Real-Time Specification Inheritance Anomalies and
Real-Time Filters

Mehmet Aksit!, Jan Bosch!, William van der Sterren? and Lodewijk
Bergmans!

IDepartment of Computer Science, University of Twente, P.O. Box 217, 7500 AE
Enschede, The Netherlands.
email; {aksit, bosch, bergmans }@cs.utwente.nl
ftp: ftp.cs.utwente.nl, directory: doc/pub/TRESE
www server: http://www_trese.cs.utwente.nl
ZDepartment of Computer Science, Eindhoven University of Technology, P.O. Box
513, 5600 MB Eindhoven. e-mail: sterrenw@info.win.tue.nl

Abstract. Real-time programs are, in general, difficult to design and verify.
The inheritance mechanism can be useful in reusing well-defined and verified
real-time programs. In applications developed by current real-time object-
oriented languages, however, changing application requirements or changing
real-time specifications in sub-classes may require excessive redefinitions
although this seems to be intuitively unnecessary. We refer to this as the real-
time specification inheritance anomaly. This paper introduces three kinds of
real-time specification inheritance anomalies that one may experience while
constructing object-oriented programs. As a solution to these anomalies, the
concept of real-time composition filters is introduced. Filters affect the real-
time characteristics of messages that are received or sent by an object.
Through proper configuration of filters, one can specify real-time constraints,
and reuse of these constraints without causing inheritance anomalies.

1. Introduction

Object-oriented programming languages [9, 10] have gained popularity in non real-
time applications. These languages are highly modular and provide protection
through encapsulation. In addition, classes and inheritance enable programmers to
reuse existing software.

Recently, there have been some attempts to define real-time object-oriented
languages [7, 12, 13, 15, 18]. One motivation for introducing object-oriented
concepts in real-time languages is to reduce the complexity of applications through
modularization so that predictability and reliability of applications can be increased.
Real-time programs are, in general, difficult to design and verify. The inheritance
mechanism can be useful in reusing well-defined and verified real-time programs. In
addition, since object-oriented languages are now frequently applied to software
implementations, it would not be practical to adopt different languages for real-time
and non real-time parts of an application.

M. Tokoro and R. Pareschi (Eds.): ECOOP ' 94, LNCS 821, pp. 386-407, 1994.
O Springer-Verlag Berlin Heidelberg 1994

387

There are, however, several issues to be addressed in order to fully utilize object-
orientation in real-time application development. We think that the application code
must be reused separately from its real-time specifications. This promotes the reuse
of both application code and real-time specifications. If separation is not possible,
changes made to the application requirements or real-time specifications in sub-
classes may result in excessive redefinitions even though this seems to be intuitively
unnecessary. We refer to this as the real-time specification inheritance anomaly.
This paper introduces three kinds of real-time specification inheritance anomalies
that one may experience while constructing object-oriented programs. These
anomalies are explained by means of a set of examples.

As a possible solution to these anomalies, the concept of real-time composition
filters is introduced. Filters affect the real-time characteristics of the received and
sent messages. By proper configuration of filters, one can specify real-time
constraints, and reuse of these constraints without causing inheritance anomalies.

The following section introduces the basic real-time specification techniques and
gives a short overview of real-time aspects in object-oriented methods and languages.
Section 3 defines the concept of real-time specification inheritance anomaly through
a number of examples. Section 4 introduces real-time composition filters and
explains how filters can help in solving the anomalies. Finally, section 5 gives
conclusions.

2. Real-Time Specifications in Object-Oriented Languages

2.1. Definitions

A real-time system is a system in which the correctness of its output(s) depends not
only on the logical computations carried out but also on the time the results are
delivered. The built-in notion of time and how it is used in the system is the
difference between real-time systems and non real-time systems. The so-called hard
timing constraints define a time-bound for a process that must be fulfilled, otherwise
the computed result is useless, or can be even harmful. The process is not allowed to
execute outside the specified time-bound. Soft timing constraints define a time-bound
for a process outside which the computed result is not useless but still has a
(diminished) value. The process is allowed to continue outside the specified time-
bound. In addition, tasks in real-time systems are classified into periodical and
aperiodical tasks. Periodical tasks have to be executed every p time units. The
deadline of the task need not be equal to the start of the next period. Aperiodical
tasks are not executed periodically but in reaction of an occurrence to a certain event.

The scheduler retrieves knowledge about the various timing constraints, resource
requests and/or priority specifications, and schedules the tasks in such an order that
an optimal performance of the system is achieved.

In the literature, a number of requirements are defined for expressing real-time
constraints [5, 8]. For example, for a task one may define the following timing
constraints: when it should start, when it should finish, whether it is a periodical or

388

single invocation, how much computation time it may take, and how long the
execution may take.

In this paper we restrict ourselves to timing constraint specifications in object-
oriented approaches and do not address other issues such as priorities, scheduling
algorithms and schedulability analysis of the real-time behavior of programs! .

In the object-oriented model the basic concepts are objects, classes, messages,
methods, and inheritance [19]. Methods correspond to a single thread of execution,
and therefore are the smallest entity on which timing constraints may be imposed. In
most real-time object-oriented languages, timing constraints are associated with
methods in one of three ways: (1) with a method header declaration; (2) with a part
of method's implementation (will be referred to as a code block); (3) with a single
message send or a statement in method's implementation.

An important aspect in object-oriented real-time modeling is the inheritance of
real-time constraints through the inheritance hierarchy. Ideally, an object-oriented
language must provide sufficient real-time specifications as one may expect from a
real-time language, and reuse of these specifications through the inheritance
mechanism. In addition, to improve robustness, encapsulation of implementation
details with respect to client objects and/or inheriting clients must also be ensured.

