
C h a m e l e o n - - A N e w K i n d o f S t r e a m C i p h e r

Ross Anderson, Chara lampos Manifavas

Cambridge University Computer Laboratory
Pembroke Street, Cambridge CB2 3QG, England

(r j a l d , cm213) @el. cam. ac. uk

Abs t rac t . Stream cipher systems are used to protect intellectual prop-
erty in pay-TV and a number of other applications. In some of these,
it would be convenient if a single ciphertext could be broadcast, and
subscribers given slightly different deciphering keys that had the effect
of producing slightly different plaintexts. In this way, a subscriber who
illegally resold material licensed to him could be traced. Previously, such
tracing could be done using a one-time pad, or with complicated key
management schemes. In this paper we show how to endow any stream
cipher with this potentially useful property. We also present a simple
traitor tracing scheme based on random coding with which it can be
used.

1 I n t r o d u c t i o n

The electronic distribution of intellectual property such as computer programs,
clip art, databases, videos and music, often involves encryption followed by broad-
cast, with decryption keys being supplied out of band to subscribers who have
paid for a particular object.

Computer programs and clip art are commonly distr ibuted on CDs that con-
tain extensive libraries, each item being typically encrypted using a different
key. Customers purchase items by calling a service bureau and quoting a credit
card number; a key is then read out to them over the phone. A number of firms
sell encrypted databases: one is a compendium of building projects in certain
counties of California, which is sold to building materials salesmen. Videos are
broadcast encrypted on a number of satellite channels, and the decryption keys
are sold to subscribers on smattcards.

A common problem with such systems is that some subscribers re-sell the
information they have licensed. This is against the terms of their licence, and if
they are detected they may be sued. Technical measures may also be used, such as
failing to renew their encryption keys. However, given that the available technical
measures are imperfect, with pay-TV pirates forging each successive generation
of subscriber smartcard [5], and given that strong protection mechanisms are
often in conflict with exportability and functionality, there is a shift towards
combining technical protection with legal sanctions.

In any case, the impor tant question is how cheaters can be detected.

108 Ross Anderson, Charalampos Manifavas

One common approach is to customise the software as it is installed. Com-
mon techniques include inserting the licensee's name, giving a banner at the top
of the screen stating something like 'This copy no. 123456 licensed to Bloggs the
Butcher'. Another is to monitor the PC environment to detect re-installation, and
a third is to have a timelock enforcing re-registration. However, all such mech-
anisms depend on 'security through obscurity' and can be broken by technically
sophisticated pirates tampering with the software.

A second approach is to mark the information before it is encrypted. For
example, a database supplier may mark each copy database in a unique way.
Such 'fingerprints' have been in use for generations, having been used to mark
mathematical tables and other early instances of intellectual property. (For a
survey of fingerprinting, see [12].)

If manufacturing a unique database for each customer is too expensive, as it
might be if the database is shipped initially on a CD-ROM, the supplier can use
other techniques. For example, if he sends out a weekly update to subscribers,
he can produce two different versions that differ slightly. By sending these two
different versions to different partitions of his N subscribers in successive weeks,
he can track down the cheater in log N weeks.

Whatever strategy is used to mark individual copies of the information, an
attacker can always purchase a number of copies and compare them. Nonethe-
less, not all attackers are well organised, and it is often thought worthwhile to
have mechanisms that ensure a certain minimum number of copies will have to
be purchased. Matters can be arranged so that any captured pirate copy will
correctly identify the subscriber who deciphered it, or - - if up to a certain num-
ber of subscribers collude - - it will correctly identify at least one of them, and
will not mistakenly identify any innocent subscribers. This is known as 'Traitor
Tracing' [6] and we will return to it below.

Several problems remain to be solved. Firstly, broadcasting more than one
ciphertext is expensive and in many applications (such as satellite TV) it is
impractical. So we may want there to be only one version of the ciphertext.
Secondly, if we rely on software to insert the user's identity on decryption, then
it is likely to be disassembled and interfered with by pirates. Even if we use
' trusted' hardware, this will be expensive and may be ultimately vulnerable to
attack [5].

So we want a scheme that will enable us to give different keys to different
subscribers, in such a way that they decrypt ao single broadcast ciphertext in
different ways.

