaturalitycondition(Φ), in the precise sense
that, when collected together, they form a natural transformation between appropriate
functors. In fact,(Φ) asserts that any diagram inQ (N) of the kind

u

��

s

//

tu;v0

v0

��

s0

u0 //

tu0
;v

v

(sands0 symmetries)

commutes, which, as we shall see, can be equivalently expressed in terms of func-
tors and natural transformations. This naturality axiom is the second relevant fea-
ture of Q ( ), actually the one that keeps the computational interpretation of the cate-
goryQ (N), i.e., the strongly concatenable processes, surprisingly close to that ofP (N),
i.e., to the concatenable processes (cf. Figures 1 and 3).

Concerning functoriality, [15] shows thatQ ( ) extends to acoreflectionfunctor
from the category of Petri nets toa category of symmetric monoidal categories. The
latter is constructed byquotientingthe category of symmetric monoidal categories in
such a way as to identify all the symmetric monoidal functors that, informally speaking,
differ only by the `representatives of multisets' chosen. Here, we proceed along the
way hinted at in [17] using2-categories(more precisely,groupoid-enrichedcategories),
the role of the 2-structure being to carry information about multisets, thus making an
explicit quotient construction unnecessary.



DEFINITION . A symmetric Petri categoryis a symmetric strict monoidal categoryC
whose monoid of objects isS�, the free monoid onS, for some setS. We shall letSymC
denote its subcategory of symmetries, andSym

C;ν, for ν a multiset inµ(S), the full
subcategory ofSymC consisting of thoseu2 S� whose underlying multiset,µ(u), is ν.

The relevance of symmetric Petri categories for our purposes resides in that they
allow us to capture the essence of the arrows generatingQ (N), i.e., the instances of
the transitions ofN. Such arrows, in fact, have two very special properties that char-
acterise them completely: (1) they are decomposable as tensors only trivially, and as
compositions only by means of symmetries, and (2), as already mentioned, they form
natural transformations between appropriate functors. Following the usual categorical
paradigm, we then use such properties, expressed in abstract categorical terms, to define
the notion oftransitionin a general symmetric Petri category.

DEFINITION . Let C be a symmetric Petri category andS� its monoid of objects. An
arrowτ in C is primitive if (denoting byε the empty word inS�)

I τ is nota symmetry;
I τ = α ;β implies α is a symmetry andβ is primitive, or viceversa;
I τ = α
β implies α = idε andβ is primitive, or viceversa.

A transitionof C is a natural transformationτ : π0
C;ν;ν0 ) π1

C;ν;ν0 whose componentsτu;v

areprimitive arrows ofC, where, forν;ν0 in µ(S), and the functorsπ0
C;ν;ν0 andπ1

C;ν;ν0

are defined by the diagram

SymC;ν �
z
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Observe that the definition above captures the essence ofQ (N): the transitions of
Q (N) areall andonly the familiesftu;v j t : µ(u)! µ(v) 2 TNg. This leads us to the
following result.

THEOREM . Let SPetriCat be the 2-category whose objects are the symmetric Petri
categories, whose arrows are the symmetric strict monoidal functors that respect tran-
sitions, and with a 2-cell F)G if there exists a monoidal natural isomorphism between
F and G whose components are all symmetries.

Then,Q ( ) : Petri! SPetriCat is a pseudo 2-functor (considering the category
Petri of Petri nets as a trivial 2-category) that admits a pseudo right adjointN ( )
forming withQ ( ) a pseudo coreflection.

The latter terminology means precisely that the natural family of isomorphisms
between homsets that defines an adjunction is relaxed to a (pseudo) natural family of
equivalencesbetweenhomcats. Finally, concerning thecategory(of the categories)of
net computations, we have the following result that characterises abstractly the cate-
gories corresponding to algebras of Petri net causal behaviours.



THEOREM . Let FSPetriCat be the full subcategory ofSPetriCat consisting of those
symmetric Petri categoriesC whose arrows can be generated by tensor and composition
from symmetries, and components of transitions ofC, uniquely up to the axioms of
symmetric strict monoidal categories and the naturality of transitions, i.e., axiom(Φ).

Then,FSPetriCat andPetri are pseudo equivalent viaN [ ] andQ [ ].

In the rest of the paper we shall provide a sketch of the proofs of these results.

Let FMon be the category with objects the free monoidsS�, whereS2 Set ranges
over sets, and morphisms the monoid homomorphisms. Similarly, letFCMon be the
category with objects the free commutative monoidsµ(S), S2 Set, and morphisms
the monoid homomorphisms. Consider the obvious quotient functor( )[ : FMon!

