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Near Optimal Hierarchical Encoding of Types 1 

Andreas Krall 
Jan Vitek 

R. Nigel Horspool 

Abstract 
A rype inclusion rest is a procedure io decide whether two type.~ are related by a giwn 
subtyping relationship. An efficient implementation of the rype inclu.~ion resr plays an 
important rote rn the perfonnance of object orienred programming languages wit.h mutr,iple 
subt.yping like C++. Eiffel or Java. There are well-known methods for performing fast 
consrnm rime type inclusion tesrs that use a hierarchical bit vector encoding of the partial 
ordered set representing the type hierarchy. The number of instructions required by t.hc 
type inclusion 1es1 rs proportional to the length of those bil vectors. We present a new 
algonthm based on graph coloring which computes a near optimal hierarchical encoding 
of type hierarchies. The. new algorithm improves significantly on previous results - i1 is 
faster, simpler and generates smaller bit vectors. 

1 Introduction 

Checking the type of a value is a common operation in typed programming languages. In 
many cases this requires little more than a comparison. But, modem languages - those which 
allow types to be exlended - complicate matters slightly. Type lests must check for inclusion of 
types, that is, whether a given type_ is an extension (or a subtype) of another type. The sub1yping 
relation. a partial order on types. written<:, is the transitive and reflexive closure of the direct 
subtype relation <:d. The common practice for object-oriented programming languages is to 
derive < :d directly from the inheritance structure of a program. Thus, each class A defines a 
type A, and A is a subtype ofB either if A= B, or if A inherits from B. 

Type inclusion tests can occur so frequently in programs, particularly object-oriented pro-
grams, as io put a strain on the overall system perfonnance. It is importa!lt to have type in-
clusion testing techniques which are both fast and constant-time. However, these techniques 
should also be economical in space. 

The techniques developed in this paper are based on a scheme called hierarchical encoding. 
This scheme represents each type as a set of natural numbers. The sets must be chosen so that 
either 

x <: y <=? 1(1:) 2 1(y) (top down encoding) 

or 

x <: y <=? 1(x) ~ 1(y) (bottom up encoding) 

1This paper will also appear in Proceedi11gs of ECOOP'97, European Conference on Object Oriented Pro-
gramming 97, LNCS, Springer-Verlag, 1997. 
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where -,.(x) maps type ... to its sel rep1 e~euhtliuu. Titus, llJi: ~I:! ust!cl for a subtype has 
to be a superset of the sel representing its parenL The sets have a natural representation as 
bit vectors. An .example for a sma.11 hierarchy is snown in figure I (top down encoding) and 
figure 2 (bottom up encoding). In the bit vector representation the test function for hierarchical 
top down encoding becomes 

x <: y {o} 1(x) V 1(y) = -y(x) 

or alternatively 

.r <: y {o} 1(x) /\ 1(y) = 1(y) 

{1,2} = 011 

Figure I: Hierarchical encoding (top down) 

{2,3} = 110 

{2}=010(d 
{3} = 100 

f) { J} = 001 

Figure 2: Hierarchical encoding (bottom up) 

The following sections briefly discuss previous work on type inclusion tests. Subsequently, 
we describe our new method which uses graph coloring techniques to find nearly optimal set 
representations for types i.n. a multiple inheritance hierarchy. Finally, we present experimental 
results which show that our new method is significantl.y better than the competing method on 
three coums. It generates significantly shorter bit vectors, it computes the vectors faster, and it 
requires less working storage. 

2 Previous work 

One 'obvious' algorithm for implementing the type inclusion test is that described by Wirth[9) . 
To test if x <: y, the algorithm proceeds up the inheritance hierarchy from :r to see if y is 
an ancestor. However, the algorithm does not nm in constant time, which is a problem if ihe 
hierarchy becomes large, and the basic a lgorithm works only for single inheritance hierarchies. 
Generalizing the method to work with multiple inheritance, either by using backtracking or by 
constrncting sets of parents, makes it slower still. 
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Another 'obvious' algorithm, and one which achieves a fast constant time test, is to use a 
precomputed matrix that records all possible relationships. An element M[:1:,yJ in the binary 
matrix holds a I if .i: <: y and 0 otherwise. Although this implementation is used by some 
0-0 languages, it has the drawback that the matrix can be very large. If there are 2000 types, 
the matrix will consume nearly 500 KB. (There are a number of schemes for compacting the 
matrix at the expense of making a look-up in the matrix much slower.) 

