Objects, Associations and Subsystems:
A Hierarchical Approach to Encapsulation

J.C. Bicarregui, K.C. Lano, T.S.E. Maibaum

Imperial College, London

Abstract. We describe a compositional approach to the formal inter-
pretation of type view diagrams and statecharts. We define theories for
object instances and classes, and theories for associations between them.
These theories are combined with categorical constructions to yield a
formalisation of the entire system.

We observe that some notations require the identification of theories
intermediate between the theories of the constituent classes and associ-
ations and that of the entire system. This leads us to propose a notion
of subsystem which generalises the concept of object and yields an ap-
proach to system specification employing object-like encapsulation in a
nested hierarchy of components®.

1 Introduction

The combination of data encapsulation through the aggregation of related at-
tributes, and instance identity to distinguish separate occurrences of that en-
capsulated data is a powerful feature of the object oriented paradigm. Objects
provide a convenient way to group related attributes (eg: a table has a length,
a width and a height), Object Identifiers (OIds) give us the ability to model the
distinct existence of two or more instances with exactly the same characteristics
(two tables may have the same attributes but still be different tables).

The indirection implicit in the use of Olds is then exploited to distinguish
attributes which are themselves objects from attributes which are (pure) values.
We will use the terms “reference attributes” and “value attributes” for these
respectively. An example of the use of reference attributes is in structural de-
composition of an object. For example if a table has four legs and a top, then
a particular table object, table23, may comprise of four particular leg objects,
leg12, leg13, leg14, leg15, and a top, top27. Examples of pure attributes are the
height, length and width of the table given above.

Properties of objects can relate both pure attributes and reference attributes
indiscriminately. For example a long table might be one that is more than twice
as long as it is wide, a level table must have the four legs of the same length,
and the height of the table is the length of the legs plus the depth of the top,
etc.

! This work is being undertaken by the UK EPSRC project “Formal Underpinnings
of Object Technology”.

325

In most Object Oriented Analysis and Design notations value attributes are
considered to be part of the object itself, whereas reference attributes are given
via associations between objects. Associations are therefore a separate modelling
tool in the Object Oriented designers toolbox. Opinions differ as to whether as-
sociations should themselves be objects with their own object identities, whether
associations are a separate primitive concept which should have identities (Alds),
or whether associations should be pure constructions without identities.

Associations-as-objects yield an economy of form and a uniform approach to
modelling but may be confusing two separate purposes. Associations with Alds
enable the distinction of two copies of the same association between the same
objects. Pure associations enable a value-based approach to equality and do not
require the overhead of indirection in construction.

More generally, the same issues arise when we collect objects together in
larger aggregations. The concept of “subsystem” can be adopted as a means
to provide coarse grained modularity in OO design. Subsystems can be defined
using the class-instance approach as for objects, they can be managed by co-
ordinating objects and they can be units of encapsulation in the same way as
objects. Subsystems can provide a structure in which properties of collections of
objects can be defined at the appropriate level without complete globalisation
(as in Fusion operation schemas [4]) or over localisation (as in Syntropy state-
charts [5]). If subsystems are considered to be first class objects, then they yield
the possibility of developing a nested hierarchy of levels of granularity and hence
a compositional approach to vertical structuring.

An open question is whether there is merit in attributing identifiers to in-
stances of subsystems (SIds) in the way that Oids are given to object instances.
In this paper we adopt the position that a hierarchical approach to structur-
ing designs is essential if large designs are not to be subject to an exponential
increase in complexity. We therefore separate the concerns of aggregation (as
embodied in objects and associations) and instance identity (as embodied in
Olds) and formally define the concept of subsystem as a first class construction
and argue that it is a generalisation of the familiar concept of both object and
association.

The ideas presented here have arisen out of the formalisation of the “Syn-
tropy” approach to object oriented analysis and design which has shown that
many existing notations, although sometimes attributed to object classes, need
to be formalised at a level in between objects and systems. In structuring the for-
mal interpretation of system diagrams to formalise these notations, it becomes
clear that their representation as part of an object class is inappropriate and
that their interpretation at a higher level is more justified.

Two examples we will examine in this paper are the RadioButton example
of [5], and an example of multiple constraints between associations. The radio
button example of [5] highlights the lack of clarity which can arise as a result
of enforced local (to objects) behaviour specification. The Syntropy statechart
in this case is shown in Figure 1. The true filter in the event list indicates that
every existing object of RadioButton may react to the turn_on event. The way

326

in which they react depends upon whether they are the button being pressed
(x = self) and what their current state is. It is not immediately evident from

RadioButton

turn_on(x){x /= self]

turn_on(x)[x = self]

Off

turn_on(x)[x /= self]

On

turn_on(x)[x = self]

Events:
turn_on(x: RadioButton {true])

Fig. 1. Statechart of Radio Button

this diagram that in fact, after a turn_on(x) event, that only x will be in the
On state, and all other existing radio buttons will be in the Off state. Nor is it
clear that actually the final state of an object depends only on whether it is x,
and not on its starting state. We examine more abstract and design-free versions
of this specification in Section 3.