Apart from specification inheritance, most languages combine the real-time
specification of server objects with the specifications of client objects. In this case,
the most restricting real-time specification is selected as a real-time constraint for
both client and server objects.

2.2. Object-Oriented Real-Time Languages

Only in the recent years, real-time object-oriented programming languages have
emerged. In the following paragraphs, we will briefly discuss some significant real-
time object-oriented languages. The evaluation of these languages will be presented
in section 3. Appendix A presents the real-time characteristics of these languages.

The Maruti programing language (MPL) [15] is based on the c++ language [9]
and designed for the Maruti distributed operating system. MPL provides a number of
constructs to specify timing constraints. These constructs can be applied to message
sends and code blocks only. Timing constraints of the client object are passed on? to
the server object and to the methods called by it.

RTC++ [12] is an extension of the C++ language and is suitable for programming
both soft and hard real-time applications. RTC++ is implemented on top of the real-
time distributed operating system kernel ARTS. Timing constraints can be associated

A priority [16] is a static label associated with a execution thread indicating its relative
importance. It is used by a scheduling algorithm to determine the order of execution
threads. Schedulability analysis [11] is a technique to determine in advance whether a
program will meet its deadlines.

In real-time languages, sometimes the term inheritance is used for this purpose as well.
In this paper, we only use the term inheritance when we refer to class inheritance.

389

either with method headers or declared in the method body. Thus timing constraints
may be visible in the method interface and be encapsulated in the object's
implementation.

The FLEX language [13] is based on the Cc++ language and associates real-time
congtraints with code blocks. Any change in the execution state causes only those
immediately dependent constraints to be checked, thus no propagation of the
constraints is done. The constraints may be labeled and thus referred to by other
constraints. Precedence relations can be specified using constraint blocks that refer
to attributes of other constraints. Constraints may also contain boolean expressions
which are treated as an assertion to be maintained throughout the block's lifetime.

RealTimeTalk {7] is based on the Smalltalk language [10] without the features of
Smalltalk that impede the timing prediction, such as method lookup and garbage
collection. RealTimeTalk has been targeted to provide frameworks for soft and hard
real-time applications. In the framework, objects of a special class Use-Case
encapsulate timing-critical tasks. The RealTimeTalk compiler generates C-code
which, in turn, has to be compiled to a target system.

The DROL language [18] is based on the C++ language and aims at programming
distributed real-time systems. Its eminent feature is that users can describe the
semantics of message communications at a meta-level as a communication protocol
by using sending and receiving primitives. Like RTC++, DROL is implemented on top
of the ArRTs-kernel. The concept behind DROL is to provide the best effort at the
server, taking into account the timing constraints of a message, and to realize the
least suffering at the client side by detecting timing errors and avoiding the
propagation thereof. Timing constraints can be specified for both messages and
methods. For each method of a (server) object, its worst-case execution time may be
specified. Each message send may be a so-called time polymorphic invocation. From
a set of alternatives the server chooses the method that meets the timing constraint.
Periodic actions are specified using the active keyword, followed by the method
declaration and parameters specifying the time bound of period and execution time.
Because of the time polymorphic invocations, DROL provides flexible computations
and graceful degradation. In DROL, timing constraints for message sends may only be
declared in method bodies. Timing constraints for message acceptance specify the
worst case time and may only be declared at the object interface.

3. Real-Time Constraint Specification Inheritance Anomalies

A real-time specification inheritance anomaly is a conflict between the inheritance
mechanism and real-time specifications in an object-oriented programming
language; the conflicting characteristics of these mechanisms restrain simultaneous
use of inheritance and real-time constraints.

It is important to note that the real-time specification inheritance anomaly is not
inherent with combining real-time specifications and inheritance. On the contrary,
the anomaly is fully language dependent. The way a language implements timing
constraints and inheritance can be the sole cause of real-time specification
inheritance anomalies.

390

We found the following types of real-time inheritance anomalies: mixing real-
time specifications with application code, non-polymorphic real-time specifications
and orthogonally restricting specifications.

3.1. Mixing Real-Time Specifications with Application Code

Real-time specifications arc mixed with application code if the real-time
specifications are associated with a part of the implementation of a method. In this
case, since real-time specifications cannot be separated from the method
implementation, it is impossible to redefine the real-time specification nor the
method implementation without redefining both.

Consider for example, class DistributionNode which models a node in an
electricity distribution network. This node has one production line and several
consumption lines and it has to control the electricity flow from the production line
to the consumption lines. The production line has a software controlled connection
device that monitors the status of the line. If the production line is disconnected, then
the node will disconnect all consumption lines within a predefined period of time.

Class DistributionNode can be seen as a specialization of an electro-magnetic
switch. As listed in Figure 1, we therefore first define class EIMagneticSwitches with
a set of methods that connects or disconnects a set of power lines. For each
consumption line, class ElMagneticSwitches declares a pair of connectLine and
disconnectLine methods. These methods control a set of relays and are declared
between lines (3) to (6). The example classes are expressed using a general object-
oriented notation.

(1) class E/MagneticSwitches interface

(2) begin

(3) methods

(4) connectlLine1 returns nil; /1 connects power line 1/

(5) disconnectLinel returns nil; 1/ disconnects power line 1/

® / list of connectLine and disconnectLine methods for every remaining line //
(7) end;

Fig. 1. Interface declaration of class ElMagneticSwitches.

Figure 2 shows the definition of class DistributionNode. Class DistributionNode
inherits from ElMagneticSwitches and defines two additional methods called
productionLineDisconnected and disconnectConsumerLine. The method
productionLineDisconnected is invoked when the production line is disconnected for
some reason. When this method is invoked, it disconnects all the consumer lines.
The method disconnectConsumerLine accepts the line number as an argument, and
disconnects the corresponding line.