Cohen showed how the type inclusion test can be implemented in constant time using the 
concept of displays to precompute paths through the inheritance hierarchy[3). However, Co-
hen's method uses much more memory and, in its original form, is applicable only to single 
inheritance hierarchies. 

Caseau took a different path based on hierarchical top down encoding. He was inspired 
by a method originally developed for fast implementation of lattice operations [I) based on 
hierarchical boctom up encoding and adapted it to the type inclusion problem[2) . Caseau's 
scheme computes o bit vector for each type. The bit vector represents a set of genes, where a 
gene is represented by a natural number. Each type that has only one parent in the hierarchy 
hns an associated gene. A type with multiple parents has no associated gene. The bit vector for 
a type T is computed as the set of all genes associated with itself and with all ancestors of T. 
Testing if J: <; y is implemented as a test to see if the set of genes for type a: is a superset of 
the set for y. Caseau's method requires that the type hierarchy be a lauice. This requirement 
may force extra nodes to be added to the hierarchy. Caseau gave an incremental algorithm for 
maintaining the lauice property and gave a backtracking technique for finding sets of genes and 
for updating previously computed sets of genes as the hierarchy is constructed in a top-down 
manner. 

Problems with implementing Caseau 's algorithm inspired us to develop our own method for 
finding sets of genes. We encountered situations where the Caseau algorithm produces incor-
rect results. Such an example is shown in 3. Even if we assume that the error can be corrected, 
Caseau's method for maintaining the lattice property may force the addition of an exponential 
number of additional nodes (and therefore also require exponential running time). The worst 
case is unlikely to occur in practice, but this is nevertheless undesirable behavior. We also 
discovered thar the number of distinct genes used by Caseau 's algorithm may be considerably 
more, sometimes by a factor of 4, than the optimal number. Since the number of genes deter-
mines the sizes of the bit vectors (and therefore determines the running time of the set inclusion 
test too), it is important to minimize the number. 

{I} 

{1,3} 

f) {/d} {2,4} 

Figure 3: An incorrect encoding produced by Caseau 's algorithm 
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3 Near optimal hierarchical encoding 

Our near optimal hierarchical encoding algorithm is similar to Caseau's because it also relies 
on a top down encoding. But, unlike Caseau's algorithm, our algorithm does not require the 
hierarchy to have a lattice structure - it can encode any partially ordered set. We rely on 
balancing the height of the hierarchy and use graph coloring to find a near optimal solution. The 
algorithm was designed for fast execution (it has worst case quadratic run time complexity) for 
integration in compilers for object oriented programming languages with multiple inheritance 
or multiple subtyping. Instead of performing a full and slow search for optimal encodings, we 
have used simple heuristics to find a near optimal solution in a matter of seconds. 

3.1 The basic algorithm 

To make hierarchical encoding of partially ordered sets practical, we must avoid any restriction 
to lattice structures and thereby avoid exponential behavior. We can easily eliminate such a 
restriction if we associate a gene (i.e. a distinguishing bit) with all nodes in the hierarchy. In 
contrast, Caseau 's method associates a gene only with nodes that have a single parent. However, 
a better solution is to determine which nodes actually need a gene. 

For the purpose of describing our algorithm, we first give some definitions: 

parents(x) 
children(x) 
ancestors(x) 
descendants(x) 
singles 
multis 

II all nodes which are a direct supertype of x 
II all nodes which are a direct subtype of x 
II all nodes which are a supertype of x 
II all nodes which are a subtype ofx 
II all nodes in the hierarchy with a single parent 
II all nodes with more than one parent 

All nodes m E singles need a gene. All nodes m E muftis for which :l n E muftis and not 
n <: m need a gene if 

ancestors(m) n singles ~ ancestors(n). 

