
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Chapitre de livre 1997 Published version Open Access

This is the published version of the publication, made available in accordance with the publisher’s policy.

Near Optimal Hierarchical Encoding of Types

Krall, Andréas; Vitek, Jan; Horspool, R. Nigel

How to cite

KRALL, Andréas, VITEK, Jan, HORSPOOL, R. Nigel. Near Optimal Hierarchical Encoding of Types. In:

Objects at large = Objets en liberté. Genève : Centre universitaire d’informatique, 1997. p. 101–113.

This publication URL: https://archive-ouverte.unige.ch//unige:155394

© The author(s). This work is licensed under a Creative Commons Attribution (CC BY)

https://creativecommons.org/licenses/by/4.0

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch//unige:155394
https://creativecommons.org/licenses/by/4.0

Near Optimal Hierarchical Encoding of Types 1

Andreas Krall
Jan Vitek

R. Nigel Horspool

Abstract
A rype inclusion rest is a procedure io decide whether two type.~ are related by a giwn
subtyping relationship. An efficient implementation of the rype inclu.~ion resr plays an
important rote rn the perfonnance of object orienred programming languages wit.h mutr,iple
subt.yping like C++. Eiffel or Java. There are well-known methods for performing fast
consrnm rime type inclusion tesrs that use a hierarchical bit vector encoding of the partial
ordered set representing the type hierarchy. The number of instructions required by t.hc
type inclusion 1es1 rs proportional to the length of those bil vectors. We present a new
algonthm based on graph coloring which computes a near optimal hierarchical encoding
of type hierarchies. The. new algorithm improves significantly on previous results - i1 is
faster, simpler and generates smaller bit vectors.

1 Introduction

Checking the type of a value is a common operation in typed programming languages. In
many cases this requires little more than a comparison. But, modem languages - those which
allow types to be exlended - complicate matters slightly. Type lests must check for inclusion of
types, that is, whether a given type_ is an extension (or a subtype) of another type. The sub1yping
relation. a partial order on types. written<:, is the transitive and reflexive closure of the direct
subtype relation <:d. The common practice for object-oriented programming languages is to
derive < :d directly from the inheritance structure of a program. Thus, each class A defines a
type A, and A is a subtype ofB either if A= B, or if A inherits from B.

Type inclusion tests can occur so frequently in programs, particularly object-oriented pro-
grams, as io put a strain on the overall system perfonnance. It is importa!lt to have type in-
clusion testing techniques which are both fast and constant-time. However, these techniques
should also be economical in space.

The techniques developed in this paper are based on a scheme called hierarchical encoding.
This scheme represents each type as a set of natural numbers. The sets must be chosen so that
either

x <: y <=? 1(1:) 2 1(y) (top down encoding)

or

x <: y <=? 1(x) ~ 1(y) (bottom up encoding)

1This paper will also appear in Proceedi11gs of ECOOP'97, European Conference on Object Oriented Pro-
gramming 97, LNCS, Springer-Verlag, 1997.

101

102 Near Optimal Hierarchical Encoding of Types

where -,.(x) maps type ... to its sel rep1 e~euhtliuu. Titus, llJi: ~I:! ust!cl for a subtype has
to be a superset of the sel representing its parenL The sets have a natural representation as
bit vectors. An .example for a sma.11 hierarchy is snown in figure I (top down encoding) and
figure 2 (bottom up encoding). In the bit vector representation the test function for hierarchical
top down encoding becomes

x <: y {o} 1(x) V 1(y) = -y(x)

or alternatively

.r <: y {o} 1(x) /\ 1(y) = 1(y)

{1,2} = 011

Figure I: Hierarchical encoding (top down)

{2,3} = 110

{2}=010(d
{3} = 100

f) { J} = 001

Figure 2: Hierarchical encoding (bottom up)

The following sections briefly discuss previous work on type inclusion tests. Subsequently,
we describe our new method which uses graph coloring techniques to find nearly optimal set
representations for types i.n. a multiple inheritance hierarchy. Finally, we present experimental
results which show that our new method is significantl.y better than the competing method on
three coums. It generates significantly shorter bit vectors, it computes the vectors faster, and it
requires less working storage.