391

(1) class DistributionNode interface

(2) begin EIMagneticSwitches
3) inherits from ElMagneticSwitches;
(4) methods
(5) productionLineDisconnected returns nil; inherits
(6) disconnectConsumerLine(Integer) returns nil; from
(7) end;
(8) class DistributionNode implementation iatriba it
(9) coeeeiririineee // declarations and initializations // DistributionNode
(10) begin
(11) productionLineDisconnected
(12) begin
(13) for i:=1 to numberOfLines do timeMinEnd numberOfLines * t.q.cimer
(14) begin
(15) self.disconnectConsumerLine(i) // self call //
(16) end;
(17) end,;
(18) disconnectConsumerLine (lineNo: Integer)
(19) begin
(20) case lineNo ot timeMinEnd t.5omer
// real-time specification for disconnection //
(21) 1. self.disconnectLine1;
// inherits from ElMagneticSwitches //
(22) 2: self.disconnectLine2;
// inherits from EIMagneticSwitches //
(23) // cases for other lines //
(24) end;
(25) end;
(26) end;

Fig. 2. Interface declaration of class DistributionNode and implementation of the methods
productionLineDisconnected and disconnectConsumerLine.

In Figure 2, line (3) declares DistributionNode as a subclass of EIMagneticSwitches.
Lines (4) to (6) declare the method headers. The implementation of the method
productionLineDisconnected is given between lines (12) and (17). In line (15), this
method calls the method disconnectConsumerLine for every existing consumer line.
Following the keyword timeMinEnd, the amount of time available for the execution
of the FOR-loop is specified as the number of consumer lines multiplied by the time
required to disconnect a line. In lines (19) to (25), depending on the argument value,
the method disconnectConsumerLine calls the method disconnectLine which is
inherited from class ElMagneticSwitches. In line (20), the deadline for the method
disconnectedConsumerLine is specified using the statement timeMinEnd ., c.,1n0r-

We will now illustrate the mixing real-time specifications with application code
anomaly by introducing a subclass. As shown in Figure 3, assume now that class
FastDistributionNode inherits from DistributionNode. The timing constraint for the
methods productionLineDisconnected and disconnectConsumerLine, however, are
more restrictive than the ones of class DistributionNode. In lines (5) and (6), the
methods defined by DistributionNode are overridden by declaring them again in the
subclass. This is necessary because the real-time specifications are embedded in the

392

implementation of the superclass, and therefore the entire method has to be redefined
in the subclass. Note that in line (14), the real-time constraint is now specified as

f £ 3
numberOfLines * 10on sumerNew» WHere teonsumerNew < tconsumer-

(1) class FastDistributionNode intertace

(2) begin
8; imn:'er:'::: sfrom DistributionNode; DistributionNode
(5) b L
© /# mixing specification with code anomaly // inherits
‘with code anomaly // from
(7) end;
(8) class FastDistributeNode implementation C e
[(C) T // declarations and initializations // FastDistributionNode
(10) begin
(11) e // declarations and initializations //
(12) productionLineDisconnected
(13) begin
(14) tor i:=1 to numberOfConsumerlines do
timeMinEnd numberOfLines * t.oncumerNew
(15) begin
(16) self.disconnectConsumerlLine(i) / self call //
(17 end;
(18) end;
(19) oo / implementation of the method disconnectConsumerLine //
(20) end;
Fig. 3. Redefinition of the method productionLineDisconnected in the subclass

FastDistributionNode.

To avoid this anomaly, one can associate real-time specifications with the method
headers. For example, in lines (5) and (6) of Figure 4, the timing constraints of
methods are associated with the method declarations. If the adopted language
permits, the software engineer can then override the method header declarations
only, without changing their implementations. We also think that declaring real-time
specifications at the interface of an object fits more to the object-oriented
programming style.

(1) class DistributionNode intertace

2) begin
(3) inherits from EIMagneticSwitches;
(4) methods
(5) productionLineDisconnected returns nil;
timeMinEnd numberOfLines * t ;<. imer: #associated with header //
(6) disconnectConsumerLine(Integer) returns nil;
timeMinEnd t. o mer: // @associated with header //
(7) end;

Fig. 4. Interface declaration of class DistributionNode using constraint specification at the
interface.

393

3.2. Non-polymorphic Real-Time Specifications

The non-polymorphic real-time specifications anomaly occurs if a real-time
specification can not be polymorphically associated with a different method or a set
of methods. The programmer is then forced to define real-time specifications for
every method that requires the same specification. This anomaly can also be
experienced if the implementation of a method has to be changed in the subclass
without changing its real-time specification.

We will now give an example to illustrate this anomaly. Assume that we want to
protect consumer lines against short circuits. As shown in Figure 5, we introduce a
new class called MultipleFuses with a set of methods to detect short circuits on the
corresponding lines. These methods are declared in lines (3) to (6). Since in case of a
short circuit the corresponding line has to be disconnected within a certain time, all
the method headers of MultipleFuses are associated with the real-time constraint
specification using the statement timeMinEnd ¢y, .. ircyir AS listed in lines (12) to
(15), when a short circuit is detected, the corresponding method
disconnectConsumerLine is invoked. Because the real-time specifications cannot be
separated from the method header declarations and be polymorphically associated
with all the corresponding methods, specifications had to be repeated for every
method. Repetitive association of real-time specifications with method headers is
obviously error-prone, especially if these methods are located in different classes of
the inheritance hierarchy. A single change of the real-time constraints requires
updating all the separately defined specifications. Moreover, explicit association
restricts the open-endedness of the hierarchy because new methods with the same
real-time specification cannot be introduced in the subclasses without explicitly
associating the specifications with the new methods.

