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Abstract. We propose a private-key cryptosystem and a protocol for 
key agreement by public discussion that are unconditionally secure based 
on the sole assumption that an adversary's memory capacity is limited. 
No assumption about her computing power is made. The scenario as- 
sumes that a random bit string of length slightly larger than the ad- 
versary's memory capacity can be received by all parties. The random 
bit string can for instance be broadcast by a satellite or over an optical 
network, or transmitted over an insecure channel between the communi- 
cating parties. The proposed schemes require very high bandwidth but 
can nevertheless be practical. 

1 I n t r o d u c t i o n  

One of the most  impor tan t  properties of a cryptographic system is a proof  of 
its security under reasonable and general assumptions. However, every design 
involves a trade-off between the strength of the security and further impor tan t  
qualities of a cryptosystem, such as efficiency and practicality. 

The security of all currently used cryptosystems is based on the difficulty 
of an underlying computat ional  problem, such as factoring large numbers  or 
comput ing discrete logarithms in the case of many  public-key systems. Security 
proofs for these systems show that  the ability of the adversary to defeat the 
cryptosystem with significant probabil i ty contradicts the assumed difficulty of 
the problem [24]. Although the hardness of these problems is unquestioned at 
the moment ,  it can be dangerous to base the security of the global information 
economy on a very small number  of mathemat ica l  problems. Recent advances 
in quan tum computing show that  precisely these two problems, factoring and 
discrete logarithm, could be solved efficiently if quantum computers  could be 
built [27]. 

An alternative to proofs in the computat ional  security model is offered by 
the stronger notion of information-theoretic or unconditional security where no 
limits on an adversary 's  computat ional  power are assumed. The first information- 
theoretic definition of perfect secrecy by Shannon [26] led immediate ly  to his 
famous impracticali ty theorem, which states, roughly, tha t  the shared secret key 
in any perfectly secure cryptosystem must  be at least as long as the plaintext 
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to be encrypted. Vernam's one-time pad is the prime example of a perfectly 
secure but impractical system. Unconditional security was therefore considered 
too expensive for a long time. 

However, recent developments show how Shannon's model can be modi- 
fied [16] to make practical provably secure cryptosystems possible. The first 
modification is to relax the requirement that  perfect security means complete 
independence between the plaintext and the adversary's knowledge and to al- 
low an arbitrarily small correlation. The second, crucial modification removes 
the assumption that  the adversary receives exactly the same information as the 
legitimate users. The following two primitives are perhaps the most realistic 
mechanisms proposed so far for limiting the information available to the adver- 
sary. 

Q u a n t u m  C h a n n e l :  Quantum cryptography was developed mainly by Ben- 
nett  and Brassard during the 1980's [3]. It makes use of photons, i.e. po- 
larized light pulses of very low intensity, that  are t ransmit ted over a fiber- 
optical channel. In the basic quantum key agreement protocol, this allows 
two parties to generate a secret key by communicating about the received 
values. The unconditional secrecy of the key is guaranteed by the uncertainty 
principle of quantum mechanics. Current implementations of quantum key 
distribution span distances of 20-30 kilometers. 

N o i s y  C h a n n e l :  In this model proposed by Maurer, the output  of a random 
source is t ransmitted to the participants over partially independent noisy 
channels that  insert errors with certain probabilities [19]. Two parties can 
then generate a secret key from their received values by public discussion. 
The secrecy of the key is based on the information differences between the 
channel outputs and on the assumption that  no channel is completely error- 
free. This system is practical because it works also in the realistic case where 
the adversary receives the random source via a much better channel than 
the legitimate users. The power of a noisy channel was also demonstrated by 
Cr~peau and Kilian who showed that unconditionally secure bit commitment  
and oblivious transfer can be based on this primitive [11,10]. 

In this paper, we show how to realize unconditionally secure encryption based 
on a third assumption: a limit on the memory size of the adversary. This means 
that  an enemy can use unlimited computing power to compute any probabilistic 
function of some huge amount of public data, which is infeasible to store. As long 
as the function's output  size does not exceed the number of available storage bits, 
we can prove that  the proposed private-key system and public key agreement 
protocol are information-theoretically secure from this sole assumption. 

The public data  is the output  of a random source that  is broadcast at very 
high rate. The legitimate users Alice and Bob randomly select a small subset 
of the broadcast each and store these values. (How this selection is performed 
will be described below.) Because of the random selection process, the average 
fraction of the information of an adversary Eve about the selected subset is 
roughly the same as her fraction of information about the complete broadcast. 
By applying privacy amplification [2], Alice and Bob can then eliminate Eve's 
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partial knowledge about the selected subset. (The random source does not have 
to be independent from the users, e.g. Alice could produce the random data 
herself and transmit it to Bob over a public channel.) 