2 Previous work

One 'obvious' algorithm for implementing the type inclusion test is that described by Wirth[9) .
To test if x <: y, the algorithm proceeds up the inheritance hierarchy from :r to see if y is
an ancestor. However, the algorithm does not nm in constant time, which is a problem if ihe
hierarchy becomes large, and the basic a lgorithm works only for single inheritance hierarchies.
Generalizing the method to work with multiple inheritance, either by using backtracking or by
constrncting sets of parents, makes it slower still.

A. Krall, J. Vitek and R. N. Horpsool 103

Another 'obvious' algorithm, and one which achieves a fast constant time test, is to use a
precomputed matrix that records all possible relationships. An element M[:1:,yJ in the binary
matrix holds a I if .i: <: y and 0 otherwise. Although this implementation is used by some
0-0 languages, it has the drawback that the matrix can be very large. If there are 2000 types,
the matrix will consume nearly 500 KB. (There are a number of schemes for compacting the
matrix at the expense of making a look-up in the matrix much slower.)

Cohen showed how the type inclusion test can be implemented in constant time using the
concept of displays to precompute paths through the inheritance hierarchy[3). However, Co-
hen's method uses much more memory and, in its original form, is applicable only to single
inheritance hierarchies.

Caseau took a different path based on hierarchical top down encoding. He was inspired
by a method originally developed for fast implementation of lattice operations [I) based on
hierarchical boctom up encoding and adapted it to the type inclusion problem[2) . Caseau's
scheme computes o bit vector for each type. The bit vector represents a set of genes, where a
gene is represented by a natural number. Each type that has only one parent in the hierarchy
hns an associated gene. A type with multiple parents has no associated gene. The bit vector for
a type T is computed as the set of all genes associated with itself and with all ancestors of T.
Testing if J: <; y is implemented as a test to see if the set of genes for type a: is a superset of
the set for y. Caseau's method requires that the type hierarchy be a lauice. This requirement
may force extra nodes to be added to the hierarchy. Caseau gave an incremental algorithm for
maintaining the lauice property and gave a backtracking technique for finding sets of genes and
for updating previously computed sets of genes as the hierarchy is constructed in a top-down
manner.

Problems with implementing Caseau 's algorithm inspired us to develop our own method for
finding sets of genes. We encountered situations where the Caseau algorithm produces incor-
rect results. Such an example is shown in 3. Even if we assume that the error can be corrected,
Caseau's method for maintaining the lattice property may force the addition of an exponential
number of additional nodes (and therefore also require exponential running time). The worst
case is unlikely to occur in practice, but this is nevertheless undesirable behavior. We also
discovered thar the number of distinct genes used by Caseau 's algorithm may be considerably
more, sometimes by a factor of 4, than the optimal number. Since the number of genes deter-
mines the sizes of the bit vectors (and therefore determines the running time of the set inclusion
test too), it is important to minimize the number.

{I}

{1,3}

f) {/d} {2,4}

Figure 3: An incorrect encoding produced by Caseau 's algorithm

104 Near Optimal Hierarchical Encoding of Types

3 Near optimal hierarchical encoding

Our near optimal hierarchical encoding algorithm is similar to Caseau's because it also relies
on a top down encoding. But, unlike Caseau's algorithm, our algorithm does not require the
hierarchy to have a lattice structure - it can encode any partially ordered set. We rely on
balancing the height of the hierarchy and use graph coloring to find a near optimal solution. The
algorithm was designed for fast execution (it has worst case quadratic run time complexity) for
integration in compilers for object oriented programming languages with multiple inheritance
or multiple subtyping. Instead of performing a full and slow search for optimal encodings, we
have used simple heuristics to find a near optimal solution in a matter of seconds.

3.1 The basic algorithm

To make hierarchical encoding of partially ordered sets practical, we must avoid any restriction
to lattice structures and thereby avoid exponential behavior. We can easily eliminate such a
restriction if we associate a gene (i.e. a distinguishing bit) with all nodes in the hierarchy. In
contrast, Caseau 's method associates a gene only with nodes that have a single parent. However,
a better solution is to determine which nodes actually need a gene.