The algorithm then determines which nodes cannot use the same genes. For each node, the set 
of conflicting nodes is determined and a conflict graph is constructed. An edge in the conflict 
graph means that two nodes are not allowed to use the same gene. 

The conflict graph is constructed as follows. Every node conflicts with all descendants of 
its parents. In addition, a node N conflicts with all ancestors of any descendants of N's parents 
if these descendants are not descendants of N. 

After the conflict graph has been constructed, graph coloring is used to find a solution to 
the gene assignment problem. The hierarchical code of a node is then computed as the union 
of the genes for all its ancestors and for itself. 

A better, near optimal, solution can be found if children lists are split and the hierarchy 
is balanced before the conflict sets are computed. The next two subsections describe both 
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colori-ng and balancing in some derail. The main s1eps of the encoding algorithm are as follows 
(complete pseudocode can be found in the appendix). 

mark all nodes in hierarchy which need a gene 
split children lists and balance the hierarchy 
compute conflict graph 
color the conflict graph 
compute code 

3.2 Coloring the conflict graph 

Computing the chromatic number of a graph (determining the minimal number of colors needed 
to color vertices of the graph) is a NP-complete problem. There exist backtracking algorithms 
which can compute the chromatic number for very small graphs (up to 100 vertices), there 
are probabilistic algorithms with almost polynomial run time [ 4] and there are genetic, tabu 
and hybrid algorithms for graph coloring [5). But all these algorithms are unusable for the 
large conflict graphs which we must construct for type hierarchies. The graphs may have 2000 
vertices and 200000 edges. 

There is, however, a class of very fast heuristic algorithms which give good results on many 
graphs. These sequential vertex coloring algorithms [8] have a run time which is linear in the 
number of vertices plus the number of edges in the conflict graph [7]. All these algorithms 
order the vertices according to some predetermined criteria and color the vertices in this order. 
If no color, out of those used so far, can be reused for the current vertex, the number of col ors 
is increased by one and the vertex is assigned the new color. Otherwise, one of the existing 
colors, one which does not cause a conflict for the current vertex, is selected. 

[8) presents two algorithms which give the best results: largest degree first ordering and 
smallest degree last ordering. Largest degree first ordering sorts the vertices by the vertex 
degree (number of edges from 1he vertex} and stans coloring witl1 1he vertex wi1h lhe Jargcs1 
degree. Smallest degree /as/ ordering recursively removes the vertex with the smallest degree 
together with all its edges from lhe grapb and colors the vertices in reverse order of removal. 
Often the smallest degree last algorithm g.ives the best results. 

Another possibility is to construct a vertex order from the structure of the hierarchy. The 
simplest order is generated by a top down, depth-first, traversal of the h'iera-rchy. A different 
order is based on a topologically sorted order. Here, the top dow-n 'traversal is modified so that 
it descends to a node N in the hierarchy only if all parents of N have already been visited. 
This traversal visits the nodes in an order similar to that assumed by Caseau in his algorithm. 
We will refer to this order as the Caseau order. An evaluation of all these algorithms shows 
that the smallest degree last algorithm gives the best results (see section 4 table 4). For many 
hierarchies, this algorithm finds an optimal result. 

There are different strategies for choosing which color to reuse for the current vertex. If 
the col ors are numbered in order of first use, two simple strategies are to use the color with ( 1) 
the smallest number or (2) the largest number. Another strategy is to choose the most heavily 
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usi:d color whicb does not cause a cont'ltct. Table 5 m section 4 shows some results using these 
strategies. The stra1t:gy 1ha1 selr.r.1.~ 1lw most nsed color weighted by 1he degree of the node 
often gave the best results in our experiments. Since there is no consistent winner, a mixed 
strategy which rries more than one method and !hen picks the best result might be appropriate. 