We describe how two different cryptographic tasks can be implemented us- 
ing this mechanism, depending on how Alice and Bob select the random subset. 
First, if they share a short secret key initially that can be used to select identical 
subsets, the system realizes private-key encryptwn. Second, even if Alice and 
Bob do not share any secret information at the beginning, they can perform a 
key agreement protocol by public discussion: They select and store independently 
a random subset of the broadcast data. After some predetermined interval they 
publicly exchange the indices of their selected positions and determine the posi- 
tions contained in both subsets. Privacy amplification is applied to the part of 
the broadcast they have in common. 

Our model seems realistic because current communication and high-speed 
networking technologies allow broadcasting at rates of multiple gigabits per sec- 
ond. Storage systems that are hundreds of terabytes large, on the other hand, 
require a major investment by a potential adversary. Although this is within 
reach of government budgets, for example, the method is attractive for the fol- 
lowing three reasons: First, the security can be based only on the assumption 
about the adversary's memory capacity. Second, storage costs scale linearly and 
can therefore be estimated accurately. Third, the system offers 'proactive' se- 
curity in the sense that a future increase in storage capacity cannot break the 
secrecy of messages encrypted earlier. 

A precursor of this system is the Rip van Winkle cipher proposed by Massey 
and Ingemarsson [17,16]. This private-key system is provably computationally 
secure but totally impractical because a legitimate receiver must wait even longer 
for receiving a message than it takes an adversary to decrypt it. 

Related to our work is a paper by Maurer [18] that describes a system based 
on a large public randomizer which cannot be read entirely within feasible time. 
Maurer's paper contains also the idea of realizing provably secure encryption 
based only on assumptions about an enemy's available memory. Such a system 
for key agreement was described by Mitchell [20], but without security proof. 
Our analysis provides the first proof that unconditional security can be achieved 
against memory-bounded adversaries. (Recently, Aumann and Rabin [22] proved 
a conjecture of Maurer's paper [18] with the same effect.) 

We borrow some methods from the work of Zuckerman and others on so-called 
extractors of uniform randomness from weak random sources [29]. Extractors are 
tools developed for running randomized algorithms with non-perfect randomness 
instead of uniform random bits. Nisan [21] presents a highly readable introduc- 
tion to extractors and a survey of their applications. 

The paper is organized as follows. After reviewing some information-theoretic 
concepts in Section 2, we introduce the building blocks of our system in Section 3. 
Our main result concerning Eve's information about the randomly selected sub- 
set is given in Section 4. Sections 5 and 6 describe how to realize private-key 
encryption and public key agreement, respectively. The paper concludes with a 
discussion of the underlying assumptions and future perspectives. 
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2 P r e l i m i n a r i e s  

We assume tha t  the reader is familiar with the notion of entropy and the basic 
concepts of Shannon's  information theory [9]. We repeat some fundamental  def- 
initions in this section and introduce the notation. All logari thms in this paper  
are to the base 2. The cardinality of a set S is denoted by ISI. 

A random variable X induces a probabil i ty distribution P x  over an alpha- 
bet X. Random variables are denoted by capital  letters. If  not s tated otherwise, 
the alphabet  of a random variable is denoted by the corresponding script letter. 
A sequence X1, �9 �9 Xn of random variables with the same alphabet  is denoted 
by X n . 

The (Shannon) entropy of a random variable X with probabil i ty distribution 
P x  and alphabet  X is defined as 

H(X)  = - ~ Px(x)  logPx(x). 
x E X  

The binary entropy function is h (p) = - p  log p -  (1 - p )  log ( l - p ) .  The conditional 
entropy of X conditioned on a random variable Y is 

H(XIY)  = Z PY(Y)H(XIY = Y) 
yey 

where H ( X I Y  = y) denotes the entropy of the conditional probabil i ty distri- 
bution PxIY=y. The mutual information of X and Y is the reduction of the 
uncertainty of X when Y is learned: 

I(X; Y) = H(X)  - H ( X I Y  ). 

The variational distance between two probabil i ty distributions Px and P y  
over the same alphabet  2Y is 

1 p x  (x) - By ( x ) .  [IPx - PYIIv = xom~] Z Px(x ) -  Py(x) :- 
- x E X o  , e x  

HPx - PY]I, <_ c implies tha t  X behaves like Y except with probabil i ty at most  
e, i.e., any property of X is shared by Y with probabil i ty at least 1 - e. 