Similarly, because Syntropy, OMT or Fusion defines no level of structuring
between individual classes and entire systems (or domains), constraints between
associations and between attributes of different classes are expressed via nav-
igation expressions and invariants which are local to particular classes. Such
localisation may be arbitrary (the expressions and invariants could just as well
be written in other classes) and may therefore reduce the clarity and abstraction
of the specifications concerned.

For example, consider Figure 2. Here there are two alternative ways of ex-
pressing the constraint that every student taught by a college is either an external
student or lives at the college. As an invariant of College we could write:

teaches C accomodates U external_students
As an invariant of Student we could alternatively express it as:
external_at = taught_at Vv lives_at = taught_at

Subset constraints could alternatively be used between associations. Again, we
will give a more abstract presentation of this situation using subsystems in Sec-
tion 3.

327

ternal at lextemal_students
external__
College Student
tanght_at teaches
lives_at accomodates I|
Fig. 2. Subsystem Example
Overview

In Section 2, the major part of this work, we describe a hierarchical formalisation
of the Syntropy diagrammatic notations where each diagrammatic component is
interpreted separately and the system description is built in a compositional way
from these separate interpretations. We observe how many of the constructions
are naturally interpreted in theories which correspond to identified parts of the
overall system. In Section 3 we propose the notion of subsystem as a “first
class object” which generalises the concept of object and yields a hierarchical
approach to encapsulation where subsystems are nested one inside the other.
Section 4 concludes with a summary of the achievements so far and discusses
further work required.

2 Formalising Syntropy

2.1 Syntropy

Syntropy [5] is a methodology for object-oriented analysis and design similar to
OMT [14] with additional formal specification elements derived from Z[15]. It
represents a significant advance over previous object-oriented methods in giving
mathematical specifications of data models and dynamic behaviour.

Three distinct levels of modelling are used in Syntropy. At each of these
three levels, type view diagrams depict the structure of object classes. Objects
have attributes of non-object types. Associations between classes are depicted
by connecting lines. Statecharts [10] are also used at each of the three levels.
However, different models of communication are used at each level of abstraction.

— Essential models describe the problem domain of the application. They de-
scribe the system as a whole including the proposed software solution and its
environment. They use events to abstract from the localisation of methods
in classes.

328

~ Specification models abstractly model the requirements of the software appli-
cation, hence defining the software/environment boundary. They decompose
a reaction to an external event into a series of event generations and internal
reactions by specific classes.

— implementation models model the required software in detail. In addition,
object interaction graphs (termed mechanisms in Syntropy) are used at this
level, with object to object message passing.

Syntropy adopts a number of mathematical notations, however, a semantics
is only indicated for data models. In addition, there is no formal definition of
refinement between models.

2.2 The Object Calculus

The Object Calculus [7] is a formalism based on structured first order theories
composed by morphisms between them.

An object calculus theory models a component of a system. It consists of a set
S of constant symbols, a set A of attribute symbols (denoting time-varying data)
and a set G of action symbols (denoting atomic operations). Axioms describe the
types of the attributes and dynamic properties of the actions.

A global, discrete linear model of time is adopted (eg. [12]) and axioms are
specified using temporal logic operators including: O (in the next state), ® (in
the previous state), i (strong until), S (strong since), O (always in the future),
B (always in the past), o (sometime in the future) and 4 (sometime in the past).
The predicate BEG is true exactly at the first moment. For the purposes of this
paper only the “next” temporal operator will be required.

The temporal operators are also expression constructors. If e is an expression,
Qe denotes the value of e in the next time interval, etc.

In the style of [9], theories are composed by morphisms to yield a modular
definition of a whole system. The Object Calculus defines a notion of locality
which ensures that only actions local to a particular theory can effect the value
of the local attributes. For each theory we have a logical axiom

\/ g Vv /\ a=Da

gi€g acA

“Either some action g; of the theory executes in the current interval, or every
attribute a of the theory remains unchanged in value over the interval.”

2.3 Interpreting Object Types

Figure 3 depicts a fragment of a Syntropy type view diagram. A single class,
A, is defined with two attributes, f and g, of (non-object) types T} and T»
respectively?.

2 Note object-typed attributes are given via associations, see Section 2.4.

329

f:Tl
g:T2

Fig. 3. Part of a type view diagram

Such a diagram can be understood as a view of a typical object of the type,
or it can be interpreted as depicting the entire class of such objects. To interpret
this diagram, we define two Object Calculus theories. The first gives the theory
of a single instance of the type, the second manages the collection of currently
existing instances. A number of the former are then combined with the latter to
form the theory of the class.

The signature of a generic instance We define a theory, A; for a typical object
of this class. The theory of the instance introduces a sort for the type of each
attribute, there are no constant (or function) symbols and, for each attribute,
there is an attribute symbol for each attribute. For the present, there are no
actions, we will later use information in the statechart to define the actions.