For the purpose of describing our algorithm, we first give some definitions:

parents(x)
children(x)
ancestors(x)
descendants(x)
singles
multis

II all nodes which are a direct supertype of x
II all nodes which are a direct subtype of x
II all nodes which are a supertype of x
II all nodes which are a subtype ofx
II all nodes in the hierarchy with a single parent
II all nodes with more than one parent

All nodes m E singles need a gene. All nodes m E muftis for which :l n E muftis and not
n <: m need a gene if

ancestors(m) n singles ~ ancestors(n).

The algorithm then determines which nodes cannot use the same genes. For each node, the set
of conflicting nodes is determined and a conflict graph is constructed. An edge in the conflict
graph means that two nodes are not allowed to use the same gene.

The conflict graph is constructed as follows. Every node conflicts with all descendants of
its parents. In addition, a node N conflicts with all ancestors of any descendants of N's parents
if these descendants are not descendants of N.

After the conflict graph has been constructed, graph coloring is used to find a solution to
the gene assignment problem. The hierarchical code of a node is then computed as the union
of the genes for all its ancestors and for itself.

A better, near optimal, solution can be found if children lists are split and the hierarchy
is balanced before the conflict sets are computed. The next two subsections describe both

A. Krall, J. Vitek and R. N. Horpsoo/ 105

colori-ng and balancing in some derail. The main s1eps of the encoding algorithm are as follows
(complete pseudocode can be found in the appendix).

mark all nodes in hierarchy which need a gene
split children lists and balance the hierarchy
compute conflict graph
color the conflict graph
compute code

3.2 Coloring the conflict graph

Computing the chromatic number of a graph (determining the minimal number of colors needed
to color vertices of the graph) is a NP-complete problem. There exist backtracking algorithms
which can compute the chromatic number for very small graphs (up to 100 vertices), there
are probabilistic algorithms with almost polynomial run time [4] and there are genetic, tabu
and hybrid algorithms for graph coloring [5). But all these algorithms are unusable for the
large conflict graphs which we must construct for type hierarchies. The graphs may have 2000
vertices and 200000 edges.

There is, however, a class of very fast heuristic algorithms which give good results on many
graphs. These sequential vertex coloring algorithms [8] have a run time which is linear in the
number of vertices plus the number of edges in the conflict graph [7]. All these algorithms
order the vertices according to some predetermined criteria and color the vertices in this order.
If no color, out of those used so far, can be reused for the current vertex, the number of col ors
is increased by one and the vertex is assigned the new color. Otherwise, one of the existing
colors, one which does not cause a conflict for the current vertex, is selected.

[8) presents two algorithms which give the best results: largest degree first ordering and
smallest degree last ordering. Largest degree first ordering sorts the vertices by the vertex
degree (number of edges from 1he vertex} and stans coloring witl1 1he vertex wi1h lhe Jargcs1
degree. Smallest degree /as/ ordering recursively removes the vertex with the smallest degree
together with all its edges from lhe grapb and colors the vertices in reverse order of removal.
Often the smallest degree last algorithm g.ives the best results.

Another possibility is to construct a vertex order from the structure of the hierarchy. The
simplest order is generated by a top down, depth-first, traversal of the h'iera-rchy. A different
order is based on a topologically sorted order. Here, the top dow-n 'traversal is modified so that
it descends to a node N in the hierarchy only if all parents of N have already been visited.
This traversal visits the nodes in an order similar to that assumed by Caseau in his algorithm.
We will refer to this order as the Caseau order. An evaluation of all these algorithms shows
that the smallest degree last algorithm gives the best results (see section 4 table 4). For many
hierarchies, this algorithm finds an optimal result.

There are different strategies for choosing which color to reuse for the current vertex. If
the col ors are numbered in order of first use, two simple strategies are to use the color with (1)
the smallest number or (2) the largest number. Another strategy is to choose the most heavily

106 Near Optimal Hierarchical Encoding of Types

usi:d color whicb does not cause a cont'ltct. Table 5 m section 4 shows some results using these
strategies. The stra1t:gy 1ha1 selr.r.1.~ 1lw most nsed color weighted by 1he degree of the node
often gave the best results in our experiments. Since there is no consistent winner, a mixed
strategy which rries more than one method and !hen picks the best result might be appropriate.