In [7]. an improvement to sequential vertex coloring is presented. If there is no unused color 
available, an col or exchange is tried. First all conflicting colors are collec1ed which conflict only 
once with the vertex to color_ Then there is a search for a vertex which is not 111 conflict with 
one of these collected vertices and the new vertex. If such a vertex can be found, the.: colors 
can be ex.changed and the new vertex can be colored. Unfortunate ly, we found 1ha1 this color 
exchange strategy does not work for 1.he conl\ic1 graphs constructed for our type hierarchies. 
Our graphs tend 10 have so many edges that there are no nodes which can be exchanged. 

3.3 Splitting and balancing the hierarchy 

Caseau noted in [21 ibat the number 0f bits needed for hierarchical encoding is great ly influ-
enced by the number of children at a node. Jf a node has k children. then /.· distinct gc.:ncs 
are immediately needed 10 distinguish. these children. To reduce rhis number when ~· is large. 
we can either use more than one gene to distinguish 1.he different children or we can split the 
children inro smaller groups by adding additional nodes 10 the hierarchy. Usmg more bits 10 
identify a type complicates the algorithm and makes i1difficult10 find a near optimal solution. 
Therefore, whenever a node had more than 8 children. Caseau split them inro two groups and in-
troduced 1wo additional nodes as parents for those groups. Repeatedly applying this technique 
reduces the total number of genes needed, bur it is far away of an optimal strategy. 

We also use the idea ofspliuingchildren into groups but we altempt to bala.nce·rhe hierarchy 
when inserting new nodes. A lower bound on the number of genes needed for hierarchical 
encoding may be constructed as maximum over all weighted path lengths from the root node to 
a leaf node. The path length for a leaf node is 

L Jchildren(:Y)I 

where r fiildrc11(N) is the set of child nodes for node N for all nodes N on the longest path 
from the root node to the leaf node. Only child nodes which need a gene are counted for the 
path length. For hierarchies which are trees , the largest path length also provides the optimal 
solution. An optimal solution for the hierarchical encoding of trees can be constructed by 
splitting children lists and genera ting a balanced binary tree which minimizes the path length. 
A bollom-up algoritlun can be used to balance the tree. The example in figure 4 shows the 
number of genes needed being reduced from S to 4 by balancing. 

An optimal balancing algorithm appears 10 be feasible only for tree-structured hierarchies. 
With multiple subtyping, the hierarchy has 10 be balanced to generate the minima.! chromatic 
number for its conflict graph. SLnce computing the minimal chromatic number is NP-complere, 
the balancing problem is very likely co be NP-complete too. We therefore looked for a heuristic 
solution. In practice, most multiple subtyping hierarchies deviate only slightly from a tree 
structure. Heuristics based on the tree balancing method should work satisfactorily when taking 
inro account the characteristics of multiple inheritance hierarchies. 
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d 
•-' '-" 

{l,3} {l,4}{2,3} 

Figure 4: Balancing a tree 

Ifwe are balancing a tree, splitting the children into two groups can be performed arbitrarily. 
In the multiple subtyping case, children which share some common descendants should be 
assigned to the same group. If we did not do that, coloring is made harder because these 
common descendants would gain an additional parent node. 

The splitting process is made faster if it is perfonned in two stages. A 'presplitting · pass 
does a heuristic split into two groups and adding two parent nodes until the groups are smaller 
than a certain limit (currently 14 nodes) using precomputed path lengths. The second pass 
recomputes the path lengths after every split and does a more complicated split inserting one or 
two nodes. 