S = {Tl,Tz}

A= {f:Tl,gZTz}

G=1{.}

self A key technique used in OO notations is that an individual object can refer
to itself as self whilst it’s external identity (its object identifier) is given by
the class. As in [8], we interpret self using A-morphisms which add the object
identifier as an extra parameter when attributes and actions are globalised (see
Section 2.3).

The signature of the class The creation and deletion of instances is accomplished
through a class manager. Class manager and class instances are then combined
to form the theory of the class. The definition of the class manager is independent
of the structure of A and so is defined in terms of a general class type X.

The class manager theory, M, introduces a sort for identifiers of objects, @X
and no constant symbols. It is convenient to define an attribute, X, to record
the finite set of currently ex1stmg instances. In terms of [16], @C is ext(C) and
the value of C at time 7 is ext,(C). There are actions of M to create and kill
objects of X.’

330

G = { create : @X kill : @X }

Note that creating an instance does not initialise it. Creation and initialisa-
tion can be brought together via an action new which synchronises them.

We cannot create an existing object nor delete a non-existent one3 (pre-create
and pre-kill). Creation adds an object to the set of existing objects and deletion
removes it (post-create and post-kill). We require that objects are only added
or removed from the set of existing objects by creation and deletion. These six
conditions can be condensed to:

create(x) & x¢€ X Ax€ OX

killix) @ xcXAx¢(OX

which concisely characterise the two actions.

We may wish to give an initialisation stating, for example, that the set of
existing objects is initially empty (initialisation)

BEG = X =2

Embedding instances in the class At any point in time, there are a finite number
of living instances. The theories of these are combined with the theory of the class
manager via morphisms which name each instance according to the identifier
given when it is created (Figure 4).

self — a,

Ay >~ A

Fig. 4. Instance and class manager theories are embedded in the theory of the class

We combine the theory of each instance with the theory of the class via an
@A-morphism which adds an extra parameter of type @A to each attribute

and action symbol [8]*. This is equivalent to defining self as a constant in the

3 In a deontic setting one could use the notion of “permitted” here.
* A morphism, o, of object signatures from 8; = (X1, A1, 1) to 82 = (X2, Az, I2)
is a triple comprising: a morphism of algebraic signatures o, : X1 — X; for each

f:sy,...,8n — s in Aj, an attribute symbol o4(f) : 0u(s1),...,0u(Sn) — 02(8) in
A,; and, for each g : s1,...,8, in [1, an action symbol ¢+(g) : 6.(s1),-..,0u(sn) in
.

Given a signature morphism, the translation of formulae is defined according to
their structure in the usual way, and given two object descriptions, (81,P1) and
(62, ®2), a morphism, (6:,$1) — (82,P2), is a signature morphism which preserves

331

instance theory which acts as a (dummy) placeholder for later identification with
the object identifiers in the class theory.

The resultant theory, A, has an attribute att(a) for each attribute att of
each existing instance a. For example, for instance a; and attribute f, there is an
attribute oi(f) in the class theory. In effect f is a (finite) partial function from
@A to T;. We define a syntactic sugar which names the o;(f) conveniently

f:0A - T,

a;.f = o3(f)

So, in A, f is a partial function from @A to T; which is written in the right.
A similar approach is taken to the naming of instance actions.

History and the state Note that we have, up to this point, avoided the use of any
temporal operator other than “next”. This is because all behaviour determining
history has been explicitly stored in the attributes. However, for example, we may
wish to require that it is not possible for an object to be “reborn”. This can be
given using temporal operators or can be given in the above style by augmenting
the state with a “memory” of past objects. X would then distinguish between
objects that have lived and those which have not.

X : @X — { unborn, alive, dead }

Axioms would chart the evolution of objects from unborn, through alive, to
dead.

2.4 Interpreting Associations

We now formalise the notion of an association as depicted in Figure 5. We will
interpret the association without any knowledge of the structure of the objects
it associates®. Thus we have a generic theory of associations. We then use a
renamed copy of this theory for each particular association in the model.

We begin with the most general case, a many-many association depicted by
the black “blobs” at each end of the connecting line. The same approach will
also work for other cardinalities of association by requiring further axioms for the
constrained cases. For this section we consider only how to interpret associations
at the level of the classes. In some circumstances, such as when the association
has attributes of its own, it may be desirable to make a two level construction
as was done for object classes.

validity and locality, ie. for which we have: ¢, =4, o(p) is valid for each valid p € 4;;
and @2 =4, (61 — 62), where =>4, is entailment in 6, and (81 —o 82) is the 6,
formula which is the translation of the locality axiom of 6.

Given a sort A, and a morphism of object signatures, o, the A-morphism, oa, is
the same as o except that it adds an extra parameter of sort A to each attribute
and action symbol. Thus for example, for given a : A, for each attribute symbol f
and e; : si, ga(f(e1,...,en)) = oa(f)(a,caler),...,oa(en)).