(1) class MultipleFuses interface

(2) begin
(3) methods)
(4) shortCircuitLine1 returns nil:t
(5) shortCircuitLine2 returns nil:g ChatCirou
// forced to declare the same spec. for all methods //
() // list of shortCircuitLine methods for every remaining line //
(7) end;
(8) class MultipleFuses implementation
=] S // declarations and initializations //.
(10) begin
(11) shortCircuitLine1
(12) begin
(13) self disconnectlinel; / deferred method (implemented by the subclass) //
(14) rereerere s /1 Ot Ope@rations, such as signaling, ete. //
(15) end;
[1) I // implementation of other methods //.
(17) end;

Fig. S. Definition of class MultipleFuses.

394

3.3. Orthogonally Restricting Real-Time Specifications

If several real-time specifications are defined independently and combined through
(multiple) inheritance and then affect each other semantically, the software engineer
can be forced to redefine some of the related specifications, We call this problem the
orthogonally restricting real-time specifications anomaly.

Consider for example, the interface definition of class ProtectedDistributionNode
as listed in Figure 6. Class ProtectedDistributionNode combines the features of
MultipleFuses and DistributionNode. Line (3) shows that this class inherits from
classes DistributionNode and MultipleFuses. In case there is a short circuit on a
consumer line, the corresponding method shortCircuitLine inherited from class
MultipleFuses will be invoked. This method will disconnect the line by invoking the
corresponding method disconnectLine which is inherited from class
ElMagneticSwitches.

We assume that protection is only meaningful if the disconnection switches are at
least as fast as the fuses. To ensure that the same real-time constraints are also valid
for the disconnection methods, in lines (5) and (6), all the methods inherited from
ElMagneticSwitches and used for disconnection are redefined. We observe here two
kinds of anomalies. The non-polymorphic specifications anomaly is observed
because the real-time specification used in class MultipleFuses has to be defined for
every disconnection method repeatedly. The orthogonally restricting specifications
anomaly occurs because, although the methods of classes ElMagneticSwitches,
DistributionNode and MultipleFuses were defined separately, they semantically
affect each other within class ProtectedDistributionNode.

In lines (7) and (8) the methods productionLineDisconnected and
disconnectConsumerLine are redefined because their timing constraints are now
affected by the redefinition of timing constraint LshortCircuir ©f the disconnection
methods. Again, we experience the orthogonally restricting specifications
anomaly3 .

3.4. Other Anomalies

Often real-time applications consist of a number of tasks. Synchronization
mechanisms are needed to control access to shared objects and to synchronize these
tasks. In general, in addition to real-time specifications, synchronization constraints
have to be inherited as well. Several researchers have mentioned that [6, 14] in
concurrent object-oriented languages, introducing a new method and/or overriding

One may claim that the disconnection methods do not need to be redefined if the adopted
language combines the real-time specification of the server object with the client object.
We think, however, that the real-time specifications must be explicitly declared at the
interface of objects. Secondly, this would not eliminate the anomaly for the methods
disconnectConsumerLine and productionLineDisconnected since these methods are not
called by the methods of class MultipleFuses, and therefore the real-time specification
cannot be implicitly associated with them.

395

an inherited method in a subclass may require additional definitions. In this paper
we only consider the real-time specification anomalies. For the synchronization
anomalies in real-time languages we refer to [17].

ElMagneticSwitches
inherits
from
DistributionNode MultipleFuses
inherits
from

ProtectedDistributionNode

(1) class ProtectedDistributionNode interface

2) begin
3) inherits from MultipleFuses, DistributionNode;
(4) methods N
(5) 5 End thoncCircuit:
shortCircuitLine methods from MutipleFuses and from //
// EIMagneticSwitches are orthogonally restricting //
e ... // list of remaining disconnect methods with real-time specification for every line //

(7
8

timeMinEnd L 16
// forced to redefine; methods from MultipleFuses and DistributionNode are /
// orthogonally restricting /)
(9) end;
Fig. 6. Redefinition of the methods disconnectLine, productionLineDisconnected and
disconnectConsumerLine in the subclass ProtectedDistributionNode due
to the orthogonally restricting specification anomaly.

3.5. Evaluation of Real-Time Object-Oriented Languages

We will now evaluate the real-time object-oriented languages with respect to the
real-time specification anomalies.

The Maruti Programming language is only capable of expressing timing
constraints within methods; timing constraints are always encapsulated and cannot
be separately inherited nor accessed by subclasses. Thus, it suffers from all three
anomalies we described.

396

In RTC++ timing constraints can either be declared at the method interface or
declared in the method body. Programs written in RTC++ may suffer from all three
real-time specification inheritance anomalies. RTC++ allows for timing specifications
at method declaration level; thus the mixing real-time specifications with application
code anomaly can be avoided. However, RTC++ does not prevent software engineers
from mixing code and timing specifications. In addition, in RTC++ timing
constraints cannot be separately defined, nor inherited.

In FLEX, timing constraints may only be associated with statements. It thus allows
for mixing code with timing specifications. FLEX enables a software engineer to
attach labels to blocks with constraints in order to refer to the start and finish time of
the corresponding block. However, the constraints themselves cannot be referred to,
so they cannot be inherited scparately. Polymorphic constraints cannot be
implemented as well.

RealTimeTalk does not suffer from inheritance anomalies because classes with
real-time specifications cannot be subclassed.

In DROL, timing constraints for message sends may only be declared in method
bodies. Timing constraints for message reception specify the worst case time and
may only be declared at the object interface. DROL allows for mixing code with time
polymorphic invocations, so it suffers from the mixing real-time specifications with
application code anomaly.

