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Abs t rac t .  Stream cipher systems are used to protect intellectual prop- 
erty in pay-TV and a number of other applications. In some of these, 
it would be convenient if a single ciphertext could be broadcast, and 
subscribers given slightly different deciphering keys that had the effect 
of producing slightly different plaintexts. In this way, a subscriber who 
illegally resold material licensed to him could be traced. Previously, such 
tracing could be done using a one-time pad, or with complicated key 
management schemes. In this paper we show how to endow any stream 
cipher with this potentially useful property. We also present a simple 
traitor tracing scheme based on random coding with which it can be 
used. 

1 I n t r o d u c t i o n  

The electronic distribution of intellectual property such as computer programs,  
clip art, databases, videos and music, often involves encryption followed by broad- 
cast, with decryption keys being supplied out of band to subscribers who have 
paid for a particular object. 

Computer  programs and clip art are commonly distr ibuted on CDs that con- 
tain extensive libraries, each item being typically encrypted using a different 
key. Customers purchase items by calling a service bureau and quoting a credit 
card number; a key is then read out to them over the phone. A number of firms 
sell encrypted databases: one is a compendium of building projects in certain 
counties of California, which is sold to building materials salesmen. Videos are 
broadcast encrypted on a number of satellite channels, and the decryption keys 
are sold to subscribers on smattcards.  

A common problem with such systems is that some subscribers re-sell the 
information they have licensed. This is against the terms of their licence, and if 
they are detected they may  be sued. Technical measures may  also be used, such as 
failing to renew their encryption keys. However, given that the available technical 
measures are imperfect,  with pay-TV pirates forging each successive generation 
of subscriber smartcard [5], and given that strong protection mechanisms are 
often in conflict with exportability and functionality, there is a shift towards 
combining technical protection with legal sanctions. 

In any case, the impor tant  question is how cheaters can be detected. 
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One common approach is to customise the software as it is installed. Com- 
mon techniques include inserting the licensee's name, giving a banner at the top 
of the screen stating something like 'This copy no. 123456 licensed to Bloggs the 
Butcher'. Another is to monitor the PC environment to detect re-installation, and 
a third is to have a timelock enforcing re-registration. However, all such mech- 
anisms depend on 'security through obscurity'  and can be broken by technically 
sophisticated pirates tampering with the software. 

A second approach is to mark the information before it is encrypted. For 
example, a database supplier may mark each copy database in a unique way. 
Such 'fingerprints' have been in use for generations, having been used to mark 
mathematical tables and other early instances of intellectual property. (For a 
survey of fingerprinting, see [12].) 

If manufacturing a unique database for each customer is too expensive, as it 
might be if the database is shipped initially on a CD-ROM, the supplier can use 
other techniques. For example, if he sends out a weekly update to subscribers, 
he can produce two different versions that differ slightly. By sending these two 
different versions to different partitions of his N subscribers in successive weeks, 
he can track down the cheater in log N weeks. 

Whatever strategy is used to mark individual copies of the information, an 
attacker can always purchase a number of copies and compare them. Nonethe- 
less, not all attackers are well organised, and it is often thought worthwhile to 
have mechanisms that ensure a certain minimum number of copies will have to 
be purchased. Matters can be arranged so that any captured pirate copy will 
correctly identify the subscriber who deciphered it, or - -  if up to a certain num- 
ber of subscribers collude - -  it will correctly identify at least one of them, and 
will not mistakenly identify any innocent subscribers. This is known as 'Traitor 
Tracing' [6] and we will return to it below. 

Several problems remain to be solved. Firstly, broadcasting more than one 
ciphertext is expensive and in many applications (such as satellite TV) it is 
impractical. So we may want there to be only one version of the ciphertext. 
Secondly, if we rely on software to insert the user's identity on decryption, then 
it is likely to be disassembled and interfered with by pirates. Even if we use 
' trusted'  hardware, this will be expensive and may be ultimately vulnerable to 
attack [5]. 

So we want a scheme that will enable us to give different keys to different 
subscribers, in such a way that they decrypt ao single broadcast ciphertext in 
different ways. 

The approach taken by [6] and a number of subsequent workers is to mark 
not the plaintext but a 'virtual key'. This decryption key is computed from a 
number of user keys; each user gets a sufficient but unique set of these keys, and 
matters are arranged so that a certain minimum number of users need to collude 
to construct a key that works but identifies none of them. One problem with this 
approach is that the bandwidth required for the control messages may not always 
be available. 

If we could use a one-time pad, then we could just well each user a slightly 
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different deciphering key, and they would end up with slightly different plaintexts. 
However, in applications such as the distribution of videos and music - -  where 
such a scheme would be most valuable - -  the amount  of key material required 
would be prohibitive. 

So it would be useful to have an encryption algorithm with the property that 
a slight change in the key will result in a slight change to the plaintext that is 
deciphered from a given ciphertext. 