The Rgnyi entropy of order a of a random variable X with alphabet  X is 

1 log Z Px(x)a Ha(X) - 1 - a 
x E X  

for a >_ 0 and a 5~ 1 [23]. Because the limiting case of R@nyi entropy for a -+ 1 is 
Shannon entropy, we can extend the definition to Hi(X) = H(X).  In the other 
limiting case c~ -+ co, we obtain the rain-entropy, defined as 

H~(X) = - logmeaffPx(x ). 

For a fixed random variable X, R@nyi entropy is a continuous positive de- 
creasing function of (~. For 0 < (~ < fl, we have Ha(X) >_ HE(X ), with equality 
if and only if X is the uniform distribution over 2( or over a subset of X. In 
particular,  log IXl > Ha(X) >_ 0 for a >_ 0 and H(X)  > Ha(X) for a > 1. 
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3 P a i r w i s e  Independence and E n t r o p y  S m o o t h i n g  

This section contains a short review of entropy smoothing with universal hashing. 
We start  by repeating the construction of a sequence of pMrwise independent 
random variables using universal hash functions. 

Universal hash functions were introduced by Carter and Wegman [8,28] and 
have found many applications in theoretical computer science [15]. A 2-universal 
hash function is a set ~ of functions X --+ Y if, for all distinct xl ,  x2 E X, there 
are at most [G[/[Y[ functions g in ~ such that  g(xl) = g(x2). 

A strongly 2-universal hash function is a set 6 of functions X --+ Y if, for all 
distinct xl,  x~ E X and all (not necessarily distinct) Yl, Y2 �9 Y, exactly [GI/lyl 2 
functions from ~ take xl to yl and x2 to Y2. 

A strongly 2-universal hash function can be used to generate a sequence 
of pairwise independent random variables in the following way: Select G �9 G 
uniformly at random and apply it to any fixed sequence X l , . . . ,  xt of distinct 
values in X. Let Yj = G(xj) for j - 1 , . . . , l .  It can easily be verified that  
]/1, . . . ,  ]~ are pairwise independent and uniformly distributed random variables 
over y .  The advantage of this technique, compared to selecting n independent 
samples of Y, is that  it requires only 2 log [y] instead of n log [y[ random bits. 

An often-used example for a strongly 2-universal hash function from GF(2" )  
to GF(2  rn) is the set 

G = { g ( x ) =  msbm(alxA-ao)[ao,al  �9 GF(2n)} 

where msbm(x) denotes the m most significant bits of x and alx + ao is com- 
puted in GF(2n).  This construction has the nice property that  when G is used 
to generate a sequence of pairwise independent random variables, all values in 
the sequence are distinct if and only if al # 0. We will assume that  al # 0 when- 
ever the pairwise independence construction is used and refer to the resulting 
distribution as "uniform and pairwise independent" although repeating values 
are excluded. 

The strongly 2-universal family 6 is 2-universal even if a0 is always set to 0. 
Thus, a member of the 2-universal family can be specified with only n bits. 

2-universal hash functions are also the main technique to concentrate the 
randomness inherent in a probability distribution by a result known in different 
contexts as Entropy Smoothing Theorem, Leftover Hash Lemma [14], or Privacy 
Amplification Theorem [2]. 

In cryptography, privacy amplification is used to extract a short secret key 
from shared information about which an adversary has partial knowledge. As- 
sume Alice and Bob share a random variable W, while an eavesdropper Eve 
knows a correlated random variable V that  summarizes her knowledge about 
W. The details of the distribution Pww, and thus of Eve's information V about 
W, are unknown to Alice and Bob, except that  they assume a lower bound on the 
RSnyi entropy of order 2 of PwIw=, for the particular value v that  Eve observes. 

Using a public channel, which is susceptible to eavesdropping but  immune 
to tampering, Alice and Bob wish to agree on a function g such that  Eve 
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knows nearly nothing about g(W) .  The following theorem by Bennett,  Bras- 
sard, C%peau, and Maurer [2] shows that  if Alice and Bob choose 9 at random 
from a universal hash function G : 141 --~ y for suitable 3), then Eve's information 
about Y = g(W)  is negligible. 

T h e o r e m  1 ([2]). Let X be a random variable over the alphabet X with Rgnyi 
entropy H2(X) ,  let G be the random variable corresponding to the random choice 
(with uniform dmtribution) of a member of a 2-universal hash function ~ : 2( --+ 
y ,  and let Y = G(X) .  Then 

2log lYI-H2(X) 
H(Y[G)  > log ly  I In2 (1) 

To apply the theorem in the described scenario, replace P x  by the conditional 
probability distribution P w w = , .  Cachin has recently extended the theorem to 
R6nyi entropy of order a for any a > 1 [6]. 