4. An Approach to Solving Real-Time Specification Anomalies:
Real-Time Filters

4.1. Real-Time Filters

To take advantage of the message-based nature of object-oriented languages, we
propose to have timing information traveling with each message. This way, both
client and server objects can impose timing constraints, and the server may take the
client's timing constraint into account.

Since real-time constraints are being carried in messages, we need language
constructs to read and affect timing constraints by client and/or server objects. We
also believe that real-time specifications must be declared at the interface of objects.
Obviously, we want to avoid real-time specification anomalies.

To fulfil these requirements, we extend the conventional object-model with the
so-called composition-filters* . An example of using composition-filters is illustrated

We would like to emphasize that the composition-filters approach is a modeling
paradigm rather than the definition of a language with fixed semantics. This is because
the semantics of the programs expressed in this language are largely determined by the
semantics of the adopted filters. For example, [1] illustrated how both inheritance and
delegation can be simulated using filters. [2] introduced filters for defining reusable
transactions. Language-database problems were addressed in [3]. [6] showed how
composition-filters can be used to express reusable synchronization specifications. In [4],

397

in Figure 7. This figure shows the interface definition of class DistributionNode,
whose functionality is the same as the one listed in Figure 4. We will compare the
latter with the composition-filters implementation in Figure 7. Lines (3) and (4)
declare internal object mySwitch of class ElMagneticSwitches at the interface of

DistributionNode.

messages

E] reak-time fitter ‘giveTimeSpec

; seiﬂmeForProduction g

filters

[[] dispatchiitter
invoke

messages
are affected
by filters

productionLine
Disconnected

meth

disconnect
ConsumerLine

1) class DistributionNode interface ol

(2) begin EIMargnzeticSwitches

(3) internals

(4) mySwitch: DistributionNode

ElMagneticSwitches;

(5) methods

(6) productionLineDisconnected returns nil;

(7) disconnectConsumerLine(integer) returns nil;

(8) inputfilters

9) giveTimeSpec: RealTime = { True => self.” | time.minEnd(toonsumer) | 1

(10) setTimeForProduction: RealTime = { True => self productionLineDisconnected

(11) | time.setEnd(numberOfLines *
time.getEnd) | };

(12) invoke: Dispatch = { True => mySwitch.*, True => inner.* };

(13) end;

Fig. 7. Interface definition of class DistributionNode using real-time and dispatch filters.

Another difference is the declaration of three filters in lines (8) to (12) following
the inputfilters> clause. A filter determines whether a particular message is either
accepted or rejected and what action is to be performed in either case. Each filter is
declared as an instance of a filter class. A programmer may define an arbitrary

filters were used to abstract coordinated behavior among objects. The application of
composition-filters for real-time specifications was not published before.

5 In addition to input filters, the composition-filters model also supports output filters.
Output filters affect outgoing messages, whereas inputfilters affect incoming messages.
Output filters are useful for imposing real-time constraints on messages that are sent by
an object. For brevity, we do not further consider output filters in this paper.

398

number of filters for an object. For example in figure 7, lines (9) to (11) declare two
filters of class RealTime. Line (12) declares a filter of class Dispatch6 .

A filter specifies conditions for message acceptance or rejection and determines the
appropriate resulting action. In line (9), an input filter called giveTimeSpec of class
RealTime is declared using the expression

giveTimeSpec: RealTime = { True =>self.” | ime.minEnd{ t.gneymer) | 1

An input filter of class RealTime is used to affect the timing attribute of the message
when the corresponding message matches with the filter. If the message does not
maitch with the filter, then it will pass to the next filter without receiving the timing
attribute. The filtering condition between the brackets "{" and "}" is specified as

{ True => self.* {time.minEnd(toonsumer) |):

On the left hand side of the characters "=>", a necessary condition is specified,
denoted by the condition identifier, which is True in this case. Conditions are similar
to logical propositions. The names of the conditions are declared in the interface part
following the keyword conditions and their definition is provided in the
implementation part. Conditions may reflect the values of instance variables, but of
external variables as well. Conditions are useful in controlling the object's interface,
for example in assigning timing constraints based the urgency of the situation. In
class DistributionNode, for simplicity, the constant True is used instead of a
condition variable.

The received message is compared with the method names specified on the right
hand side of the characters "=>". The character "*" indicates a wild-card or don't
care condition; In case of RealTime filters, self* means that if the message matches
with any of the method names provided at the interface of class DistributionNode,
then it will receive the timing constraint expressed between the separators "l ... I". An
alternative could be to list all the method names explicitly. The pseudo-variable self
denotes the instance of class DistributionNode.

The real-time constraint in the filter is expressed as

| time.minEnd(toonsumer) |

The current version of the Sina language, the language that adopted the composition-
filters model, provides a number of primitive filters such as RealTime, Dispatch, Meta,
Error and Wait. The Reallime and Dispatch filters are explained in this section. The
Meta filter is used to mode] coordinated behavior and explained in [4]. The Error filter is
similar to the Dispatch filter but it does not provide a method dispatch; it raises an error
condition if a message does not pass through the filter [3]. The Wait filter is used for
synchronization [6]. These filters can be used as both input and output filters. An
important feature of all these filters is that they are orthogonal to each other and,
therefore, they can be combined freely.