One might think that this would expose the cipher to divide-and-conquer 
attacks, as an attacker would be able to tell when a guess of the key was 'almost 
right'. But we show that this is not necessarily so. Any stream cipher can be 
modified simply so that a slight change in the key will cause a slight change to 
the output keystream. Yet, in practical cases of interest, the construction appears 
to strengthen rather than weaken the cipher. 

2 T h e  C o n s t r u c t i o n  

Our construction can be concisely described by a concrete example. We take a 
conventional pseudorandom generator (which in our prototype is the block cipher 
that forms the core of the 'Tiger'  hash function, run in output feedback mode, 
rather than in feedforward mode as in the hash function) [4]. The particular 
choice is unimportant  for our construction - -  we could as easily use any block 
cipher in output feedback mode, or a dedicated stream cipher such as PIKE [3]. 
The key for this stream cipher we will call key 'A'. 

Next, we take a table of 216 64-bit words - -  512 KB of random data - -  which 
we call key 'B'. 

In order to encipher a 64-bit word of plaintext we take a 64 bit word from 
the keystream generator and use it to select four words from key 'B', which we 
exclusive or together. The result is the keystream; it is exclusive or'ed with the 
plaintext to get the ciphertext (and, when deciphering, with the ciphertext to get 
the plaintext). 

The effect of a one-bit change in key 'B'  is to change about 4 bits per 512KB 
of keystream generated. These changes are at the same locations in the word as 
those in the key; thus, when enciphering audio signals that have been digitised 
into 16-bit words, we can arrange that the copyright marks appear in the least 
significant bits. 

3 T r a c i n g  T r a i t o r s  

A common concern with systems that give intellectual property a unique mark 
for each subscriber is that a pirate may purchase, say, three copies of a work 
in different false names and then obtain an unmarked copy by using bitwise 
majority voting. 
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There are a number of strategies available to make such attacks more difficult. 
The basic idea is that for some small integer k, a pirate plaintext (or decoding 
device) should disclose the identity of at least one of up to k copyright violators 
who pooled their plaintexts (or secret keys), and that it should not be possible 
for an innocent subscriber to be framed [6]. 

These techniques give only lightweight protection in that they are effective 
only for small values of k. Indeed, Shamir has pointed out that these ' traitor 
tracing' schemes suffer from the problem that as k increases, the defender does 
exponentially more work in order to cost the attacker linearly more effort [11]. 
However there is usually little point in trying to guard against a large conspiracy, 
as an attacker who could organise it could also manage to subscribe in a false 
name. 

So the realistic goal of traitor tracing is to provide a pragmatic defence against 
unsophisticated attackers, and in this spirit we offer a simpler way of implement- 
ing it than [6]. Our technique was inspired by [7]. 

In the concrete system given in the above section, with four lookups into a 
table of 4 megabits, assume that there are 4000 marked bits. Thus, as somewhat 
over the square root of the total number of bits are marked, we expect that 
any two users will have a marked bit in common, and that these common bits 
will be unique to each pair of users. Thus if any two subscribers collude, they 
will succeed in eliminating all but one of the marks from their 'B'  keys, but the 
remaining mark (or its effects on the plaintext) will identify them. 

So if three users collude and attempt to produce a clean copy by bitwise ma- 
jori ty voting, the resulting text (or B key) will still incriminate each of them, two 
at a time, with high probability. Even if four users collude, they can identify the 
incriminating marks, but not figure out how to remove them. Thus our random 
coding approach gives us a simple traitor tracing scheme with k -- 4. 

How practical is this? Take for example an audio marking scheme. With 16 
bit encoded uncompressed audio, we might want to limit the marks to the least 
significant bit of each 16-bit word. Thus the number of effective bits in the 'B'  key 
is only 256K, so we need mark at most 1000 of them. This leads to the marking of 
1.6% of the least significant bits, which is unnoticeable for most modern music. 
We will discuss an approach for video signals below. 

More complicated marking schemes can be devised (e.g. [9, 10]) and used 
with our scheme. Our construction is independent of whether the marks on the 
'B'  key are randomly or systematically generated; the changes they induce in 
the keystream not only preserve the bit position in the word, but also incidence 
structures, which is what we generally need for traitor tracing schemes to work. 

As with the somewhat different construction of [6], there is no need to pen- 
etrate the tamper resistance of a captured pirate decoder. Its behaviour is quite 
sufficient to identify the subscribers whose keys were used to construct it, as- 
suming that this can be done at all. 
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4 K e y  M a n a g e m e n t  

The 'A' keys are quite conventional and can be managed using the conventional 
machinery of crypto protocols. For example, the current mechanism in several 
pay-TV systems is to compute a working key as a MAC of all the control packets 
that have been transmitted in the previous time period. This is so that once 
a traitor (such as a cloned subscriber card) has been identified, a packet can 
be sent in each time period instructing that card to commit suicide. If a user 
blocks this instruction to prevent it reaching his smartcard, then this card cannot 
calculate the current key and the cloned card is thereby rendered useless. Such 
key management techniques can be adopted unchanged in the system proposed 
here. 