4 E x t r a c t i n g  a S e c r e t  K e y  f r o m  a R a n d o m l y  S e l e c t e d  

S u b s e t  

We are now going to show how and why Alice and Bob can exploit the fact 
that  an adversary Eve cannot store the complete output  of a public random 
source that  is broadcast to the participants. The security proof consists of three 
steps. In the first step, we use the fact tha t  Eve's storage capacity is limited 
to establish a lower bound on the min-entropy of Eve about the broadcast bits. 
The second step shows that  Eve's min-entropy about a randomly selected subset 
of the broadcast bits is large with high probability. In the third step, we apply 
privacy amplification to the selected subset to obtain the secret key. 

Suppose the output  of a uniformly distributed binary source R is broadcast 
over an error-free channel and can be received by all participants. The source 
can be independent from the participants or it can be operated by one of the 
legitimate users, e.g. Alice can generate R and transmit it over an authenticated 
public channel to Bob. More generally, any source that  is trusted to output  
random bits and has a sufficient capacity can be used. The channel must have 
high capacity, which could be realized, for example, using satellite technology for 
digital TV broadcasting or all-optical networks. The channel is used n times in 
succession and the broadcast bits are denoted by R n = R1, �9 �9 Rn. We assume 
that  Eve has a total  of m < n storage bits available and therefore cannot record 
the complete broadcast, leaving her only with partial knowledge about R n . 

During the broadcast, Eve may compute an arbitrary function of R" with 
unlimited computing power and can also use additional private random bits. We 
model the output  of the function to be stored in her m bits of memory by the 
random variable Z with alphabet Z,  subject to log IZI < m. 

Because R n is uniformly distributed, its R6nyi entropy of any order a > 0 and 
its Shannon entropy satisfy H~(R ~) = H ( R  ~) = Hoo(R '~) = n. The f~lowing 
lemma shows that  the min-entropy of R" given Z, which corresponds to Eve's 
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knowledge about  R n, is at least n - m for all but a negligible fraction of the 
values of Z. More precisely, the l emma  implies tha t  for any r > 0, the part icular  
value z tha t  Z takes on satisfies Hoo(Rn lZ  = z) >> n - m - r, except with 
probabil i ty at most  2 - r .  

L e m m a  2. Let  X be a random variable with alphabet X ,  let Z be an arbitrary 
random variable with alphabet Z ,  and let r > O. Then wzth probability at least 
1 - 2 -~, Z takes on a value z for  which 

H o o ( X I Z = z )  > H o ~ ( X ) - l o g l Z I - r .  

Proof. Let P0 = 2 - r / I Z I .  Thus, )-~z:Pz(z)<po P z ( z )  < 2 - r .  It  follows for all z 

with P z ( z )  >_ Po 

H ~  ( X I Z  = z) = - log m ~ P x l z = ~  (x) 

P x ( z ) P z l x = ~ ( z )  
-- - ] o g  max 

~ex  P z ( z )  

Px( ) 
> - log max 
- -  xEX PO 
= H ~ ( X )  - r - log lZl 

which proves the lemma.  [] 

For the rest of this section, we denote Eve's knowledge of R n, given the 
particular value Z = z she observed, by the random variable X n = X 1 , . . . ,  X,~ 
with Mphabet 2d n = {0, 1} '~. The distribution of X n is arbi t rary and only subject 
to Hoo( X '~) >_ n - m - r by Lemma  2. 

The strategy of the legitimate users Alice and Bob is to select the values at 
l positions 

S = [S1 , . . . ,S I ]  with S 1 , . . . , S l � 9  

randomly from the broadcast symbols X n . S is a vector-valued random variable 
taking on values s �9 { 1 , . . . ,  n} l and the list of selected positions X s l ,  �9 �9 Xs ,  
is denoted by X s . Because this selection is performed with uniform distribution 
according to the pairwise independence construction of a sequence of l vMues 
f rom { 1 , . . . ,  n} as described in Section 3, the resulting $ 1 , . . . ,  St are all distinct 
and S can also be viewed as a set of I values. In addition, S can be determined 
efficiently f rom 2 log n bits. 

We assume that  the value of S is known whenever the random variable X s is 
used. In the private-key system described later, Eve is thus supposed to obtain 
S from an oracle after the public random string is broadcast.  

How much does Eve know about  the bits selected by Alice and Bob? Intu- 
itively, one would expect tha t  the fraction of bits in X s known to Eve corre- 
sponds to the fraction of bits in X n that  Eve knows (here a bit is not to be 
understood as a binary digit, but  in the information-theoretic sense). This  is 
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indeed the case, as was observed before by Zuckerman and others in the con- 
text of weak random sources [29,21]. It is easy to show that the fraction of Eve's 
Shannon information corresponds to the expected value [5, Theorem 5.10]. How- 
ever, privacy amplification can only be applied if a lower bound on the R~nyi 
entropy of order 2 of X s is known, which follows from the stronger bound on 
the min-entropy by Lemma 3. 