FCMon. Explicitly, (S�)[ = µ(S), whilst the action of( )[ on f : S� ! S̄� gives the
unique homomorphismf [ : µ(S) ! µ(S̄) such thatf [(a) = µ( f (a)) for all a 2 S. If
we regard( )[ : FMon ! FCMon as areflexive graph1 homomorphism, we can de-
fine a reflexive graph homomorphism( )\ : FCMon ! FMon in the other direction

such that(( )\)
[
= idFCMon. Indeed, we can define( )\ on objects by(µ(S))\ = S�

and for each nonidentity monoid homomorphismf : µ(S) ! µ(S0) we can choose a
monoid homomorphismf \ : S� ! S0� by selecting for eacha 2 S a word f \(a) such
thatµ( f \(a)) = f (a). For the identity homomorphisms we can define(idµ(S))

\ = idS� .

Fixed one such( )\, we can define the action ofQ ( ) on Petri net morphisms.

Let f : N ! N̄ be a morphism of Petri nets. SincefS is a monoid homomorphism
from µ(SN) to µ(SN̄), we consider the homomorphismf \

S: S�N ! S�N̄. By the freeness of
SymQ (N), such a morphism can be extended (uniquely) to a symmetric strict monoidal
functorFS: SymQ (N) ! Q (N̄) and, therefore, to a functorF : Q (N)! Q (N̄), defined
as the unique symmetric strict monoidal functor which coincides withFS on SymQ (N)

and mapstu;v : u! v to ( fT(t))F(u);F(v) : F(u)! F(v). Since monoidal functors map
symmetries to symmetries, and sincefT(t) is a transition ofN1, it follows immediately
thatF respects axiom (Φ), i.e., thatF is well defined. Concerning the (trivial) 2-cells
of Petri, the action ofQ ( ) on them is clearly forced:Q (id : f ) f ) must necessarily
be (the unique)Q ( f )) Q ( f ).

SinceQ ( f ) is uniquely determined byfT and f \
S, by the property(idµ(S))

\ = idS�

of ( )\, it follows thatQ (idN) : Q (N)! Q (N) is the identity functor. However, since
in general(gS� fS)\ 6= g\

S� f \
S, we have thatQ (g� f ) 6= Q (g)�Q ( f ). The whole point

about considering the 2-structure ofSPetriCat is, in fact, to show that such functors are
isomorphicin SPetriCat, i.e., thatQ [ ] is a pseudo 2-functor. We proceed as follows.

Let f : N!N0 andg: N0! N̄ be morphisms of nets. Observe that for eacha2SN,
the string(gS� fS)\(a) is a permutation ofg\

S( f \
S(a)) and that, therefore, there exists a

symmetrysa : Q (g� f )(a)! Q (g) �Q ( f )(a) in Q (N̄). Then, foru = u1 � � �un 2 S�N,
takesu to besu1 
�� �
sun : Q (g� f )(u)! Q (g)�Q ( f )(u). We claim that the family
fsugu2S�

N
is a natural transformationQ (g� f ) ) Q (g) �Q ( f ). Sinces is clearly a

monoidal natural transformation and eachsu is a symmetry isomorphism, this proves

1A reflexive graph has a setE of edges, a setN of nodes, functions∂0;∂1 : E ! N and a function
id : N! E with ∂i(id(x)) = x. Homomorphisms preserve the∂i andid.
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thatQ (g� f )�= Q (g) �Q ( f ) in SPetriCat. We proceed by induction on the structure
of α to show that, for anyα : u! v in Q (N), we have

Q (g� f )(α) ;sv = su ;Q (g)�Q ( f )(α):

The key to the proof is thats is monoidal, i.e.,suv = su
 sv, as a simple inspection
of the definition shows. Ifα is an identity, then the claim is obvious. Moreover, ifα
is a transitiontu;v, thenQ (g� f )(α) andQ (g) �Q ( f )(α) are instances of the same
transition ofN̄, and the thesis follows immediately from axiom (Φ). Suppose now that
α = cu;v, a symmetry ofQ (N). SinceQ (g� f ) andQ (g)�Q ( f ) are symmetric strict
monoidal functors, the equation that we have to prove reduces to

cQ (g� f )(u);Q (g� f )(v) ;sv
su = su
sv ;cQ (g)�Q ( f )(u);Q (g)�Q ( f )(v);

which certainly holds sincefcu;vgu;v2S�

N
is a natural transformationx1
 x2 ) x2
 x1.