We do however assume each class theory has been constructed from instance theories
and class manager theory as defined above.

332

Fig.5. A simple association

The association is interpreted as a many-many relation Ir between object
identifiers for the class on the left, @L and the class on the right, @R®. Note
that Ir plays the same role as X, it is the set of existing links in the association.
The theory signature is:

S ={QL,@R }

A= {lr: F(QL x @QR) }

G = {link : @L x @R, unlink : @L x @R }

As for object classes, we require axioms for adding and removing pairs from
the relation and again have an “instance-by-instance” locality requirement which
yields a characterisation of the two actions

link(l,r) & (Lr)¢Ilr A(L,r) € Olr

unlink(lr) © (I,r)€lr A(L,r) ¢ QOlr

In this case, as there are no identifiers for links, we do not require no-rebirth.

Again, it may be appropriate to add an axiom concerning the initialisation
such as

BEG=1Ir=9

There is no axiomatic constraint between link for the association and create
for the object classes here. Such constraints are given when the theories of objects
and association are brought together. In keeping with encapsulation, there are
no actions to update or inspect the associated object instances directly.

Bringing association and objects together Now assume that A and B are as-
sociated by C in a diagram D. D is interpreted as the co-limit of the theories
for A, B and C. The class manager theories for A and B provide the “glue”
which brings theories of objects and associations together. C is “glued” to each
of A and B by identifying QL and @R with @A and @B respectively. Where
names would otherwise clash, they are subscripted by the name of the theory
from which they emanate. Purely for convenience, Ir is renamed to ab in D.

® This turns out to be considerably more convenient than having a pair of primitive
functions r : @L — F@QR and 1: @R — FQL, such functions can be defined from
the relation if required.

333

Figure 6 shows the hierarchical construction of the theories involved, and how
these relate {(dashed arrows) to the object model. Notice that D corresponds to
a theory of a “subsystem” which includes all of the items in the object model.

M > C = M
Al\ lA 1 Ji/ B,
An > A > D B B

Fig. 6. The type view diagram is interpreted as the colimit of the object and association
theories.

We now add axioms to D or to C which interpret the particular kind of
association required.

Cardinality Constraints. Firstly, whatever kind of association is required, it
can only link existing objects. This can be formalised by stating that the relation
only relates the existing objects.
ab C AxB
This property relates the symbols of the association theory with those of the two
class manager theories (but not those of the instance theories). These symbols
are all available in the colimit of the association theory and manager theories
and it is therefore meaningful to give it as an axiom of the theory “C” in the
above diagram.
The axiom can be written as an extra, trans-theory, postcondition for link
link(a,b) = ac QAAbe (OB
which, due to locality, yields a synchronisation between link and create
link(a,b) = a€ AV a.createa
link(a,b) = b € BV b.createp

Optional unary associations (9+) If the “blob” on the right is white, that
is each A is associated with at most one B, then the relation is a (partial) map
from @A to @B.

Va,bl,bz . (a,bl) € ab A (a,bl) €ab = bl b= bz
This can be interpreted purely in the theory of the association by strengthening
the constraints on link

link(a,b) = a ¢ domab

link(a, b) A link(a,b’) = b=V’
Thus this constraint is truly a specialisation of the concept of association, inde-
pendent of all other constructions.

Compulsory unary associations ([—{J) If the blob on the right is missing
altogether, that is each A is associated with exactly one B, then the map is total
on A. Again this is a constraint between association and class manager theories

domab = A

334

Note that we do not require the map to be surjective since an @B can be
associated with an empty set of @As.
Again this can be ensured by conditions relating create and kill from the
class manager for A with the relation ab from the association theory
a.createy < a ¢ domab A a € dom(Qab
akilly, < a€ domab A a¢g domQab
Conversely, for the one-many case, we have conditions on ab~1.

One-one associations { T3—1) In the one-one case, we simply have both of
these sets of axioms and so we can conclude that As and Bs must be created
and deleted in lock-step and therefore that there are always the same number of
As as Bs.

Lifetime Constraints ([—<f—) A “diamond” on the association is a con-
straint concerning the lifetimes of the associated objects. Diamonds can be in-
terpreted independently of multiplicities.

A diamond at the right hand end of the association, indicates that As can
only exist if linked with some (set of) Bs and that this set must be constant
throughout the A’s lifetime”. This is ensured if As can be linked to Bs only
when they are created, and unlinked only when deleted

link(a,b) => ag AAhac QA

unlink(a,b) => ac Arag OA

There are similar rules for a diamond on the left of an association.

Subtypes ([3<+{3) In the semantics, we interpret subtyping as a particular
form of association with particular cardinality and lifetime constraints and where
the object identifiers are drawn from the same set of tokens. This interpretation
can then be used to show the validity of all the subtyping transformations of
Chapter 8 of [5] with the exception of target splitting[13] in case that the target
state is already nested. From the perspective of system structuring, however,
which is the focus of this work, details of this are not relevant but can be found
in [3].