The cited proof for Shannon information works only because Shannon en- 
tropy has the intuitive property that side information can only reduce the aver- 
age uncertainty. This is not the case for expected conditional Rdnyi entropy of 
order a > 1 and is the main obstacle for extending the proof to R~nyi entropy. 
However, the following stronger result by Zuckerman [29] shows that also the 
fraction of Eve's min-entropy in the selected positions is, with high probability, 
close to the corresponding fraction of the total min-entropy. Because the min- 
entropy of a random variable is a lower bound for its R@nyi entropy for any 

> 0, the lemma is sufficient for applying privacy amplification to the selected 
subset. 

L e m m a  3. Let X n be a random variable with alphabet {0, 1} n and rain-entropy 
1 Hoo(X n) > ~n (where -ff < ~ < 0.9453), let S = [$1, . . . ,  St] be chosen pairwise 

independently as described in Section 3, let p E [0, �89 be such that h(p) + plog ~A- 
1_ __,. ~, and let e = X/4/(pl) + 2pnlog~. Then, for every value s orS  there exzsts a 
n 

random variable Al(s) with alphabet {0, 1} t and rain-entropy Hoo(AZ(s)) > pl/2 
such that w~th probability at least 1 - e (over the choice of S), Pxs  is e-close to 
PA~(S) in variational distance, i.e. 

Vs: 3A'(s): P[lIPxs-PA,(s ll  <e] >_ 1-e .  
R e m a r k .  For fixed, large n, the value of p resulting from the choice in the 
lemma increases monotonically with ~ and for $ smaller than about 0.9453 there 
always exists a unique p e [0, �89 satisfying h(p) + plog ~ = ~, as can be verified 
easily. 

Proof. The statement of the lemma is slightly different from Zuckerman's asymp- 
totic result [29, Lemma 9] with respect to p (that we use in place of a) and r 
but  follows also from the original proof. We describe here only the differences 
that lead to our formulation of the lemma. 

It is straightforward to verify that (i_nl) = i n-i+1 (?) and therefore (i_~1) < 
n 1(~)2 for i . . . .  < n/3.  This implies ( i- j )  < 2-J(~) for i < n /3  and 0 < j < i, from 

which the bound 
k k z(:)< 

i = 0  i = 0  

for any k < n /3  follows immediately. The approximation of (~.) by the binary 
entropy function [9], n--~2 nh(-~) < (~.) < 2 nh(-~), implies 

LpnJ 
> 

- p n  i = o  



3 0 0  

where the second inequality follows from (2) for p < �89 Thus choosing p as 
described in the s ta tement  of the l emma  guarantees that  

tpnJ 

i----0 

as required in the proof of Lemma  12 in [29]. The choice of e is the value resulting 
at the end of the proof of Lemma  10 in [29]. [] 

We are now ready to state the main result of this section. First, we summarize  
the scenario and the choice of the parameters.  

Let R n be a random n-bit string with uniform distribution that  is broadcast  
to Alice and Bob who want to generate a secret key and to the adversary Eve 
who has a total  of m < n bits of memory  available. Let the random variable Z 
denote Eve's knowledge about  R n, let El, e2 > 0 be arbi trary error probabilities, 
and let A > 0 be a parameter  that  denotes the amount  of information tha t  may  
leak to Eve. Let the parameters  

1 1. 5 = min{0.9453, ~ (n  - m - log ~ )  }; 
1 5; 2. p such tha t  h(p) + p l o g  ~ + ~ = 

3 I :  
4. r = Llogz~ + p l / 2  - 1]. 

Alice and Bob select S = [$1 , . . . ,  St] randomly from { 1 , . . . ,  n} with the pairwise 
independence construction as described in Section 3 and store the bits R s = 
- R s l , . . . , R s z .  Then they select a function G E G uniformly at random from 
a 2-universal hash function G f r o m / - b i t  strings to r-bi t  strings and compute  
K = G ( R  s) as their secret key. The random experiment consists of the choices 
of R '~, Z ,  S, and G. As mentioned before, the theorem is proved under the 
(weaker) assumption that  S is known to Eve, although this may  not even be the 
case. 

T h e o r e m  4. In the described scenario, there exists a securi ty  event  g that has 
probability at least 1 - el - e2 such that Eve 's  in format ion about K ,  given G, 
given her  part icular knowledge Z = z about R n, given S = s, and given E, is at 
mos t  A .  Formally,  

3g : P[g] _> 1 - el - e2 and I(K; GIZ = z, S = s , g )  <_ A. 