The approach taken by [6] and a number of subsequent workers is to mark
not the plaintext but a 'virtual key'. This decryption key is computed from a
number of user keys; each user gets a sufficient but unique set of these keys, and
matters are arranged so that a certain minimum number of users need to collude
to construct a key that works but identifies none of them. One problem with this
approach is that the bandwidth required for the control messages may not always
be available.

If we could use a one-time pad, then we could just well each user a slightly

Chameleon - - A New Kind of Stream Cipher 109

different deciphering key, and they would end up with slightly different plaintexts.
However, in applications such as the distribution of videos and music - - where
such a scheme would be most valuable - - the amount of key material required
would be prohibitive.

So it would be useful to have an encryption algorithm with the property that
a slight change in the key will result in a slight change to the plaintext that is
deciphered from a given ciphertext.

One might think that this would expose the cipher to divide-and-conquer
attacks, as an attacker would be able to tell when a guess of the key was 'almost
right'. But we show that this is not necessarily so. Any stream cipher can be
modified simply so that a slight change in the key will cause a slight change to
the output keystream. Yet, in practical cases of interest, the construction appears
to strengthen rather than weaken the cipher.

2 T h e C o n s t r u c t i o n

Our construction can be concisely described by a concrete example. We take a
conventional pseudorandom generator (which in our prototype is the block cipher
that forms the core of the 'Tiger' hash function, run in output feedback mode,
rather than in feedforward mode as in the hash function) [4]. The particular
choice is unimportant for our construction - - we could as easily use any block
cipher in output feedback mode, or a dedicated stream cipher such as PIKE [3].
The key for this stream cipher we will call key 'A'.

Next, we take a table of 216 64-bit words - - 512 KB of random data - - which
we call key 'B'.

In order to encipher a 64-bit word of plaintext we take a 64 bit word from
the keystream generator and use it to select four words from key 'B', which we
exclusive or together. The result is the keystream; it is exclusive or'ed with the
plaintext to get the ciphertext (and, when deciphering, with the ciphertext to get
the plaintext).

The effect of a one-bit change in key 'B' is to change about 4 bits per 512KB
of keystream generated. These changes are at the same locations in the word as
those in the key; thus, when enciphering audio signals that have been digitised
into 16-bit words, we can arrange that the copyright marks appear in the least
significant bits.

3 T r a c i n g T r a i t o r s

A common concern with systems that give intellectual property a unique mark
for each subscriber is that a pirate may purchase, say, three copies of a work
in different false names and then obtain an unmarked copy by using bitwise
majority voting.

110 Ross Anderson, Charalampos Manifavas

There are a number of strategies available to make such attacks more difficult.
The basic idea is that for some small integer k, a pirate plaintext (or decoding
device) should disclose the identity of at least one of up to k copyright violators
who pooled their plaintexts (or secret keys), and that it should not be possible
for an innocent subscriber to be framed [6].

These techniques give only lightweight protection in that they are effective
only for small values of k. Indeed, Shamir has pointed out that these ' traitor
tracing' schemes suffer from the problem that as k increases, the defender does
exponentially more work in order to cost the attacker linearly more effort [11].
However there is usually little point in trying to guard against a large conspiracy,
as an attacker who could organise it could also manage to subscribe in a false
name.

So the realistic goal of traitor tracing is to provide a pragmatic defence against
unsophisticated attackers, and in this spirit we offer a simpler way of implement-
ing it than [6]. Our technique was inspired by [7].

In the concrete system given in the above section, with four lookups into a
table of 4 megabits, assume that there are 4000 marked bits. Thus, as somewhat
over the square root of the total number of bits are marked, we expect that
any two users will have a marked bit in common, and that these common bits
will be unique to each pair of users. Thus if any two subscribers collude, they
will succeed in eliminating all but one of the marks from their 'B' keys, but the
remaining mark (or its effects on the plaintext) will identify them.

So if three users collude and attempt to produce a clean copy by bitwise ma-
jori ty voting, the resulting text (or B key) will still incriminate each of them, two
at a time, with high probability. Even if four users collude, they can identify the
incriminating marks, but not figure out how to remove them. Thus our random
coding approach gives us a simple traitor tracing scheme with k -- 4.