399

Here, time denotes the timing attribute of the received message. The method minEnd
is defined by time to associate a timing constraint with it. The method minEnd
acceplts a time specification as a value and assigns it as the deadline of the execution.
However, this is only done if the new value is smaller than the previous value (the
minimum is taken). In appendix B, the available methods of time are defined. The
real-time filter that is defined in line (9), associates with every message that is
received and accepted by this filter the timing value teonsumer» if this value is
smaller that the current value.
In lines (10) and (11) the second real-time filter is declared using the expression

setTimeforProduction:RealTime =
{True=>self.productionLineDisconnected | time.setEnd(numberOfLines * time.getEnd) | };

The filtering condition here is True and therefore the received message will always
be compared with self.productionLineDisconnected. If the message matches, then
the timing specification between the bars "I ... " will be considered for the message.
Otherwise, the message will pass to the next filter.

The timing constraint in filter setTimeforProduction is defined as

| ime.setEnd(numberOfLines * time.getEnd) |

Here again, time denotes the timing attribute of the received message. The method
setEnd is defined by time to assign a timing constraint to it. The method setEnd
accepts a timing constraint as a value and assigns it as a timing attribute without
considering the existing value. The method getEnd returns the current deadline of
the received message. If the received message is invoked for the method
productionLineDisconnected, then the real-time filter as defined in lines (10) and
(11) will associate the timing value, which is numberOfLines times more than the
previous value. Note that in this way, the timing constraints of both methods are
always consistent with each other.

In line (12), the filter invoke of class Dispatch contains two filter elements. These
two filter elements have the following meaning:

The first element of the filter, "True=>mySwitch.*" specifies that all the
incoming messages are delegated to the internal object mySwitch, provided that
mySwitch (which is an instance of class ElMagneticSwitches) supports these
messages. Since the methods of ElMagneticSwitches are now available io
DistributionNode, class DistributionNode inherits the operations of class
ElMagnericSwitches. This technique for simulating inheritance is also referred to as
delegation-based inheritance. When an instance of class DistributionNode is
created, its internal object mySwitch is also created. An important feature here is that
instance variables of the superclass are only accessible through operations provided
by the superclass. We would like to stress that internal objects differ from instance
variables, because internals are used to compose the behavior of the object, whereas
instance variables represent the local data of the object.

If the first filter element does not match with the message, the second filter
element is evaluated. Instead of delegating to an internal object such as mySwitch,

400

this filter element delegates the message to the pseudo-variable inner” . By declaring
inner as a target object, class DistributionNode makes the methods declared and
implemented by itself available to its clients.

When a message with a timing attribute is dispatched to a method, the scheduler
schedules the execution of the method based on the timing attributes of the
message? .

4.2. Eliminating the Mixing Real-Time Specifications with Application Code
Anomaly

We will now illustrate how real-time filters can avoid the mixing real-time
specifications with application code anomaly. We redefine class
FastDistributionNode as shown in Figure 8 and compare it with the previous
implementation as listed in Figure 3. To implement inheritance, in lines (3) and (4)
internal object myNode is declared as an instance of DistributionNode. In lines (5) to
(7) two filters are declared. Here, fastTimeSpec is a real-time filter and invoke is a
dispatch filter. The real-time filter fastTimeSpec has the following purpose: if the
message matches with any of the method names provided at the interface of class
FastDistributionNode, and if the timing value tconsumerNew 1S smaller than the
timing value of the message, then the message will accept the timing value
LeonsumerNew and pass to the next filter. Otherwise, the message will pass to the
second filter without receiving the timing value.

The dispatch filter invoke has a single filter element. The element myNode.*
specifies that all the incoming messages are delegated to the internal object myNode,
provided that these messages are supported by class DistributionNode. Since the
methods of DistributionNode are now available to FastDistributionNode, class
FastDistributionNode inherits the methods of DistributionNode.

Apart from the pseudo-variable inner, two other pseudo-variables, self and server, are
also available as means of self-reference. The variable inner allows direct internal access
on the objects’ own methods. self refers to the instance of the class which defines the
method. If, for example, class EIMagneticSwitches refers to self, it will refer to mySwitch
but not the instance of DistributionNode. We introduced inner to avoid infinitely nested
compositions. Such nested compositions can be created if only self is used. When
refering to the object that originally received the message, server is used as a target. For
example, if ElMagneticSwitches refers to server, it will refer to the instance of
DistributionNode. Note that server is dynamically bound and is equivalent to Smalltalk
self.

Currently, we are experimenting with different scheduling algorithms such as earliest
dead-line first [16].

401

Clearly, the composition-filters implementation of FastDistributionNode does not
suffer from the mixing realtime specifications with application code anomaly. This
is because the real-time specification is expressed through the use of a real-time filter
which is defined at the interface of class FastDistributionNode. 1f the received
message matches with the real-time filter, then the specified timing constraint will
be imposed upon it. After this, the message will be delegated by the dispatch filter to
the internal object myNode. Since this object is an instance of class
DistributionNode, the message will pass through the filters of DistributionNode as
well. In Figure 7, line (9), the real-time specification of DistributionNode is defined
by invoking the method endMin on time, and therefore, the lowest timing value will
be selected as a timing attribute of the message, which is 7., sumerNew N this case.
The method productionLineDisconnected will automatically adjust its timing
constraint with respectto ¢

consumerNew- essages
D real-time filter ol fas!T,imSG?c

4 PR

D dispatch fiter invoke

myNode:

(1) class FastDistributionNode interface _ MyN(
DistributionNode

{2) begin

(3) internals o

4) myNode:DistributionNode; FastDistributionNode

(5) filters

(6) fastTimeSpec: RealTime = { True => seif." | ime.minEnd (toonsumerNew | }
(7) invoke: Dispatch = {True => myNode.* };

(8) end;

Fig. 8. Interface definition of class FastDistributionNode which inherits from
DistributionNode with a more restricted real-time constraint.