Managing the 'B'  key is more difficult. One might simply treat it as a long 
term key installed by out-of-band means; if it is used, together with a suitable 
'A' key, to generate a lower level 'B' key, then this will have about four times 
as many marks in it as the long term key did. The possible advantage of having 
master and session 'B' keys is that re-keying might help discriminate between 
candidate conspiracies with a higher probability than otherwise. The exact prob- 
abilities, and thus the advantage if any, would depend on the parameters of a 
given application. 

5 P e r f o r m a n c e  

The performance degradation is not large, so long as the 'B' key remains in 
memory. This is the most critical parameter and it can be tuned to the equipment 
in use. 

If the underlying pseudorandom generator is triple DES, then it is unlikely 
that our construction will add a significant penalty. Even if the generator is a high 
speed software algorithm, the penalty is not enormous. For example, when we 
use Tiger, running in output feedback mode on a 275MHz Alpha workstation, we 
can generate raw pseudorandom bits at 67 Mbps; and when using four lookups 
to a 512KB table, we still get 42 Mbps. We expect that this can be improved by 
careful optimisation. 

In audio applications, performance is unlikely to be a problem; we can decrypt 
a minute's worth of music in about a second. Performance is only likely to be an 
issue in applications such as video, and especially where MPEG decoding places a 
high load on the processor. In such applications, a bit error rate lower than 0.1% 
may also be required; so the pragmatic approach is to mark only a subset of the 
content. One might for example process only one block in a hundred using our 
construction, and select this block using the native mode stream cipher (which 
would also be used to encipher the rest of the content). 

By using higher density marks, one can construct schemes that are 6-resilient, 
8-resilient and so on. The higher density of marking can be offset by marking a 
smaller subset of the content; however, the comments of section 3 still apply, and 
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there is the further problem that if the marks are made too dense in any subset of 
the content whose selection is independent of the ']3' key, then an attacker might 
replace this subset with completely random noise. 

6 S e c u r i t y  

Despite the poor diffusion of the extra key material, our construction appears to 
make it more difficult to attack the underlying generator. We can distinguish two 
cases: the outside attacker (who does not know the value of the 'B' key at all), 
and the recently revoked insider (who knows all or most of it). 

Where the 'B' key is unknown, then it seems that even a very weak gener- 
ator may resist attack. For example, if we use the multiplexer generator or the 
nonlinear filter generator, the known attacks [1, 2] do not work. 

The more realistic attack scenario is that the attacker knows the 'B' key - -  
or most of it. In this case, attacks are still harder, as there is often equivocation 
about the pseudorandom input to the tables that generate a given keystream 
output (and the mapping between the pseudorandom generator output and the 
keystream is a bit too large to store in any case). The details will be a function of 
the table size and the number of values that are taken from it; but in general, the 
effect of the table lookup is similar to that of applying a known pseudorandom 
function to the generator's output. 

Our construction may induce some degenerate behaviour that did not exist 
before. For example, when we use four lookups to a 512K table, we will get 
a zero keystream whenever the input pseudorandom value is of the form abab, 
aabb or baab. This weakness does not arise when using three Iookups into an 8 
MB table, but in that case we are using only 60 bits of pseudorandomness to 
generate 64 bits of keystream. But, as far as we can see, these weaknesses are of 
no practical use to an attacker in the kind of applications in which we envisage 
our construction being used. 

A further security advantage of our construction is that the keys are very 
much larger than in conventional cryptosystems - -  hundreds of kilobytes, or 
megabytes, rather than tens of bytes. In fact, the work that led to this construction 
was inspired by a realisation that in the modern world, many of the most potent 
threats to cryptographic security involve either malicious code or attacks over 
networks; in this environment, big keys are good because they are harder for a 
virus or network intruder to steal without being detected. Another inspiration 
for this work was [8], which also uses table lookup and xor to construct a stream 
cipher, but for a completely different purpose. 

Finally, the following attack was suggested from the floor at the workshop: 
colluders, having removed almost all of the marks, could then insert a number of 
random marks to provide camouflage and hopefully frame other users. Thus, with 
the concrete example given above, the three attackers might add another 4000 
bits to the three remaining genuine marks. However, the three genuine marks 
can be detected as they form a 'triangle' joining the three conspirators together. 
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This attack does force the publisher to examine 4,000 marks rather than three; 
but, as we have emphasised, a serious attacker would simply organise a sufficient 
coalition - -  or subscribe in a false name. 

7 C o n c l u s i o n  

We have shown how to do two seemingly contradictory things to an arbitrary 
stream cipher - -  to strengthen it, and to endow it with the property that small 
changes in the key cause only small changes in the keystream. We name this 
construction 'Chameleon'.  

Like other traitor tracing schemes, it has only limited collusion resistance. 
However, we believe that there are applications in which it could be useful. In 
addition, as it embodies a new kind of cryptographic mechanism, we hope that 
it will inspire other new work - -  whether better fingerprinting schemes, or new 
applications entirely. 
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