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Abs t rac t .  A secret sharing scheme permits a secret to be shared among 
participants of an n-clement group in such a way that only qualified 
subsets of participants can recover the secret. If any non-qualified subset 
has absolutely no information on the secret, then the scheme is called 
perfeeL The share in a scheme is the information what a participaat must 
remember. We prove that for each n there exists an access structure 
on n participants so that any perfect sharing scheme must give some 
participant a share which is at least about n~ log n times the secret size 2. 
We also show that the best possible result achievable by the information 
theoretic method used here is n times the secret size. 
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1 Introduct ion 

An important  issue in secret sharing schemes is the size of the shares distributed 
to the participants since the security of a system degrades if the amount of the 
information that  must be kept secret increases. The problem of giving bounds 
on the size of the secret some participant must have has received considerable 
attention in the last few years, see e.g. [12], [4], [5]. 

R. M. Capocelli et al. [4] showed that  in a certain access structure with four 
participant the number of the bits some participant must remember is at least 
1.5 times the number of bits in the secret. They generalized the construction 
to any number of participants with the same bound. In [2] and [3] the bound 
2 - c was proved. M. van Dijk in [8] proved logn for a certain access structure 
on n participants. The method was information-theoretic, namely the results 
followed by a close examination of the entropy of the information a group of 
the participants have. The connection between the entropy and matroid-theory 
was observed by Fujishige [9], and in the context of secret sharing scheme by 
K. Kurosawa et al. [11]. Here we expand these ideas to our main result: 

T h e o r e m  1. For each n there exists an access structure .4 on n participants so 
that any perfect secret sharing scheme assigns a share of length about n~ log n- 
times the length of the secret to some participant. 

* This research was supported by OTKA grant no. 1911 
2 All logarithms in this paper are of base 2. 
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We give a construction which shows that  apart from the log n factor, our 
result is the best possible. Tha t  is, the information theoretic method cannot 
yield a lower bound for the size of the share of the participants better than n 
times the size of the secret. 

Let us call a participant x unimportant if no unqualified group becomes 
qualified by adapting x. Obviously, in any secret sharing scheme the share of 
an unimportant  participant can safely be disregarded, thus x's share can be 
considered zero. The following theorem is implicit in [4]: 

T h e o r e m 2 .  In any perfect secret sharing scheme, all important participant 
must have a share at least as large as the secret itself. 

This bound is the best possible, as K. M. Capocelli et al. [4] observed that  
in any access structure fixing any participant x, it is possible to distribute the 
shares so that  x's share will be of the same length as the secret. 

2 Prel iminaries  

In this section we review the technical concepts as well as some earlier results. 
For a complete t reatment  of information theory the reader is referred to [6]; 
its application to secret sharing is explained in details in [4]. For the sake of 
completeness we repeat here some definitions and lemmas. 

2.1 In f or mat ion  Theore t i c  N o t i o n s  

Given a probability distribution {p(x)}~ex on a finite set X, define the entropy 
of X,  H(X)  as 

H(X)  = - ~ p(x) logp(x).  
xEX 

The entropy H(X)  is a measure of the average information content of the ele- 
ments in X. It is well known that  H(X)  is a good approximation to the average 
number of bits needed to represent the elements of X faithfully. By definition, 
the entropy is always non-negative. 

Given two sets X and Y and a joint probability distribution {p(x, Y)},ex,yty  
on the Cartesian product of X and Y, the conditional entropy H ( X I Y  ) of X 
assuming Y is defined as 

H ( X I Y  ) = ~ p(y)H(XIY = y), (1) 
yEY 

where "XIY -- y" is the probability distribution got from p by fixing the value 
y E Y. The conditional entropy can also given in the form 

H ( X W )  = g ( x Y )  - H(Y)  (2) 

where Y is the marginal distribution. From definition (1) it is easy to see that  
the H(X]Y)  > O. 
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The mutual information between X and Y is defined by 

I (X ;  Y )  = H ( X )  - H ( X I Y  ) = H ( Y )  - H ( Y I X  ) 

= H ( X )  § H ( Y )  - H ( X Y )  

and is always non-negative: I (X;  Y )  >_ O. This inequality expresses the intuitive 
fact tha t  the knowledge of Y,  on average, can only decrease the uncertainty one 
has on X.  