4.3. Eliminating the Non-Polymorphic Specifications Anomaly

Consider the interface definition of MultipleFuses as shown in Figure 9. Lines (3) to
(6) declare the interface methods. The real-time filter fuseTimeSpec is declared in
line (8). The element in this filter is defined by the specification "*.*", and therefore,
all the received messages will match with this filter. The received message will take
the value fgp,rCircyuir @ @ timing attribute, if fgp,.1Cireyir 1S smaller than the
timing value of the received message. The second filter invoke dispatches the
received message for execution if this message matches with one of the methods
defined by MultipleFuses.

402

messages
D real-time filter ol
&
[] dipatchfiter
messages
are affected
by filters 3
shortCircuitLine
B 1
[«3
£ | shortCircuitLine
n
(1) class MultipleFuses intertace
() begin MultipleFuses
(3) methods
(4) shortCircuitLine1 returns nil;
(5) shortCircuitLine2 returns nil;
6) // list of shortCircuitLine methods for every remaining line //
(7) fiters
(8) _fuseTime§pec: RealTime = {. True =>*.* | time.minEnd(‘shortCircuit) ')
(9) invoke: Dispatch = {True => inner.* };
(10) end;

Fig. 9. Interface definition of class MultipleFuses. The RealTime filter eliminates the non-
polymorphic specifications anomaly.

The definition of class MultipleFuses does not suffer from the non-polymorphic
specifications anomaly because the real-time specification as defined in line (8) is
fully polymorphic and affects all the accepted messages” .

4.4. Eliminating the Orthogonally Restricting Specifications Anomaly

To eliminate the orthogonally restricting specifications anomaly, in Figure 10 we
redefine the interface of ProtectedDistributionNode. This class declares two internals
myFuse and myNode which are instances of class MultipleFuses and
DistributionNode, respectively.

The first filter of ProtectedDistributionNode is inherited from MultipleFuses, by
declaring it in line (6) as myFuse fuseTimeSpec. Since fuseTimeSpec is declared at
the interface of myFuses, it can be reused in class ProtectedDistributionNode. With
every received message, this filter will associate the timing constraint of
tshortCircuir If this value is smaller than the current timing value of the message.

The next filter is a dispatch filter and has the following semantics: the first
clement of the filter myFuse.* specifies that all the incoming messages are delegated
to the internal object myFuse, provided that these messages are supported by class
MultipleFuses. If the first filter element does not match with the message, the second

9 Note that, instead of the wildcard "*.*", it is also possible to specify a set of messages on
which the timing constraint should be applied.

403

filter element is evaluated. This filter element delegates the message to the internal
object myNode, in case these messages are supported by class DistributionNode. The
first filter element implements the inheritance from class MultipleFuses and the
second filter element from DistributionNode. 1f a message is dispatched to one of
these objects, then it will pass through the filters of the corresponding object as well,
Since the message attribute is NOW fg5,,1Circuir » @ll the internal objects will take
this value if £g,,1Circuir 18 1€ss than to,, ey - As shown in Figure 7 lines, (10)
and (11), the method productionLineDisconnected will adjust its value according to

the lowest value.
messages

D reak-time filter

fuseTimeSpec
[[] dispateh fiter

myNode: myFuse;
DistributionNode MultpleFuses
(1) class ProtectedDistributionNode

interface o

@) begin ProtectedDistributionNode
(3) internals

4 myFuse: MultipieFuses, myNode: DistributionNode;

(5) filters

(8) myFuse.fuseTimeSpec;

7 invoke: Dispatch = {True => myFuse.*, True => myNode." };

(8) end;

Fig. 10. The interface declaration of ProtectedDistributionNode. In this implementation the
orthogonally restricting anomaly is eliminated.

4.5. Implementation Aspects

Currently, we are carrying out a research activity for the efficient implementation of
real-time composition-filters. We are experimenting with a compiler that generates
C++ and Smalltalk code. In most cases, real-time filters do not impose significant
execution overhead. Consider for example, the definition of
ProtectedDistributionLine as shown in Figure 10. Here, all the real-time filters are
explicitly named at the interface of objects and the types of the internal objects are
known at compile time. We intend to develop a translator to the FLEX language [13]
because FLEX is supported by a measurement-based performance analyzer.

404

5. Conclusions

Object-oriented programming languages reduce the complexity of real-time
applications through modularization so that predictability and reliability of
applications can be increased. The inheritance mechanism can be useful in reusing
well-defined and verified real-time programs. In most object-oriented real-time
languages, however, there is a conflict between the inheritance mechanism and real-
time specifications. This restrains the effective reuse of object-oriented programs
with real-time specifications. We call this the real-fime inheritance anomaly. In this
paper we identified three kinds of anomalies: mixing real-time specifications with
application code, non-polymorphic real-time specifications and orthogonally
restricting specifications.

To overcome the real-time inheritance anomalies, we extend messages with a
timing attribute. Real-time filters are used to affect this attribute. Since real-time
filters separate real-time specifications from methods, programs written using real-
time filters do not suffer from the mixing real-time specifications with application
code and non-polymorphic specifications anomalies. The orthogonally restricting
anomaly is eliminated through the compositional semantics of real-time filters.
Although the real-time specifications were defined orthogonally, the semantics of
filter composition are such that they are combined in an orthogonally restricting
manner.

References

1. M. Aksit & A. Tripathi, Data Abstraction Mechanisms in Sina/ST, OOPSLA '88, pp. 265-
275, September 1988.

2. M. Aksit, J.W. Dijkstra & A. Tripathi, Atomic Delegation: Object-oriented Transactions,
IEEE Software, Vol. 8, No. 2, March 1991.

3. M. Aksit, L.Bergmans & S. Vural, An Object-Oriented Language-Database Integration
Model: The Composition-Filters Approach, ECOOP '92, LNCS 615, pp 372-395,
Springer-Verlag, 1992.