Proof. Applying Lemma  2 with error probabil i ty ~1 shows tha t  

1 
H~o(R" IZ  = z) >_ n - m - log e-~' 

leading to the value of 5. Lemma  3 shows that  S takes on a value s such tha t  
there is a distribution PA'(s) within e2/2 of Pn.lZ=z with probabil i ty 1 - e2/2. 
Privacy amplification can be applied because 

H2(AZ(s)) > Hc~(AZ(s)) >_ pl /2 .  
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The choice o f t  guarantees H ( K [ G ,  Z = z, S = s) > r - - A  by Theorem 1 because 
2r-H~(A'(s) ) / ln2 ~_ A.  

Failure of the uniformity bound, which is equivalent to the event E, consists 
of the union of the following three events. First, the bound of Lemma 2 can 
fail with probability at most r Second, At(s) may deviate from the random 
variable with distribution PR'IZ=~ with probability at most ~2/2 and third, an 
s such that  the distance IIPx, -PA*(s)[[~ is outside of the allowed range occurs 
with probability at most c2/2 in Lemma 3. Applying the union bound, we see 
that  PIE] > 1 - c l  - c 2  and H ( K IG , Z = z, S = s, E) >_ r -  zS. The theorem now 
follows from the definition of mutual  information upon noting that  H ( K I Z  = 
z ,S  = s,E) _< r. [] 

In a realistic cryptographic application of Theorem 4, the choice of the pa- 
rameters is somewhat simplified because m is typically very large and because 
choosing a reasonable safety margin implies n >> m. In this case, the parameters 
are (f = 0.9453 and p = �89 and l depends almost only on e2 and is close to 3 / ~ .  
Thus, the storage required by Alice and Bob and the size of the resulting secret 
key are inverse proportional to the square of the desired error probability. 

5 A P r i v a t e - K e y  S y s t e m  

We now describe an example of a practical private-key encryption system that  
offers virtually the same security as the one-time pad. Assume Alice and Bob 
share a secret key K0 and have both access to the broadcast public random som'ce 
R n. In addition, they are connected by an authenticated public channel on which 
Eve can read but not modify messages. For the pairwise independent selection of 
S, the size of K0 must be 2 log n bit. However, no initial communication between 
the partners is needed because the interval to observe R and other parameters 
like l, r, el, and c2 are fixed. The authenticated public channel is needed to 
exchange the description of the hash function G, which is used to extract the 
secret value K from R s. 

In a straightforward implementation, Alice and Bob need/( log n + 1) bit of 
storage to hold S = [$1 , . . . ,  Sl] and the values of R s. Because R ~ is broadcast 
at high speed, the positions to observe must be precomputed and be recalled in 
increasing order. The legitimate users must only be able to synchronize on the 
broadcast channel and to read one bit from time to time. An adversary, however, 
needs equipment with high bandwidth from the channel interface through to 
mass storage in order to store a substantial part of R '~. 

The following considerations demonstrate that  this system is on the verge 
of being practical. The broadcast channel could be realized by a satellite. Typ- 
ically, current communications satellites have a capacity of 1-10 Gbi t / s  [25]. 
Commercial satellite communications services offer broadcast da ta  rates up to 
0.8 Gbi t / s  at consumer electronics prices. Far more capacity is offered by fiber 
optical networks [12]. The test bed of the All-Optical Networking Consortium, 
for example, has a capacity of 1 Tb i t / s  and has been demonstrated at 130 Gbi t / s  
(which was only limited by the number of sources available). On the other hand, 
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tape libraries with capacities in the PByte range (1 PetaByte = 25o or about 
1015 bytes) are a major  investment [13]. 

As an example for the private-key system, consider a 16 Gbi t /s  satellite 
channel that  is used for one day, making n = 1.5 x 1015. The size of the secret key 
K0 is only 102 bit. Assume the adversary can store 100 TByte  (m = 8.8 • 1014). 
Using A = 10 -20 and error probabilities ~1 = 10 -20 and e2 = 10 -4, we see that  
5 = 0.41, p = 0.060, l = 1.7 • 109, and r = 5.0 • 107, that  is, about 6.0 MByte of 
virtually secret information K can be extracted. The legitimate users need only 
10 GByte  of storage each to hold the indices and the selected bits. For privacy 
amplification, one of them has to announce the randomly chosen universal hash 
function, which takes about 197 MByte. An adversary knows not more than 
10 -2~ bit of K except with probability about 10 -4. K can be used directly for 
encryption with a one-time pad, for example. 