We have seen how the interpretation of components of a type view diagram
can be interpreted in a hierarchy of theories each corresponding to the separate
diagram elements. We note that the formalisation of some particular constraints
available in the diagrammatic notation are interpreted in the theories resulting
from the composition of the theories of the separate diagram elements. This trend
wili be continued in the interpretation of statecharts which follows and will lead
us to identify the concept of subsystem described in Section 3. In general the set
of attributes of a subsystem theory will be the union of the sets of attributes of
its constituent class and association theories, and similarly for actions.

" It is not clear whether Syntropy requires the set associated in an aggregation to be
non-empty. We assume it is not.

335

2.5 Interpreting Statecharts

Statecharts are the most complex and semantically rich notation employed by
Syntropy. Based on [10], they depict the state space of an object, partitioned
according to “those states which distinguish the possible orderings of events” ([5],
p.91). Statecharts have distinct interpretations at the essential, specification and
implementation modelling levels. We focus on the essential level, but many of
the semantic interpretations also apply to the specification and implementation
levels®.

State classes, depicted by boxes with a diagonal line in their top left hand cor-
ner, represent varying subsets of the objects of the superclass where an individual
instance can move between the subtypes. Statecharts define the transitions which
take instances from one state class to another.

Al A2

Events

el(a[f{PI/Q
€2 ...

%

(@) (b)

Fig. 7. State types and statechart for class A

For example, Figure 7 depicts a class with two state subtypes. A; and A,.
The subtypes in Figure 7(a) correspond to the states in Figure 7(b). The arrow
from the solid blob indicates that the object is created in state A; and the
arrow to the ringed blob represents object deletion from state A,. The other
arrows indicate state transitions e; and e; which take the object from state A;
to state A, and back respectively. In the essential model, the lack of further
arrows indicates that, for example, e; “cannot happen” when the object is in
state Agq.

In Syntropy, the effect of transitions is specified by preconditions and post-
conditions similar to those used in Z or VDM. For example, e;1[P]/Q, indicates

8 Note that statecharts in Syntropy correspond only loosely to those of Harel [10, 11].
The semantics given here is intended to formalise statecharts as used in Syntropy
and does not correspond to the semantics of Harel.

336

that transition e; can only occur if the predicate P holds and that the two-state
predicate Q must hold between the before and after states when e; occurs.

Further semantics is given by Events listed in the textual part at the bottom
of the statechart. Events are system-wide, but can be targeted at particular
objects by the use of parameters and filters. Typically, events effect a state
transition in a single object of the class and have the same name as a state
transition in the diagrammatic part of the statechart. The instance targeted by
the event is passed as an extra parameter, a, of the object type (c.f. the extra
parameter introduced in the A-morphism). In this case, the default filter, a =
self, is assumed to indicate that only the object passed as parameter responds
to the event. More complex situations can be modelled using this mechanism
where the filter, f, is a predicate identifying which events the self object should
react to.

The same event can correspond to more than one transition in the diagram-
matic part of the statechart. Where the sources of the arrows are different states,
the state gives the precondition for the transition. Where the same event name
labels two arrows from the same state, the choice between them is indicated by
separate explicit preconditions which are annotated directly on the arrows.

Unlike the use in Syntropy, we make a syntactic distinction between the event
and its associated transitions by capitalising the event name and indexing the
transition names.

2.6 Interpreting State Types and Events

The information in the class diagram is interpreted as in Sections 2.3 and 2.4.
The statechart defines the actions of the classes and instances which were omit-
ted in Section 2.3. Each arrow in the statechart represents a state transition
and is interpreted as an action e; of the instance theory. Several arrows can be
used to describe different cases of a particular system event. The event itself is
interpreted as an action E in the theory of the subtype/supertype subsystem
and is synchronised with the instance actions that correspond to the required
state changes. For example, in the above diagram, if e; and e are different
transitions for the event E(a) then e; and e, are interpreted as separate actions
in the instance theory of A whereas E(a) is interpreted in the theory of the
{ A A, A, } subsystem and then synchronised with e; and e; via an axiom of
the form
E(a) = ae; Vae;

Filters. More generally, events are of the form E(p[F]), where the parameter p
is a list of object or value parameters and the filter F is a predicate involving
the parameters, self and the class constants. Object instances that satisfy the
filter will undergo the corresponding transition (depending on their state and
precondition), whereas objects for which a filter fails to hold ignore the associated
event

E(p(F]) = Va€ @A -aF =>ae; Vae,

337

Here a.F is F with a substituted for self. For example, in the default case, where
F is p = self, then a.F is p = a and we regain the simpler condition above.

Note that when an event is not listed for a statechart, we require the event
to go undetected by the object (rather than be blocked). In order to ensure this,
we interpret unlisted events as having a filter of false.