4. M. Aksit, K. Wakita, J. Bosch, L. Bergmans, A. Yonezawa, Abstracting Object-
Interactions Using Composition-Filters, in: Object-based Distributed Processing, R.
Guerraoui, O. Nierstrasz & M. Riveill (eds.), to be published in the Lecture Notes in
Computer Science series, Springer-Verlag, 1994

5. 1. Allen, Maintaining Knowledge about Temporal Intervals, Communications of the
ACM, Vol. 26(110), pp. 832-843, ACM, 1983.

6. L. Bergmans, M. Aksit, K. Wakita & A. Yonezawa, An Object-Oriented Model for
Extensible Synchronization and Concurrency Conirol, Memoranda Informatica 92-87,
University of Twente, January 1992.

7. E. Brorsson, C. Eriksson & J. Gustafsson, ReallimeTalk: An Object-Oriented Language
Jor Hard Real-Time Systems, Proceedings of IFAC International Workshop on Real-Time
Programming, 1992.

8. B. Dasarathy, Timing Constraints of Real-Time Systems: Constructs for Expressing Them,
Methods for Validating Them, IEEE Transactions on Software Engineering, 11(1), pp. 80-
86, IEEE, 1985.

9. M. Ellis & B. Stroustrup, The Annotated C++ Reference Manual, Addison-Wesley, 1990.

10
11

12.

13.

14.

15.

16.

17.

18.

19.

405

. A. Goldberg & D. Robson, Smalltalk-80 - The Language, Addison-Wesley, 1989.

. W. A, Halang & A. D. Stoyenko, Constructing Predictable Real-Time Systems, Kluwer
Academic Publishers, Dordrecht-Hingham, 1991.

Y. Ishikawa, H. Tokuda & C.W. Clifford, Object-Oriented Real-Time Language Design,
Camegie Mellon University, USA, 1990.

K.J. Lin, J.JW.S. Liu, K.B. Kenny & S. Natarajan, FLEX: A Language for Programming
Flexible Real-Time Systems, Foundations of Real-Time Computing: Formal Specifications
and Methods, pp. 251-290, (eds.) A.M. van Tilborg, G.M. Koob, Kluwer Academic
Publishers, 1991.

S. Matsuoka, K. Wakita & A. Yonezawa, Inheritance Anomaly in Object-Oriented
Concurrent Programming Languages, to appear in Research Directions in Concurrent
Object-Oriented Programming, (eds.) G. Agha, P. Wegner & A. Yonezawa, MIT Press,
April 1993

V.M. Nirkhe, S K. Tripathi & A.K. Agrawal, Language Support for the Maruti Real-Time
System, Proc. 1990 Real-Time Systems Symposium, pp. 257-266, IEEE Computer Society
Press, 1990.

K. Schwan & H. Zhou, Dynamic Scheduling of Hard Real-Time Tasks and Real-Time
Threads, IEEE Transactions on Software Engineering, 18(8), pp. 736-748, 1992,

W.E.P. Sterren, Design of a Real-Time Object-Oriented Language, M.Sc. Thesis,
Department of Computer Science, University of Twente, The Netherlands, Februari 1993.
K. Takashio & M. Tokoro, DROL: An Object-Oriented Programming Language for
Distributed Real-Time Systems, Proceedings of OOPSLA'92, pp. 276-294, ACM Press,
1992.

P. Wegner, Dimensions of Object-Based Language Design, pp. 168-182, OOPSLA '87,
1987.

406

Appendix A
Overview of Real-Time Specification Constructs in Object-
Oriented Languages
The table below gives an overview of constructs for real-time specification as used in
the selected object-oriented languages. Three categories of real-time specification
constructs have been identified:

e Periodic: construct for specifying periodic executions.

e [Interval: construct for specifying a time interval in which an execution needs to

be terminated.

¢ Time point: constructs for specifying points in time at, before or after an event.

Language | Periodic Interval Time point
MPL every reltime do within reltime do at abstime start
from abstime to from abstime to after abstime start
abstime every time to | abstime do before abstime start
before abstime end
after reltime start
RTC++ cycle (starttime; within(rime) at time
endtime; period, before rime
deadline)
FLEX none B.duration <= time B.start <= time
B.duration >= time B.start >= time
B.interval <= time B.finish <= time
B.interval >= fime B.finish >= time
RealTime- | period time slot maximal execution release time slot
Talk time slot deadline slot
DROL active type type invoke(targes)\{time
methodname(params) | methodname(param) | timel:methodI\time
start(time) end(time) | within(time) time2: method2\ ...\
period(time) timeout(exception) time
deadline(time) timeN:methodN}
timeout(time)

407

Appendix B
Real-Time Specifications in Filters

In the current system, a message contains an object called time. This object consists
of two attributes:

® start: the earliest start time of the message.

* end: the deadline of the message.

Times are specified relative to message acceptance, and are internally converted to
an absolute time point,

To access the attributes, a set of methods are defined at the interface of object time:

* minStart(<time point>): the start attribute of the message is set to the earliest
starting time, which is the minimum of the current value of the attribute and the
argument time point.

* maxStart(<time point>): the start attribute of the message is set to the latest
starting time, which is the maximum of its current value and the argument time
point.

e setStart(<time point>): the start attribute is set to the argument time point.

e getStart: the start attribute is returned to the client.

s minEnd(<time point>): the end attribute of the message is set to the ecarliest
deadline, which is either the current value of the attribute or the argument time
point.

* maxEnd(<time point>): the end attribute of the message is set to the latest
deadline, which is either its current value or the argument fime point.

o setEnd(<time point>): the end attribute is set to the argument time point.

® getEnd: the end attribute is returned to the client.