How practical is this? Take for example an audio marking scheme. With 16
bit encoded uncompressed audio, we might want to limit the marks to the least
significant bit of each 16-bit word. Thus the number of effective bits in the 'B' key
is only 256K, so we need mark at most 1000 of them. This leads to the marking of
1.6% of the least significant bits, which is unnoticeable for most modern music.
We will discuss an approach for video signals below.

More complicated marking schemes can be devised (e.g. [9, 10]) and used
with our scheme. Our construction is independent of whether the marks on the
'B' key are randomly or systematically generated; the changes they induce in
the keystream not only preserve the bit position in the word, but also incidence
structures, which is what we generally need for traitor tracing schemes to work.

As with the somewhat different construction of [6], there is no need to pen-
etrate the tamper resistance of a captured pirate decoder. Its behaviour is quite
sufficient to identify the subscribers whose keys were used to construct it, as-
suming that this can be done at all.

Chameleon - - A New Kind of Stream Cipher 111

4 K e y M a n a g e m e n t

The 'A' keys are quite conventional and can be managed using the conventional
machinery of crypto protocols. For example, the current mechanism in several
pay-TV systems is to compute a working key as a MAC of all the control packets
that have been transmitted in the previous time period. This is so that once
a traitor (such as a cloned subscriber card) has been identified, a packet can
be sent in each time period instructing that card to commit suicide. If a user
blocks this instruction to prevent it reaching his smartcard, then this card cannot
calculate the current key and the cloned card is thereby rendered useless. Such
key management techniques can be adopted unchanged in the system proposed
here.

Managing the 'B' key is more difficult. One might simply treat it as a long
term key installed by out-of-band means; if it is used, together with a suitable
'A' key, to generate a lower level 'B' key, then this will have about four times
as many marks in it as the long term key did. The possible advantage of having
master and session 'B' keys is that re-keying might help discriminate between
candidate conspiracies with a higher probability than otherwise. The exact prob-
abilities, and thus the advantage if any, would depend on the parameters of a
given application.

5 P e r f o r m a n c e

The performance degradation is not large, so long as the 'B' key remains in
memory. This is the most critical parameter and it can be tuned to the equipment
in use.

If the underlying pseudorandom generator is triple DES, then it is unlikely
that our construction will add a significant penalty. Even if the generator is a high
speed software algorithm, the penalty is not enormous. For example, when we
use Tiger, running in output feedback mode on a 275MHz Alpha workstation, we
can generate raw pseudorandom bits at 67 Mbps; and when using four lookups
to a 512KB table, we still get 42 Mbps. We expect that this can be improved by
careful optimisation.

In audio applications, performance is unlikely to be a problem; we can decrypt
a minute's worth of music in about a second. Performance is only likely to be an
issue in applications such as video, and especially where MPEG decoding places a
high load on the processor. In such applications, a bit error rate lower than 0.1%
may also be required; so the pragmatic approach is to mark only a subset of the
content. One might for example process only one block in a hundred using our
construction, and select this block using the native mode stream cipher (which
would also be used to encipher the rest of the content).

By using higher density marks, one can construct schemes that are 6-resilient,
8-resilient and so on. The higher density of marking can be offset by marking a
smaller subset of the content; however, the comments of section 3 still apply, and

112 Ross Anderson, Charalampos Manifavas

there is the further problem that if the marks are made too dense in any subset of
the content whose selection is independent of the ']3' key, then an attacker might
replace this subset with completely random noise.

6 S e c u r i t y

Despite the poor diffusion of the extra key material, our construction appears to
make it more difficult to attack the underlying generator. We can distinguish two
cases: the outside attacker (who does not know the value of the 'B' key at all),
and the recently revoked insider (who knows all or most of it).

Where the 'B' key is unknown, then it seems that even a very weak gener-
ator may resist attack. For example, if we use the multiplexer generator or the
nonlinear filter generator, the known attacks [1, 2] do not work.

The more realistic attack scenario is that the attacker knows the 'B' key - -
or most of it. In this case, attacks are still harder, as there is often equivocation
about the pseudorandom input to the tables that generate a given keystream
output (and the mapping between the pseudorandom generator output and the
keystream is a bit too large to store in any case). The details will be a function of
the table size and the number of values that are taken from it; but in general, the
effect of the table lookup is similar to that of applying a known pseudorandom
function to the generator's output.