Interpreting preconditions Preconditions in the essential model are intended to
specify that certain transitions “cannot occur” in given circumstances. Thus
we interpret preconditions as (blocking) guards which prevent execution of the
transition they annotate. Consider the transition e; [P]/Q from state A; to state
A,. We define a permission aziom in the instance theory which expresses that
e; can only occur when P holds.

e > P

Note, that this interpretation prevents preconditions from being weakened in
refinement, that is, such transformations do not yield theory extensions. Thus
subtyping form 5 of Chapter 8 of [5] (weakening preconditions) is not valid in
essential models®.

At the class level, each transition is also guarded by the state from which it
occurs, for example, we have

ae; > ac —A_l

Postconditions Postconditions are expressed in terms of the change between
attribute values of the current state and those after the transition. Modifications
to associations which result from postconditions defining a change to one end
only are assumed to be made explicit in the postcondition.

For the above transition with postcondition, Q, we have the state-transition
axiom

€] = Q
where Q is a predicate in attribute symbols f; and f] and we replace f{ with Of;
in Q.

At the class level, the event additionally moves the targeted instances to
state Ag

ae =D ac OA—Q

Orthogonal state machines Syntropy allows non-interfering concurrency to be
specified via orthogonal statecharts although multiple simultaneous events are
not supported. The state space is now the cartesian product of the spaces indi-
cated by the two statechart components. The above approach supports a simple
interpretation of orthogonal statecharts in terms of their components. Again the
reader is referred to [3] for details.

The above interpretation of filters, preconditions and postconditions assumes
only local attributes are used in the defining expressions. However, Syntropy

9 In specification models, on the other hand, preconditions are to be interpreted as
assumptions: any behaviour is valid if a transition is executed when its precondition
is false. So preconditions can be weakened in specification models.

338

allows “navigation expressions” in which the conditions depend on the attributes
of associated objects.

In such cases the relevant permission and state-transition axioms have to
be “lifted” to an appropriate theory. Where the expression simply refers to an
attribute of an associated object, the theory built for the association (D in
the above diagram) suffices. Where the expression “navigates” further afield, a
larger theory must be used. In this case, the theory required is that including
all the visited theories. (The order of inclusion is not important as the co-limit
construction is independent of the order in which the theories are combined.)

These larger theories are in any case part of the construction of the inter-
pretation of the system as a whole, but until now their construction has been
completely implicit. Therefore, in making explicit which theory interprets each
navigation expression we add considerable complexity to the interpretation of
the general system since each navigation expression potentially visits a collec-
tion of objects from different classes and hence identifies a new theory in its
interpretation.

For this reason, we here advocate that a hierarchical approach is adopted
when constructing system descriptions where predefined subsystems are em-
ployed and navigation expressions are confined as far as possible to the enclos-
ing subsystem. (The same effect can be achieved by post-processing a system
description to identify which collections of classes are linked by navigation ex-
pressions.) In the next section we discuss the use of subsystems as “first class”
constructions in system description which leads to a definition of subsystem
which is a generalisation of the concept of object and yields a hierarchical form
of object orientation.

An example of application of the above semantics to the radio button state-
chart of Section 1 yields instance actions

1. turn_on;(x) representing the transition from On to itself in the case that
x = self;

2. turn_on,(x) representing the transition from On to Off in the case that
x # self;

3. turn_onjs(x) representing the transition from Off to On in the case that
x = self;

4. turn_ony(x) representing the transition from Off to Off in the case that
x # self.

The class action Turn_on(x) then has the axiom:

Turn_on(x) =
Va:@RadioButton- a.turn_on,;(x) V a.turn_ony(x) vV
a.turn_onz(x) V a.turn_ony(x)

because the filter is true (ie, every object a may potentially react to the event).
But we know that

aturnon;(x) > a€OnAx=aAac(Q0n

339

by the axioms for this transition, and similarly for the other transitions, so that:

Turn_on(x) =
Va: @RadioButton -
acOnAx=aAae(QOn Vv
acOnAx#anacQOff v
acOf Ax=aAac(QOn Vv
acOff A x#aAaec(QOff

From this we can, after some work, deduce that OOn must be {x} and QOff
must be the complement of this set.

3 Subsystems

In the introduction we identified two key aspects of object orientation. Firstly,
Objects aggregate related attributes, and secondly, Object Identifiers globally
identify particular instances of one of these aggregations. In Section 2 we have
seen how the formal interpretation of objects, classes and associations leads us
to consider the concept of subsystem as a means of interpreting the constraints
between related objects. From this perspective, subsystems provide aggregation,
just as did objects, but at a coarser level of granularity. In this section we discuss
whether other aspects of object orientation, in particular instance identity, can
also usefully be applied to subsystems.