The presplitting pass computes an optimistic path length for every leaf node. These opti-
mistic path lengths only count less than three children per node. It is assumed that the hierarchy 
can be balanced without introducing nodes on the critical path. A leaf node's path length is 
propagated together with an unique number to all ancestors of the leaf node. During propaga-
tion larger path lengths overwrite any smaller ones. Furthermore the set of all descendants of a 
node are computed as a bit vector. Using these sets, children which are detected to have over-
lapping descendant sets are placed in the same bucket. All children lists are sorted according 
to three criteria. The primary criterion is by bucket, the secondary criterion is by leaf nodes, 
and the third by the size of the path length. Then every list of children which is longer than the 
limit is split into two parts so that the lengths of both lists are smaller than the largest power of 
two which is smaller than the original length of the list. 

The second splitting pass precomputes the correct path length after every split, and uses 
the sum of all children which need a gene on the path from the root to a leaf. The leaf's path 
length is again propagated to all ancestors. Then the ancestors of the leaf node with the largest 
path length are checked for a children list to split. This splitting takes care that ancestors of the 
leaf node are in the same list after splitting. The path lengths of the nodes are also taken into 
account and depending on the requirements one or two new nodes are inserted. 

3.4 Space and time complexity 

A careful implementation of the algorithm needs 66 milliseconds for the smallest hierarchy and 
4742 milliseconds for the largest hierarchy for encoding the hierarchy on an Alpha workstation 
with a 300MHz 21064 processor. The worst case time complexity of the algorithm is quadratic. 
The average complexity is lower and depends on the number of edges in the conflict graph. The 
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I input marking splitting conflict graph 
, management pre I final graph coloring 
i 6.6% 6.2% 3.1% I ss.4% 21.3% 4.4% 

Table I: Execution profile of the encoding algorithm 

marking part is quadratic in the number of nodes that have morn Lhao one parent (i.e. the size 
of 11111/tis). Eaeb spliuing step during balancing is linear in the number of nodes, but since the 
number of nodes can be doubled this also implies quadratic complexity, Coloring is linear in 
the sum of nodes and edges in lhe con·fl'ict graph. The number of edges is limited by the number 
of nodes squared, but usually is about twic~ as large as the average number of ancestors times 
the number of nodes. Table I shows the proportion of the tota l run time spent on each of tJ1e 
ulgorithm 's subtasks. 

TI1e space cost is dominated by the storage needed for the conflict graph. The graph ts 
stored in two represemations. One is a bit· vector to provide a fast check 10 see if a conflict 
has already been entered in the graph. The s.icond is a list representation that allows fast 
sequential access to conflicting nodes. If space is a concern, computation time can be traded 
for space. lt is no1 necessary to smre the conflict graph. I.t can be computed twice. Initially, 
only the degree for each node is stored, and then the nodes arc sorted according to decreasing 
degree. Subsequently, the conflicts are computed for each node and immediately colored. This 
increases the time, but reduces space requirements. 

4 Results 

This las1 section evaluates different aspec1s of the algorithm and compares the performance 
of the algorithm with other approaches. As test data, we used a collection of class libraries 
compiled by .Karel Driesen. We also obtained the Laure type hierarchy from Yves Caseau (2) 
and the Java API li"brary from Sun [6). Table 2 presents the relevant characteristics of those 
libraries. The number of classes varies from 225 m 1956. representing both big applications 
and libraries. The depth of the hi.erarchy ranges from 7 to 18. 111e first four libraries use single 
inheritance only; the following ones use multiple inheritance with up to 16 parents per class. 
Except for the three programs written in LOY (a language similar to Eiffel), the average number 
of parents is close tO one. For the three LOY programs. the average number of parents is close 
to two. 