If α = α0
α1, with αi : ui ! vi , then, fori = 0;1, we have by induction hypothesis
thatQ (g� f )(αi) ;svi = sui ;Q (g)�Q ( f )(αi) whence

Q (g� f )(α0)
Q (g� f )(α1) ;sv0
v1 = su0
u1 ;Q (g)�Q ( f )(α0)
Q (g)�Q ( f )(α1);

which isQ (g� f )(α) ;sv = su ;Q (g)�Q ( f )(α). Finally, in the caseα = α0 ;α1, where
α0 : u! w andα1 : w! v, the induction is proved by pasting the two commutative
squares in the following diagram, which exists by the induction hypothesis

Q (g� f )(u)

��

Q (g� f )(α0)

//
su Q (g)�Q ( f )(u)

��

Q (g)�Q ( f )(α0)

Q (g� f )(w)

��

Q (g� f )(α1)

//
sw

Q (g)�Q ( f )(w)

��

Q (g)�Q ( f )(α1)

Q (g� f )(v) //
sv

Q (g)�Q ( f )(v)
X

In principle, of course, choosing two different sections for( )[, say( )\ and( )],
gives twodifferentpseudo functorsQ \( );Q ]( ) : Petri! SPetriCat (that, however,
coincide on the objects). Another use for the 2-structure ofSPetriCat is to show that
the choice of the `choice mapping'( )\ is actually, in a precise mathematical sense,
irrelevant.



EXAMPLE . Let N andN̄ be the nets of Figure 4, and letf : N ! N̄ be the morphism
such thatfT(t) = t̄, fS(a) = c�d, and fS(b) = e. In the hypothesis thatf \(a) = cd and
f ](a) = dc, we have thatQ \( f )(ta;b) = t̄cd;e 6= t̄dc;e = Q ]( f )(ta;b).

Observe, however, that̄tcd;e and t̄dc;e are simply different instances of the same
transition ofN̄, namelyt̄ : c�d! e, related by axiom(Φ) via the symmetriescc;d and
ide. In other words,̄tcd;e andt̄dc;e are components of the same transition ofQ (N). This
fact holds in full generality: for each net morphismf , Q \( f ) andQ ]( f ) differ at most
by the correspondence between components of transitions, and coincide when consid-
ered as maps of transitions ofQ (N) to transitions ofQ (N̄) (cf. [15, 17]); formally,
there exists a 2-cellQ \( f )) Q ]( f ) in SPetriCat that makes themisomorphic. In this
sense,Q \( ) andQ ]( ) areequivalentfunctors, and the choice of the section of( )[ is
irrelevant.

In order to make this precise, let( )\ and( )] be sections of( )[ and let f : N ! N̄
be a morphism of nets. Since for eachf : µ(S)! µ(S0) any such section can only differ
in the choice of the linearization of each multisetf (a), a2 S, the stringf \(a) is a per-
mutation of f ](a) for eacha2 SN. Then, we can choose a symmetrysa : Q \( f )(a)!
Q ]( f )(a) in Q (N̄), takesu1 
 �� � 
 sun : Q \( f )(u) ! Q ]( f )(u) as su for eachu =
u1 � � �un 2 S�N, and — proceeding as before — prove thats = fsugu2S�

N
is a natural

transformationQ \( f ) ) Q ]( f ). Sinces is monoidal and eachsu is a symmetry iso-
morphism, this proves thatQ \( f )�= Q ]( f ) in SPetriCat. X

Let us now turn our attention toN ( ). There is now an obvious way to extract a
netN (C) from a symmetric Petri categoryC, namely:

I the places ofN (C) are the generatorsSof the monoid of objectsS� of C;
I a transitionτ : ν ! ν0 of N (C) is a transitionτ : π0

C;ν;ν0 ) π1
C;ν;ν0 of C.

Let F : C ! �C be a morphism of symmetric Petri categories, and letS� and S̄�

be the monoid of objects of, respectively,C and �C. The object component ofF , say
FS, induces a monoid homomorphismF[

S : µ(S) ! µ(S̄). Moreover, sinceF respects
transitions, i.e., since for each transitionτ of C there exists a (necessarily unique) tran-
sition τ̄ of �C such thatF(τu;v) = τ̄F(u);F(v), its arrow component restricts to a mapFT

from the transitions ofC to those of�C in such a way that, ifτ : ν ! ν0 in N (C), then
FT(τ) : F[

S(ν)! F[
S(ν0) in N (�C). Therefore,hFT ;FSi : N (C)! N (�C) is a morphism

of nets, which we will denoteN (F). It follows easily from the functoriality of( )[

that N ( ), as defined above, is a (1-)functor. Concerning 2-cells, it can be proved
that wheneverF ) G in SPetriCat, i.e., F andG are isomorphic via a monoidal nat-
ural transformation composed exclusively of symmetries, thenF[