The memory requirements of Alice and Bob can be reduced if fast compu- 
tat ion enables an implicit representation of the indices S. This seems feasible 
because only simple operations are needed for the pairwise independence selec- 
tion method. Assuming for example that  the l values can be computed in one 
minute, only the positions to be observed within the next minute must be stored. 
With the figures of the preceding example, this reduces the storage requirements 
to only 7 MByte for the current block of indices plus a total of 197 MByte for 
R s. If the computation of the indices takes longer, observation of the random 
broadcast could also be halted until the indices are available. 

The system can be used repeatedly with only one initial key K0, because a 
small part  of the secret key K obtained in the first round can be used safely as 
the secret key for the subsequent round and so forth. In addition, some part  of 
K can be employed to relax the authenticity requirement for the public channel 
using unconditionally secure message authentication techniques [28]. 

6 K e y  A g r e e m e n t  b y  P u b l i c  D i s c u s s i o n  

Our methods can also be used to establish a secret key between two users not 
sharing secret information who have access to the random broadcast and are 
linked by a public channel. Communication on the public channel is assumed to 
be authenticated, i.e. the adversary can read but  not modify messages. This sys- 
tem offers public key agreement with virtually the same security as the one-time 
pad under the sole assumption that  the adversary's memory capacity is lim- 
ited. (The public communication channel is different from the public broadcast 
channel whose only purpose is to distribute a large number of random bits.) 

To agree on a secret key, Alice and Bob independently select and store a sub- 
set of the broadcast random bits R ~ . After a predetermined amount  of time, they 
announce the chosen set of positions on the public channel. The secret key can 
then be extracted from the values of R ~ at the common positions using privacy 
amplification. To keep the communication and storage requirements for Alice and 
Bob at a reasonable level, it is crucial that  they use a memory-efficient descrip- 
tion of the index set. Fortunately, the pairwise independent selection method 
achieves this. 
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Both Alice and Bob select a sequence of q uniform and pairwise independent 
indices T 1 , . . . ,  Tq and U1, . . . ,  Uq, respectively, from { 1 , . . . ,  n} as described in 
Section 3. (The values of q and the other parameters n , l , r ,  ~1,~2 are fixed 
and also known to Eve.) Alice stores the values of R ~ at the indices in T = 
[ T , , . . . ,  Tq], denoted by R T, and Bob stores R u for his indices U = [ U , , . . . ,  Uq]. 
We assume that  they use a memory-efficient, implicit representation of the index 
set as described earlier for the private-key system, with on-line recomputat ion 
of the indices when necessary. In this way, Alice and Bob need approximately 
log q bits of memory each. 

Because of the pairwise independent selection, both index sets can be de- 
termined from 2 log n bits each. The descriptions of T and U exchanged on 
the public channel are therefore short. In order to apply Theorem 4 to the set 
{ $ 1 , . . . ,  St} = {T1 , . . . ,  Tq} N {U1, . . . ,  Uq} of common positions, we need the 
following lemma to make sure that  also $1, �9 �9 Sl have a uniform and pairwise 
independent distribution. It is easy to see that  the expected number of common 
indices is l - q2/n. 

L e m m a  5. Let T 1 , . . . ,  Tq and U1, . . . ,  Uq be independent sequences of uniform 
and pairwise independent random variables, respectively, with alphabet { 1 , . . . ,  n} 
and distribution as described in Section 3, and let S 1 , . . . , S q  be the sequence 
T1, . . . , Tq restricted to those values occurring in U1, . . . , Uq, z.e. Sj = Tj i f  there 
is an index h such that Uh = Tj and Sj = w otherwise. Then, the sequence 
$1, �9 �9 Sq restricted to those positions different from ~ is pairwise independent. 

Proof. Because the pairwise independence construction of Section 3 is used, no 
values in the U and T sequences are repeated. This implies 

1 
P[T/- -  xl A Tj = x2] -- 

n ( n -  1) 

for all i , j  E { 1 , . . . , q )  and all x~,x2 E { 1 , . . . , n }  with Xl 5~ x2. The sequence 
$1, . . . ,  St satisfies 

P [ S i = x l A S j = x 2 1 S ~ r  = P [ S ~ = x l A S j = * 2 ]  
P[Si r w A S j r  w] (3) 

for any i , j  E { 1 , . . . ,  q} and x~, xu E {1 , . . . ,  n}. Considering only those positions 
of the sequence S 1 , . . . , S q  with values different from w, we see that  for any 
i , j  E { 1 , . . . , q }  and all x l , x2  E { 1 , . . . , n }  such that  xl r x2 and Si r w and 
Sj# , 