In [7]. an improvement to sequential vertex coloring is presented. If there is no unused color
available, an col or exchange is tried. First all conflicting colors are collec1ed which conflict only
once with the vertex to color_ Then there is a search for a vertex which is not 111 conflict with
one of these collected vertices and the new vertex. If such a vertex can be found, the.: colors
can be ex.changed and the new vertex can be colored. Unfortunate ly, we found 1ha1 this color
exchange strategy does not work for 1.he conl\ic1 graphs constructed for our type hierarchies.
Our graphs tend 10 have so many edges that there are no nodes which can be exchanged.

3.3 Splitting and balancing the hierarchy

Caseau noted in [21 ibat the number 0f bits needed for hierarchical encoding is great ly influ-
enced by the number of children at a node. Jf a node has k children. then /.· distinct gc.:ncs
are immediately needed 10 distinguish. these children. To reduce rhis number when ~· is large.
we can either use more than one gene to distinguish 1.he different children or we can split the
children inro smaller groups by adding additional nodes 10 the hierarchy. Usmg more bits 10
identify a type complicates the algorithm and makes i1difficult10 find a near optimal solution.
Therefore, whenever a node had more than 8 children. Caseau split them inro two groups and in-
troduced 1wo additional nodes as parents for those groups. Repeatedly applying this technique
reduces the total number of genes needed, bur it is far away of an optimal strategy.

We also use the idea ofspliuingchildren into groups but we altempt to bala.nce·rhe hierarchy
when inserting new nodes. A lower bound on the number of genes needed for hierarchical
encoding may be constructed as maximum over all weighted path lengths from the root node to
a leaf node. The path length for a leaf node is

L Jchildren(:Y)I

where r fiildrc11(N) is the set of child nodes for node N for all nodes N on the longest path
from the root node to the leaf node. Only child nodes which need a gene are counted for the
path length. For hierarchies which are trees , the largest path length also provides the optimal
solution. An optimal solution for the hierarchical encoding of trees can be constructed by
splitting children lists and genera ting a balanced binary tree which minimizes the path length.
A bollom-up algoritlun can be used to balance the tree. The example in figure 4 shows the
number of genes needed being reduced from S to 4 by balancing.

An optimal balancing algorithm appears 10 be feasible only for tree-structured hierarchies.
With multiple subtyping, the hierarchy has 10 be balanced to generate the minima.! chromatic
number for its conflict graph. SLnce computing the minimal chromatic number is NP-complere,
the balancing problem is very likely co be NP-complete too. We therefore looked for a heuristic
solution. In practice, most multiple subtyping hierarchies deviate only slightly from a tree
structure. Heuristics based on the tree balancing method should work satisfactorily when taking
inro account the characteristics of multiple inheritance hierarchies.

A. Krall, J. Vitek and R. N. Horpsool 107

d
•-' '-"

{l,3} {l,4}{2,3}

Figure 4: Balancing a tree

Ifwe are balancing a tree, splitting the children into two groups can be performed arbitrarily.
In the multiple subtyping case, children which share some common descendants should be
assigned to the same group. If we did not do that, coloring is made harder because these
common descendants would gain an additional parent node.

The splitting process is made faster if it is perfonned in two stages. A 'presplitting · pass
does a heuristic split into two groups and adding two parent nodes until the groups are smaller
than a certain limit (currently 14 nodes) using precomputed path lengths. The second pass
recomputes the path lengths after every split and does a more complicated split inserting one or
two nodes.

The presplitting pass computes an optimistic path length for every leaf node. These opti-
mistic path lengths only count less than three children per node. It is assumed that the hierarchy
can be balanced without introducing nodes on the critical path. A leaf node's path length is
propagated together with an unique number to all ancestors of the leaf node. During propaga-
tion larger path lengths overwrite any smaller ones. Furthermore the set of all descendants of a
node are computed as a bit vector. Using these sets, children which are detected to have over-
lapping descendant sets are placed in the same bucket. All children lists are sorted according
to three criteria. The primary criterion is by bucket, the secondary criterion is by leaf nodes,
and the third by the size of the path length. Then every list of children which is longer than the
limit is split into two parts so that the lengths of both lists are smaller than the largest power of
two which is smaller than the original length of the list.