S = G[
S andFT = GT ,

which means thatN (F) = N (G). Therefore, definingN (F ) G) = idN (F) yields a
2-functorN ( ) : SPetriCat! Petri. X

The last argument shows thatN ( ), althoughfull, is not faithful. Observe now that
N andN (Q (N)) are isomorphic via the Petri net morphismηN : N!N (Q (N)) whose
place component isidSN and whose transition component mapst 2 TN to the transition
ftu;v2 Q (N)g 2 TN (Q (N)). These two facts imply thatN ( ) cannotbe adjoint toQ ( ),
as the homcatsSPetriCat(Q (N);C) andPetri(N;N (C)) �= Petri(N (Q (N));N (C))

are not isomorphic. Actually, sinceN ( ) performs a quotient of monoids,viz. ( )[,



whilst Q ( ) chooses an arbitrary linearisation for the place components of net mor-
phisms,viz.( )\, one could not expect otherwise. We shall see next thatN ( ) identifies
only isomorphic functors or, equivalently, that the categoriesSPetriCat(Q (N);C) and
Petri(N;N (C)) areequivalent.

Let C be a symmetric Petri categoryC, let εC : Q N (C)! C be the (unique) sym-
metric strict monoidal functor that acts identitically on objects and sends the component
at(u;v) of the transitionτ : ν! ν0 of N (C) to the componentτu;v of the corresponding
natural transformationτ : π0

C;ν;ν0 ) π1
C;ν;ν0 of C. Sinceτ is a transition ofC, εC is well

defined. Since it preserves transitions, it is a morphism of symmetric Petri categories.
SinceN ( ) is a 2-functor andQ ( ) acts functorially on 2-cells, for eachN in Petri

and eachC in SPetriCat, the functorsηN and εC induce a pair of functors between
homcats as follows.

Petri(N;N (C))
**

εC � Q ( )

SPetriCat(Q (N);C)
jj

N ( ) � ηN

Let us prove that such functors form anequivalenceof categories.
For f : N ! N (C), let g be N (εC �Q ( f )) �ηN. Sinceg(a) = ( f \)[(a) = f (a)

andg(t) = N (εC �Q ( f ))(ftu;vg) = f (t), we have thatg= f . In the opposite direction,
for F : Q (N) ! C, let G stand forεC �Q (N (F) �ηN), and considera 2 SN. Since
N (F)�ηN(a) = F[

S(a), we have thatG(a) = Q (N (F)�ηN(a)) = (F[
S)

\(a) and, thus,
there exists a symmetrysa : F(a)! G(a) in C. Then, foru = u1 � � �un 2 S�N, let su be
su1 
�� �
sun : F(u)! G(u). An inductive argument completely analogous to the one
exploited previously shows that the familys= fsugu2S�

N
is a monoidal natural isomor-

phismF ) G whose components are all symmetries. ThereforeF �= G in SPetriCat,
completing the proof thatN (εC �Q ( ))�ηN = id andεC �Q (N ( )�ηN)�= id, i.e., that
εC �Q ( ) andN ( )�ηN form an equivalence of categories. X

To show thatQ ( ) aN ( ), i.e., thatN ( ) is pseudo right adjoint toQ ( ), we need
to show that the above family of equivalences is pseudo natural — that isnatural up
to isomorphism— in N andC. This amounts to showing that, for eachg: N̄ ! N and
G: C! �C, the following diagrams of functors commute up to isomorphism.

Petri(N;N (C)) //

εC � Q ( )

��

N (G) � � g

SPetriCat(Q (N);C) //

N ( ) � ηN

��

G � � Q (g)

Petri(N;N (C))

��

N (G) � � g

Petri(N̄;N (�C)) //

ε�C � Q ( )
SPetriCat(Q (N̄); �C) //

N ( ) � ηN̄
Petri(N̄;N (�C))

It is in fact routine to prove thatG� εC �Q ( � g) = ε�C �Q (N (G) � � g) and that
N (G� )�ηN �g�= N (G� �Q (g))�ηN̄. X

Finally, concerningFSPetriCat, by general arguments in category theory, it is
enough to show thatC belongs toFSPetriCat if and only if εC : Q N (C) ! C, the
component atC of the counit ofQ ( ) a N ( ) is aniso. SinceεC is an isomorphism on
the objects, it is iso if and only if it is an isomorphism on each homset. Then the result
follows, since each arrow ofC can be written as tensor and composition of symmetries



and component of transitions if and only ifεC is surjective on each homset, and this
can be done uniquely (up to the equalities that necessarily hold in any symmetric Petri
category) if and only ifεC is injective on each homset. X
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