Our construction may induce some degenerate behaviour that did not exist
before. For example, when we use four lookups to a 512K table, we will get
a zero keystream whenever the input pseudorandom value is of the form abab,
aabb or baab. This weakness does not arise when using three Iookups into an 8
MB table, but in that case we are using only 60 bits of pseudorandomness to
generate 64 bits of keystream. But, as far as we can see, these weaknesses are of
no practical use to an attacker in the kind of applications in which we envisage
our construction being used.

A further security advantage of our construction is that the keys are very
much larger than in conventional cryptosystems - - hundreds of kilobytes, or
megabytes, rather than tens of bytes. In fact, the work that led to this construction
was inspired by a realisation that in the modern world, many of the most potent
threats to cryptographic security involve either malicious code or attacks over
networks; in this environment, big keys are good because they are harder for a
virus or network intruder to steal without being detected. Another inspiration
for this work was [8], which also uses table lookup and xor to construct a stream
cipher, but for a completely different purpose.

Finally, the following attack was suggested from the floor at the workshop:
colluders, having removed almost all of the marks, could then insert a number of
random marks to provide camouflage and hopefully frame other users. Thus, with
the concrete example given above, the three attackers might add another 4000
bits to the three remaining genuine marks. However, the three genuine marks
can be detected as they form a 'triangle' joining the three conspirators together.

Chameleon - - A New Kind of Stream Cipher 113

This attack does force the publisher to examine 4,000 marks rather than three;
but, as we have emphasised, a serious attacker would simply organise a sufficient
coalition - - or subscribe in a false name.

7 C o n c l u s i o n

We have shown how to do two seemingly contradictory things to an arbitrary
stream cipher - - to strengthen it, and to endow it with the property that small
changes in the key cause only small changes in the keystream. We name this
construction 'Chameleon'.

Like other traitor tracing schemes, it has only limited collusion resistance.
However, we believe that there are applications in which it could be useful. In
addition, as it embodies a new kind of cryptographic mechanism, we hope that
it will inspire other new work - - whether better fingerprinting schemes, or new
applications entirely.

A c k n o w l e d g e m e n t : This work was carried out as part of the joint E P S R C / D T I
funded project 'NetCard ' , which supported the second author. We also acknow-
ledge the referees whose comments enabled us to improve the presentation.

R e f e r e n c e s

1. "Fast Attack on Certain Stream Ciphers", Electronics Letters vol 29 (22 July
93) pp 1322-1323

2. "Searching for the Optimum Correlation Attack", in 'Fast Software Encryption'
(1994), Springer LNCS vol 1008 pp 137-143

3. "On Fibonacci Keystream Generators", RJ Anderson, in Fast Software En-
cryption (1994) Springer LNCS vol 1008 pp 346-352

4. "Tiger: A Fast New Hash Function", RJ Anderson, E Biham, in Fast Software
Encryption (1996), Springer LNCS vol 1039 pp 89-97

5. RJ Anderson, MG Kuhn, "Tamper Resistance - - A Cautionary Note", in
Proceedings of the Second Usenix Electronic Commerce Workshop (Nov 1996)
pp 1-21

6. "Tracing Traitors", B Chor, A Fiat, M Naor, in Advances in Cryptology - -
Crypto 94, Springer LNCS vol 839 pp 257-270

7. "On Key Storage in Secure Networks", M Dyer, T Fenner, A Frieze, A Thoma-
son, in Journal of Cryptology v 8 no 4 (Autumn 95) pp 189-200

8. "Conditionally-perfect secrecy and a provably-secure randomized cipher", U
Maurer, in Journal of Cryptology v 5. no 1 pp 53-66

9. "Asymmetric Fingerprinting", B Pfitzmann, M Schunter, in Advances in
Cryptology - - Eurocrypt 96, Springer LNCS vol 1070 pp 84-95

10. 'Anonymous Fingerprinting', B Pfitzmann, M Waidner, IBM Research Report
RZ 2881 (#90829) 11/18/96, IBM Research Division, Zurich

11. A Shamir, comment made from the floor of the conference
12. "Fingerprinting", in Proceedings of the 1983 IEEE Symposium on Security and

Privacy pp 18-22