Table 3 shows the main result, the number of bits needed for the encoding using three 
different splitting strategies combined with two different coloring strategies. The first two 
columns show the number of genes needed for encod.ing the original hierarchy. The next two 
columns show lhe genes needed for a hierarchy where all classes with more tJ1an 8 children 
have been replaced by a class with two new classes as children each containing one half of the 
children of the original class. The last two columns show the results for a balanced hierarchy 
using the balancing algorithm described io the previous section. The two sequential coloring 
techniques use an ordering similar to that used by Caseau (top down after all parents of a class 
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I library name _ 1 1anguage _ 1 classes _1 dept~ r ma)( pare1us -yaYg. paremiJ 
Yisualworks2 Smalltalk-80 1956 15 I I 
digitalk3 Smalltalk-80 1357 14 1 I 
NeXTStep Objective-C 311 8 I I 
ET++ C++ 371 9 I I 
Uni draw C++ 614 10 2 1.01 
Self Self 1802 18 9 1.05 
Geode Eiffel/LOY 1319 14 16 1.89 
Ed Eiffel/LOY 434 II 7 1.66 
LOY Eiffel/LOV 436 JO 10 i 1.71 
Laure Laure 295 12 3 I 1.07 
Java i Java 225 7 3 i 1.04 

Table 2: Hierarchy characteristics 

have been colored) and the smallest degree last ordering. Note that Caseau 's algorithm cannot 
directly encode all our hierarchies because of it requires every hierarchy to be a lattice; we only 
color the classes in a sequence which is similar to the ordering of his algorithm. To compare 
Caseau 's results with ours, it is necessary to compare the column 'Caseau of max 8 children' 
with the last column. Our algorithm can reduce the sizes of the encodings down to one quarter 
of those produced by Caseau's algorithm. 

Table 4 gives the performance using six different sequential coloring techniques. The first 
column (smallest first) is the worst ordering; it starts with the class which has the smallest 
degree (the smallest number of conflicting classes). Random ordering takes the classes in the 
order they are read in. Top down ordering traverses the hierarchy in a depth first manner from 
the root node down to the leaf nodes. The Caseau ordering also traverses the hierarchy top 
down, but it colors a class only after all parent classes have been colored. Largest degree first 
and smallest degree last are the orderings suggested by Matula [8] and give the best results for 
our conflict graphs. The 'lower bound' column gives an estimate for the lower bound using 
the largest path length as described in the previous section. This estimate is quite accurate for 
tree-like hierarchies but is only approximate for other hierarchies. In many cases, the coloring 
needs the same number of col ors as estimated by the lower bound and this shows that an optimal 
solution has been found. It is evident that conflict graphs resulting from single inheritance 
hierarchies can colored optimally regardless of the algorithm used. 

The quality of a sequential coloring algorithm not only depends on the ordering of the 
vertices but also on the color chosen if there is a choice of more than one non-conflicting color 
to reuse. The last use coloring method sorts the colors by their last uses and takes the first used 
color which does not conflict. The largest coloring method selects the color with the largest 
number while the smallest coloring method selects the color with the smallest number. The best 
color selection algorithms are based on an assumption that preferring a color which is heavily 
used should produce fewer conflicts later on. The max use coloring method counts the number 
of uses of each color and takes the most used one. The last two algorithms weight the use by 
the degree of the class. The max sdl coloring method weights the use count by the removal 
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original hierarchy max 8 children balanced hierarchy 
smallest smallest smallest 

benchmark Caseau last Caseau last Caseau last 
Visualworks2 420 420 124 124 50 50 
digitalk3 325 325 116 116 36 36 
NeXTStep i 177 177 92 92 23 23 
ET++ 181 181 61 61 30 30 
Unidraw I 227 227 96 96 30 30 ' 
Self 297 297 180 180 54 53 
Geode 429 426 231 228 ! 110 96 
Ed 130 126 91 80 62 55 
LOV 133 128 96 86 I 69 58 
Laure 34 33 34 33 23 23 
Java 97 97 50 50 22 19 

Table 3: Bit count of Caseau and near optimal coloring for different balanced hierarchies 

smallest top largest smallest lower 
benchmark first random down Caseau first last bound 
Visualworks2 50 50 50 50 50 50 50 
digitalk3 36 36 36 36 36 36 36 
NeXTStep 23 23 23 23 23 23 23 
ET++ 30 30 30 30 30 30 30 
Unidraw 30 30 30 30 30 30 30 
Self 60 57 56 54 53 53 46 
Geode 140 122 120 110 102 96 47 
Ed 84 72 68 62 59 55 35 
LOV 86 73 79 69 61 58 32 
Laure 24 25 23 23 23 23 23 
Java 22 22 22 22 19 19 19 