Although the concept of subsystem is not defined in Syntropy, we have seen
how some notations implicitly assume it. We considered examples such as car-
dinality and lifetime constraints which must be interpreted in the subsystem
comprising the association and the associated objects. In this respect, associa-
tions provide the simplest form of subsystem. Constraints on associations define
particular properties of the subsystem. Navigation expressions which are inter-
preted in the theory including all visited constructs (objects and associations)
are another example of a notation which requires the identification of a subsys-
tem that encompasses the navigated path. Relationships between associations
{Syntropy allows us to state that one association is a sub-relation of another)
are also subsystem properties.

The above are particular cases of conditions we might give concerning the
structures defined in a type hierarchy. Other, more general constraints might be:

— arbitrary properties for association,
— arbitrary properties relating associations,
— arbitrary properties inter-relating associated classes.

Subsystems provide the construction at the correct level of granularity to allow
us to formalise such descriptions.

In the case of the RadioButton example, for instance, we can specify the
effect of the Turn_on(x) event at the level of the subsystem which includes
RadioButton and the two subtypes On and Off:

340

Turnon(x) = QOn={ x } A QOff = RadioButton\ { x }

Likewise, the student teaching example of Section 1 can be expressed via a
subsystem which includes the two classes and the three associations (Figure 8).
Tuition can be regarded as a class with attributes Student and College, the

Tuition
external_study
College Student
teaching
accomodation
Invariants:
teaching (— accomodation |} external_study

Fig. 8. Subsystem Example — Extended Notation

sets of existing students and colleges, and attributes

external study : College — Student
teaching: College — Student
accomodation : College — Student

representing the current value of the associations concerned. The local invariants
of the classes can be deduced from this more global model. Operations that
change associations would also be most naturally specified at the level of a
subsystem which includes the association and the classes it connects.

The concept of subsystem exists in a restricted form in Fusion or in Octo-
pus [2]. An aggregate in Fusion is a group of classes, associations and attributes
(but not operations, at the analysis level). In Octopus it is used to partition an
application into functional sub-applications, rather like the domain concept of
Syntropy [6]. The concept of subsystem we are proposing is more general in that
it is hierarchical construct which can be used to define more than two levels of
structure, and allows properties and operations to be localised at an appropriate
level.

Subsystems therefore support the principle that we should specify operations
and properties as locally as possible, without compromising comprehensibility,
but not more locally.

341

We propose the concept of subsystems as a generalisation of objects and asso-
ciations. Subsystems should include the fundamental aspects of objects (aggre-
gation and identity) and associations (relationships between objects) and should
be usable as “first class objects” to give a nested hierarchy with encapsulation
at each level (ie. vertical and horizontal structuring). We discuss each aspect in
turn.

3.1 Aggregation - The class-instance approach

We advocate that the class-instance approach, as employed for objects, is also
used for subsystems. A subsystem class is a collection of object classes (or sub-
system classes when subsystems are nested) which are related by associations
and which collect together related objects at the next lower level of granularity.
To formally interpret a subsystem we would therefore define a manager theory
and instance theories as was done for objects in Section 2.

A subsystem can be identified from an existing (one level) type view diagram
by encircling those object classes which are to be included in the subsystem
class. The included object classes must be linked by associations also within the
subsystem.

The interface which encapsulates the subsystem is simply those associations
of the constituent components which link to components outside the subsys-
tem. For specification and implementation models, where a set of operations
define the interface to an object (its protocol in Smalltalk terms), we identify a
distinguished set of the lower level operations to act as subsystem operations.

3.2 Identity - The root object

Syntropy employs a useful convention by which every system description should
have a root object class to which every class is associated (either directly or
via other classes). The root class must have precisely a single instance in any
particular instantiation of the system. All instances in the system must also be
associated to the root instance (either directly or indirectly) at all times.

We propose that the concept of root object can usefully be employed at the
level of subsystems as well as for the entire system. The identity of the root
instance can then be used as the identity of the subsystem instance or a new
indexing of subsystem instances by subsystem identifiers can be provided. It is of
little consequence whether subsystem identifiers are globally unique or whether
they are unique within the enclosing subsystem instance at the next higher level.
In the latter case, tuples of subsystem identifiers (corresponding to the nested
levels of subsystem) can be used to identify subsystem instances.

3.3 Open issues

Two important open issues remain in the definition of the concept of subsystem.
Firstly, it is not clear whether enclosed subsystems can be shared between en-
closing ones and secondly, it remains to be defined how notions of subclass and
inheritance should be applied to subsystems.

342

4 Conclusions and further work

We have formalised some aspects of class diagrams and statecharts as used in the
“Syntropy” method of Object Oriented Analysis and Design. This interpretation
has been axiomatic as opposed to others which are primarily denotational such
as [1].

We have shown that a formal and modular semantics can be given to Syn-
tropy essential models where separate theories are defined for instances, class
managers and associations. Statecharts are interpreted with their diagrammatic
part defined in the instance theory, and textual part in the class theory. We
employed a style of axiomatisation where preconditions and postconditions of
actions are defined in terms of the attributes so giving a style of specification
very similar to that of model-oriented formalisms such as VDM and Z.