The second splitting pass precomputes the correct path length after every split, and uses
the sum of all children which need a gene on the path from the root to a leaf. The leaf's path
length is again propagated to all ancestors. Then the ancestors of the leaf node with the largest
path length are checked for a children list to split. This splitting takes care that ancestors of the
leaf node are in the same list after splitting. The path lengths of the nodes are also taken into
account and depending on the requirements one or two new nodes are inserted.

3.4 Space and time complexity

A careful implementation of the algorithm needs 66 milliseconds for the smallest hierarchy and
4742 milliseconds for the largest hierarchy for encoding the hierarchy on an Alpha workstation
with a 300MHz 21064 processor. The worst case time complexity of the algorithm is quadratic.
The average complexity is lower and depends on the number of edges in the conflict graph. The

108 Near Optimal Hierarchical Encoding of' Types

I input marking splitting conflict graph
, management pre I final graph coloring
i 6.6% 6.2% 3.1% I ss.4% 21.3% 4.4%

Table I: Execution profile of the encoding algorithm

marking part is quadratic in the number of nodes that have morn Lhao one parent (i.e. the size
of 11111/tis). Eaeb spliuing step during balancing is linear in the number of nodes, but since the
number of nodes can be doubled this also implies quadratic complexity, Coloring is linear in
the sum of nodes and edges in lhe con·fl'ict graph. The number of edges is limited by the number
of nodes squared, but usually is about twic~ as large as the average number of ancestors times
the number of nodes. Table I shows the proportion of the tota l run time spent on each of tJ1e
ulgorithm 's subtasks.

TI1e space cost is dominated by the storage needed for the conflict graph. The graph ts
stored in two represemations. One is a bit· vector to provide a fast check 10 see if a conflict
has already been entered in the graph. The s.icond is a list representation that allows fast
sequential access to conflicting nodes. If space is a concern, computation time can be traded
for space. lt is no1 necessary to smre the conflict graph. I.t can be computed twice. Initially,
only the degree for each node is stored, and then the nodes arc sorted according to decreasing
degree. Subsequently, the conflicts are computed for each node and immediately colored. This
increases the time, but reduces space requirements.

4 Results

This las1 section evaluates different aspec1s of the algorithm and compares the performance
of the algorithm with other approaches. As test data, we used a collection of class libraries
compiled by .Karel Driesen. We also obtained the Laure type hierarchy from Yves Caseau (2)
and the Java API li"brary from Sun [6). Table 2 presents the relevant characteristics of those
libraries. The number of classes varies from 225 m 1956. representing both big applications
and libraries. The depth of the hi.erarchy ranges from 7 to 18. 111e first four libraries use single
inheritance only; the following ones use multiple inheritance with up to 16 parents per class.
Except for the three programs written in LOY (a language similar to Eiffel), the average number
of parents is close tO one. For the three LOY programs. the average number of parents is close
to two.

Table 3 shows the main result, the number of bits needed for the encoding using three
different splitting strategies combined with two different coloring strategies. The first two
columns show the number of genes needed for encod.ing the original hierarchy. The next two
columns show lhe genes needed for a hierarchy where all classes with more tJ1an 8 children
have been replaced by a class with two new classes as children each containing one half of the
children of the original class. The last two columns show the results for a balanced hierarchy
using the balancing algorithm described io the previous section. The two sequential coloring
techniques use an ordering similar to that used by Caseau (top down after all parents of a class

A. Krall, J Vitek and R. N. Horpsool 109

I library name _ 1 1anguage _ 1 classes _1 dept~ r ma)(pare1us -yaYg. paremiJ
Yisualworks2 Smalltalk-80 1956 15 I I
digitalk3 Smalltalk-80 1357 14 1 I
NeXTStep Objective-C 311 8 I I
ET++ C++ 371 9 I I
Uni draw C++ 614 10 2 1.01
Self Self 1802 18 9 1.05
Geode Eiffel/LOY 1319 14 16 1.89
Ed Eiffel/LOY 434 II 7 1.66
LOY Eiffel/LOV 436 JO 10 i 1.71
Laure Laure 295 12 3 I 1.07
Java i Java 225 7 3 i 1.04

Table 2: Hierarchy characteristics

have been colored) and the smallest degree last ordering. Note that Caseau 's algorithm cannot
directly encode all our hierarchies because of it requires every hierarchy to be a lattice; we only
color the classes in a sequence which is similar to the ordering of his algorithm. To compare
Caseau 's results with ours, it is necessary to compare the column 'Caseau of max 8 children'
with the last column. Our algorithm can reduce the sizes of the encodings down to one quarter
of those produced by Caseau's algorithm.