Table 4: Bit count of different coloring techniques 
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last use largest smallest max use max sdl max ldf 
benchmark col or color col or col or col or color 
Visualworks2 50 50 50 50 50 50 
digitalk3 36 36 36 36 36 36 

l NeXTStep 23 23 23 23 23 23 
ET++ 30 30 30 30 30 30 
Unidraw 30 30 30 30 30 30 
Self 54 53 53 53 53 53 
Geode 99 98 99 99 98 96 
Ed 55 58 58 56 58 55 
LOY 62 62 61 61 62 58 
Laure 23 23 23 23 23 23 
Java 19 19 19 19 19 19 

Table 5: Bit count of different color choosing techniqut:s 

degree obtained by the smallest degree last ordering, and the max ld.f coloring method weights 
the use count by the unmodified degree. The smallest coloring method and the three max use 
methods sometimes give different best results. Because the computation time of the coloring 
is small compared to the time needed to construct the conflict graph, it makes sense to use all 
four algorithms and take the best result. 

5 Conclusion 

We have presented a near optimal algorithm for finding hierarchical encodings for type hier-
archies. Our algorithm produces encodings which are up to four times shorter than encodings 
generated by a previous algorithm and therefore providing a faster type inclusion check for ob-
ject oriented languages wid1 multiple subtyping. l11e algorithm is also an order of ma&,>nitude 
faster which makes it praccical for the use in compilers. 
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Appendices 

II definitions 
parenls(x) 
children(x) 
ances/ors(x) 
desce11da111s(x) 
mark(x) 
length(x) 
leaj(x) 
gene(x) 
code(x) 
singles 
mullis 

II all nodes which are a direct supertype of x 
II all nodes which are a direct subtype of x 
II all nodes which are a supertype ofx 
II all nodes which are a subtype ofx 
II flag, is l, if x need a distinguishing gene, 0 otherwise 
II longest path length between x and a leaf node 
II leaf node of the longest path which includes x 
II gene number, bit position in bit vector 
II the bit vector of class x 
II all nodes in the hierarchy with a single parent 
II all nodes with with more than one parent 

II mark all nodes of hierarchy which need a bit 
mark(s) := 1 V s E singles 
for each m E multis do 

if3 n E multis, ~ (n <: m), ancestors(m)n singles <:;; ancestors(n) 
then mark(m) := 1 
else mark(m) := 0 

11 balance the hierarchy 
define computeJength(l E Integer, leafE hierarchy,x E hierarchy) as 

I :=I+ L: mark(childx), V childx E children(x) 
for each parenlx E parents(x) do 

if length(parentx) < 1 then 
length(parentx) :=I 
leaj(parentx) :=leaf 
computeJength(l, leaf, parentx) 
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length(x) := -1 'r/ x E. hierarchy 
fo r each leaf E hierarchy , clzildren(leaj) = {} do 

length(leaj) := 0 
/eqj(Jeaj) := leqf 
computeJength(O, leaf, leaf) 

for each x E hierarchy, size(children(x)) > 2 do 
split children(x) and add one or two nodes co hierarchy 
if this is possible \Yithout increasing length()') for any y E hierarchy 

II compute conflict graph 
for each x E hierarchy do 

pan: := parents(x) 
ifparx = then pan::= {x) 
for each y E descendants(p ), y #- x, 'tf p E parx do 

enter conflict between x and y in conflict graph 
if y E mu/tis. ~ (y <: x) then 

V anc E ancestors(y), anc # y. enter conflict between 
x and anc in conflict graph 

II color the conflict graph 
for each x E hierarchy in decreasing order of conflict graph degree do 

if mark(x) = I then gene(x) :=the most used non conflicting gene 

II compute code 
for each x E hierarchy do 

code(x) := U gene(ancx), V ancx E ancestors(x) 
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