This formalisation could form the basis for a system supporting reasoning
about the models developed enabling the use of proof for the validation and
verification of designs. The same approach could be taken to the interpretation of
other notations such as UML and therefore improve usefulness of these methods
and also the process of the definition of the methods themselves.

In interpreting Statecharts, we distinguished between local actions for in-
stance state transitions and system actions for events. We adopted a style of
axiomatisation where the local effect of actions is interpreted directly in terms
of the local attributes and synchronisation between actions in different theories
is given implicitly by trans-theory constraints on attributes. Were theories to be
executable, these implicit constraints would require implementation to ensure
the synchronisations between actions of different classes.

The formalisation has brought to the fore some features of the langauge which
might otherwise be unclear. For example it distinguishes between preconditions
and guards, shows the orthogonality of cardinality and lifetime constraints, and
seperates concepts of the generic instance from those of the class manager.

This formalisation of Syntropy has indicated some areas where notations are
non-modular. We observed that the formalisation of associations has to be un-
dertaken in the theory which incorporates the object and association primitives
and that the formalisation of navigation expressions requires an amalgamation
of an arbitrary collection of theories. We proposed the concept of subsystems as
a coarser grained generalisation of objects and suggested that they can then be
used in a hierarchical description of systems employing nested subsystems. We
advocate that the class-instance approach can be usefully employed for subsys-
tems just as it is for objects. The use of instance identity is also proposed for
subsystems.

The treatment of unborn and dead instances requires infinite colimit dia-
grams. It is believed that these infinite colimits are well behaved because the
morphisms are almost everywhere trivial, however, the underlying mathematics
for this does need to be rehearsed.

Significantly, we have only interpreted essential models, some aspects of Spec-
ification and Implementation models are similar, others would require further

343

work. Within essential models, we have not attempted to formalise nested state-
charts nor associations with attributes. We believe that the concept of subsystem
will also be of use here. Demonstrating the correctness of refinements between
levels of model is not even addressed informally in Syntropy.

References

1.

2.

10.

11.

12.

13.

14.

15.
16.

M Abadi and L Cardelli, An Imperative Object Calulus, TAPSOFT ‘95, Mosses,
Nielsen and Schwartzbach (Eds), Springer-Verlag, LNCS 915, 1995.

Maher Awad, Juha Kuusela and Jurgen Ziegler. Objeci-Oriented Technology for
Real-Time Systems: A Practical Approach Using OMT and Fusion. Prentice Hall,
Upper Saddle River, NJ, March 1996.

. Towards a Compositional Interpretation of Object Diagrams. J.C. Bicarregui, K.C.

Lano and T.S.E. Maibaum. To appear: Proc. of IFIP TC2 Working Conference on
Algorithmic Languages and Calculi, Strasbourg, February, 1997.

. Coleman D. et al., Object-oriented Development: The FUSION Method. Prentice

Hall Object-oriented Series, 1994.
Cook and Daniels, Designing Object Systems with Syntropy, Prentice Hall, 1994.

. S Cook and J Daniels. Syntropy Case Study: The Petrol Station. Technical report,

Object Designers Ltd., 1996.

J. Fiadeiro and T. Maibaum, Temporal Theories and Modularisation Units for
Concurrent System Specification, Formal Aspects of Computing, Vol.4, No. 3, 1992.
Springer- Verlag.

. J. Fiadeiro and T. Maibaum Describing, Structuring and Implementing Objects, in

de Bakker et al., Foundations of Object Oriented languages, LNCS 489, Springer-
Verlag, 1991.

Goguen, J. and Burstall, R. Introducing Institutions. In Clarke and Kozen, eds.
Logics of Programs, pp. 221-256, Springer-Verlag, 1984.

D. Harel, Statecharts: A Visual Formalism for Complex Systems, Sci. Comput.
Prog. 8 pp. 231-274 (1987).

D. Harel and E. Gery, Ezecutable Object Modelling with Statecharts Proc. 18th Int.
Conf. Soft. Eng., IEEE Press, 1996, pp. 246-257.

L. Lamport, The Temporal Logic of Actions, Digital Technical Report 79, 130
Lytton Avenue, Palo Alto, Califiornia 94301. December 25th, 1991.

K. Lano, Enhancing Object-Oriented Methods with Formal Notations, TAPOS, to
appear, 1997.

Rumbaugh, J. et al. Object-Oriented Modelling and Design, Prentice-Hall, Engle-
woods Cliffs, New jersey, 1991.

M. Spivey, The Z Notation: a reference manual, Prentice-Hall, 1992.

Wieringa R., de Jonge W., Spruit P., Roles and Dynamic Subclasses: A Model
Logic Approach, IS-CORE report, Faculty of Mathematics and Computer Science,
Vrije Universiteit, Amsterdam, 1993.