Table 4 gives the performance using six different sequential coloring techniques. The first
column (smallest first) is the worst ordering; it starts with the class which has the smallest
degree (the smallest number of conflicting classes). Random ordering takes the classes in the
order they are read in. Top down ordering traverses the hierarchy in a depth first manner from
the root node down to the leaf nodes. The Caseau ordering also traverses the hierarchy top
down, but it colors a class only after all parent classes have been colored. Largest degree first
and smallest degree last are the orderings suggested by Matula [8] and give the best results for
our conflict graphs. The 'lower bound' column gives an estimate for the lower bound using
the largest path length as described in the previous section. This estimate is quite accurate for
tree-like hierarchies but is only approximate for other hierarchies. In many cases, the coloring
needs the same number of col ors as estimated by the lower bound and this shows that an optimal
solution has been found. It is evident that conflict graphs resulting from single inheritance
hierarchies can colored optimally regardless of the algorithm used.

The quality of a sequential coloring algorithm not only depends on the ordering of the
vertices but also on the color chosen if there is a choice of more than one non-conflicting color
to reuse. The last use coloring method sorts the colors by their last uses and takes the first used
color which does not conflict. The largest coloring method selects the color with the largest
number while the smallest coloring method selects the color with the smallest number. The best
color selection algorithms are based on an assumption that preferring a color which is heavily
used should produce fewer conflicts later on. The max use coloring method counts the number
of uses of each color and takes the most used one. The last two algorithms weight the use by
the degree of the class. The max sdl coloring method weights the use count by the removal

110 Near Optimal Hierarchical Encoding of Types

original hierarchy max 8 children balanced hierarchy
smallest smallest smallest

benchmark Caseau last Caseau last Caseau last
Visualworks2 420 420 124 124 50 50
digitalk3 325 325 116 116 36 36
NeXTStep i 177 177 92 92 23 23
ET++ 181 181 61 61 30 30
Unidraw I 227 227 96 96 30 30 '
Self 297 297 180 180 54 53
Geode 429 426 231 228 ! 110 96
Ed 130 126 91 80 62 55
LOV 133 128 96 86 I 69 58
Laure 34 33 34 33 23 23
Java 97 97 50 50 22 19

Table 3: Bit count of Caseau and near optimal coloring for different balanced hierarchies

smallest top largest smallest lower
benchmark first random down Caseau first last bound
Visualworks2 50 50 50 50 50 50 50
digitalk3 36 36 36 36 36 36 36
NeXTStep 23 23 23 23 23 23 23
ET++ 30 30 30 30 30 30 30
Unidraw 30 30 30 30 30 30 30
Self 60 57 56 54 53 53 46
Geode 140 122 120 110 102 96 47
Ed 84 72 68 62 59 55 35
LOV 86 73 79 69 61 58 32
Laure 24 25 23 23 23 23 23
Java 22 22 22 22 19 19 19

Table 4: Bit count of different coloring techniques

A. Krall, J. Vitek and R. N. Horpsool 111

last use largest smallest max use max sdl max ldf
benchmark col or color col or col or col or color
Visualworks2 50 50 50 50 50 50
digitalk3 36 36 36 36 36 36

l NeXTStep 23 23 23 23 23 23
ET++ 30 30 30 30 30 30
Unidraw 30 30 30 30 30 30
Self 54 53 53 53 53 53
Geode 99 98 99 99 98 96
Ed 55 58 58 56 58 55
LOY 62 62 61 61 62 58
Laure 23 23 23 23 23 23
Java 19 19 19 19 19 19

Table 5: Bit count of different color choosing techniqut:s

degree obtained by the smallest degree last ordering, and the max ld.f coloring method weights
the use count by the unmodified degree. The smallest coloring method and the three max use
methods sometimes give different best results. Because the computation time of the coloring
is small compared to the time needed to construct the conflict graph, it makes sense to use all
four algorithms and take the best result.