P [ S / =  xl  A Sj -- x2] = P [ T / =  xl A 3hi : Uh, ---- Xl A Tj -= x2 A 3h2 : Uh2 : X2] 

= P[T/ = xl ATj = x2]" P[3hl ,h2 : Vhl = xl  A Uh2 = x2] 

1 q(q - 1) 

n ( n - 1 )  n ( n - 1 )  

Furthermore, for all i, j E {1 , . . . ,  q}, we have 

P [ S / C w A S j C w ]  = P [Sh l , h2 :Uh ,  = T i A U h ~ = T j ]  - 
q(q - 1) 

n ( n  - 1) 
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because every pair of distinct xl ,x2 occurs with the same probabil i ty in the 
sequence U1 , . . . ,  Uq. Thus, the probabil i ty in (3) is equal to ~ for any 

i, j E { 1 , . . . ,  q} and all xl ~ x2, and the l emma  follows. [] 

To illustrate a concrete example of the system, assume Alice and Bob bo th  
have access to a 40 Gbi t / s  broadcast  channel. We need more network capacity 
for public key agreement than for private-key encryption to achieve a similar 
error probability. The channel is used for 2 • 105 seconds (about two days), 
thus n = 8.6 • 1015 . Eve is allowed to store 1/2 PByte  or rn -- 4.5 • 1015 
bit. With  A = 10 -20 and error probabilities c1 ---- 10  - 2 0  and e2 -- 10 -3,  the 
parameters  are (f = 0.476, p -- 0.077, l = 1.3 • 107 , and r -- 5.0 • 105 . In 
order to have l common indices on the average, Alice and Bob must  store q = 
x / ~  = 3.3 • 1011 bit or about  39 GByte  each (assuming the index sequences T 
and U are represented implicitly). The public communicat ion between Alice and 
Bob consists of 2 log n - 106 bit in each direction for the selected indices plus 
1.5 MByte in one direction for privacy amplification. Except with probabil i ty 
about  10 -3,  Eve knows less than 10 -2o bit about  the 61 KByte  secret key tha t  
Alice and Bob obtain. 

Because l is on the order of the inverse squared error probabil i ty e2, the 
probabilities in the example are relatively large to keep the storage requirements 
of Alice and Bob at a reasonable level. Generating a shorter key does not help to 
reduce the storage space, which depends primari ly on g2. I t  is an interesting open 
question whether Lemma  3 can be improved in order to reduce the influence on 
the error probability. 

The large size of the hash function tha t  has to be communicated for pri- 
vacy amplification can be reduced by using "almost  universal" hash functions 
based on almost k-wise independent random variables that  can be constructed 
efficiently [1]. Such functions g : X --4 y can be described with about  51ogl~ I 
instead of log IXI bits. 

7 D i s c u s s i o n  

Our results show that  unconditional security can be based on assumptions about  
the adversary 's  available memory.  In essence, such a system exploits the capacity 
gap between fast communicat ion and mass storage technology. We discuss a few 
implications of this fact. 

First of all, generating random bits at a sufficiently high rate may  be more 
expensive than merely t ransmit t ing them. However, a large investment in a ran- 
dom source can be amortized by the potentially high number  of part icipants  
tha t  can use the source simultaneously. 

A drawback of our system is that  the security margin is linear in the sense 
tha t  memory  costs are directly proportional  to the offered storage capacity, at 
least up to technological advances. In most  computat ional ly  secure encryption 
systems, the complexity of a brute-force at tack grows exponentially in the length 
of the keys. 
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Our system is provably secure taking into account the current storage capac- 
ity of an adversary because the only possible at tack is to store the broadcast  
da ta  when it is sent. In contrast,  most  computat ional ly  secure systems can be 
broken retroactively, once better  algorithms are discovered or faster processing 
becomes possible. 

We have used the broadcast channel as an error-free black-box communica-  
tion primitive in our system, although the legit imate users do not need its full 
functionality: They need not receive the complete broadcast,  but only a small 
part  of it. I t  is conceivable that  a receiving device could be much simpler and 
less expensive if it can only synchronize and read a small, but  arbi t rary par t  of 
the traffic. Such receivers could also allow for a greater capacity of the channel. 

The described protocols offer no resilience to errors on the broadcast  chan- 
nel. To take into account such errors, Alice and Bob can perform information 
reconciliation [4] on the selected subset. Methods for bounding the effect of this 
additional information provided to Eve are known [7]. 

The system rests on the gap between two technologies--fast  communicat ion 
and mass storage. Impressive future developments can be expected in both fields. 
We only mention the big potential  of all-optical networks on one side and the 
recent developments in holographic and molecular storage on the other side. 
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