5 Conclusion

We have presented a near optimal algorithm for finding hierarchical encodings for type hier-
archies. Our algorithm produces encodings which are up to four times shorter than encodings
generated by a previous algorithm and therefore providing a faster type inclusion check for ob-
ject oriented languages wid1 multiple subtyping. l11e algorithm is also an order of ma&,>nitude
faster which makes it praccical for the use in compilers.

References

(!] Hassan Ait-Kaci, Robert Boyer, Patrick Lincoln, and Roger Nasr. Efficient implementation of
lattice operations. ACM Transactions on Programming Languages and Systems, 11(1):115--146,
1989.

[2] Yves Caseau. Efficient handling of multiple inheritance hierarchies. In Conference on Object
Oriented Programming Systems, Languages & Applications, pages 271-287, Washington, October
1993.ACM.

[3] Norman H. Cohen. Type-extension type tests can be performed in constant time. ACM Transactions
on Programming Languages and Systems, 13(4):626-629, 1991.

112 Near OpLimal Hierarchical Encoding o.fTypes

(4) J. A. Ellis and P. M. Lepnl~sa A I a> Vegas graph ooloring algo1ill11u. The Computer Journal,
32(5):474-476, 1989.

[5] Charles Fleurent and Jacques A. Ferland. Genetic and hybrid algorithms for graph coloring. Annals
of Operations Research , page to appear, 1995.

[6] James Gosling, Frank Yellin, and The Java Team. The Java Application Programming Interface.
Addison-Weley, 1996.

[7] David W. Matula and Leland L. Beck. Smallest-last ordering and clustering and graph coloring
algorithms. Journal of the ACM, 30(3):417-427, July 1983.

(8] David W. Matula. George Marble, and Joel D. Isaacson. Graph coloring algorithms. In R. C. Read,
editor, Graph Theory and Compuling, pages 109-122. Academic Press, J 972.

[9] Niklaus Wirth. Type extensions. ACM Transactions on Programming Languages and Systems,
10(2):204-214, 1988.

Appendices

II definitions
parenls(x)
children(x)
ances/ors(x)
desce11da111s(x)
mark(x)
length(x)
leaj(x)
gene(x)
code(x)
singles
mullis

II all nodes which are a direct supertype of x
II all nodes which are a direct subtype of x
II all nodes which are a supertype ofx
II all nodes which are a subtype ofx
II flag, is l, if x need a distinguishing gene, 0 otherwise
II longest path length between x and a leaf node
II leaf node of the longest path which includes x
II gene number, bit position in bit vector
II the bit vector of class x
II all nodes in the hierarchy with a single parent
II all nodes with with more than one parent

II mark all nodes of hierarchy which need a bit
mark(s) := 1 V s E singles
for each m E multis do

if3 n E multis, ~ (n <: m), ancestors(m)n singles <:;; ancestors(n)
then mark(m) := 1
else mark(m) := 0

11 balance the hierarchy
define computeJength(l E Integer, leafE hierarchy,x E hierarchy) as

I :=I+ L: mark(childx), V childx E children(x)
for each parenlx E parents(x) do

if length(parentx) < 1 then
length(parentx) :=I
leaj(parentx) :=leaf
computeJength(l, leaf, parentx)

A. Krall. J. Vitek and R. N. Horpsool

length(x) := -1 'r/ x E. hierarchy
fo r each leaf E hierarchy , clzildren(leaj) = {} do

length(leaj) := 0
/eqj(Jeaj) := leqf
computeJength(O, leaf, leaf)

for each x E hierarchy, size(children(x)) > 2 do
split children(x) and add one or two nodes co hierarchy
if this is possible \Yithout increasing length()') for any y E hierarchy

II compute conflict graph
for each x E hierarchy do

pan: := parents(x)
ifparx = then pan::= {x)
for each y E descendants(p), y #- x, 'tf p E parx do

enter conflict between x and y in conflict graph
if y E mu/tis. ~ (y <: x) then

V anc E ancestors(y), anc # y. enter conflict between
x and anc in conflict graph

II color the conflict graph
for each x E hierarchy in decreasing order of conflict graph degree do

if mark(x) = I then gene(x) :=the most used non conflicting gene

II compute code
for each x E hierarchy do

code(x) := U gene(ancx), V ancx E ancestors(x)

113