Similarly to the conditional entropy, the conditional mutual information be- 
tween X and Y given Z is defined as 

I (X ;  YI Z)  - H ( X I Z )  - H ( X I Y Z  ) 

- H ( X Z )  + H ( Y Z )  - H ( X Y Z )  - H(Z) ,  (3) 

and is also non-negative: I (X;  Y I Z )  > O. 

2.2 Secret Sharing Schemes 

In the following individuals will be denoted by small letters: a, b, x, y, etc., sets 
(groups) of individuals by capital letters A, B, X,  Y, etc., finally collections of 
groups by script letters `4,/3. We use P to denote the set of participants who 
will share the secret. 

An access structure on an n-element set P of participants is a collection `4 of 
subsets of P:  exactly the qualified groups are collected into .A. We shall denote a 
group simply by listing its members, so x denotes both a member of P and the 
group which consists solely of x. From the context it will always be clear which 
meaning we are using. 

A secret sharing scheme permits a secret to be shared among n participants 
in such a way that  only qualified subsets of them can recover the secret. Secret 
sharing schemes satisfying the additional property that  unqualified subsets can 
gain absolutely no information about the secret is called perfect as opposed to 
schemes where unqualified groups may get some information on the secret (e.g. 
the ramp schemes on [1]. 

A natural  property of the access structures is its monotonicity, i.e. A E .4 
and A C B C P implies B E `4. This property expresses the fact that  if any 
subset of B can recover the secret then the participants in B can also recover the 
secret. Also, a natural  requirement is that  the empty set should not be in .4, i.e. 
there must be some secret at all. Access systems of this type are called Sperner 
systems, named after E. Sperner who was the first to determine the maximal 
number of subsets in such a system [13]. 

Let P be the set of participants, .4 be a Sperner system on P,  and let S be the 
set of secrets. A secret sharing scheme, given a secret s, assigns to each member 
x E P a random share from some domain. The shares are thus random variables 
with some joint distribution determined by the value of the secret s E S. Thus 
a scheme can be regarded as a collection of random variables, one for the secret, 
and one for each x E P .  The scheme determines the joint distribution of these 
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n +  1 random variables. For x E P the x's share, which is (the value of) a random 
variable, will also be denoted by x. For a subset A of participants, A also denotes 
the joint (marginal) distribution of the shares assigned to the participants in A. 

Following [4] we call the scheme perfect if the following hold: 

1. Any qualified subset can reconstruct the secret, that  is, the shares got by 
the participants in A determine uniquely the secret. This means H(slA ) = 0 
for all A E A. 

2. Any non qualified subset has absolutely no information on the secret, i.e. s 
and the shares got by members of A are statistically independent: knowing 
the shares in A, the conditional distribution of s is exactly the same as its 
a priori distribution. Translated to information theoretic notions this gives 
H(slA ) = g(s )  for all A ~ ,4. 

By the above discussion the entropy of the secret, H(s),  can be considered 
as the length of the secret. Any lower bound on the entropy of x E P gives 
immediately a lower bound on the size of x's share: if H(x) > )~H(s) then x's 
share is at least A times the size of the secret. 

2.3 Polymatroid structure 

Let Q be any finite set, and B = 2 Q be the collection of the subsets of Q. Let 
f : B --* R be a function assigning real numbers to subsets of Q and suppose f 
satisfies the following conditions: 

(i) f (A)  > 0 for all A C_ Q, f($) = 0, 
(ii) f is monotone, i.e. if A C B C_ Q then f (A)  < f (B) ,  

(iii) f is submodular, i.e. if A and B are different subsets of Q then f ( A ) + f ( B )  > 
f ( A  0 B) + f ( A  LJ B). 

The system (Q, f )  is called polymatroid. If, in addition, f takes only integer 
values and f (x)  _< 1 for one-element subsets, then the system is a matroid. 

S. Fujishige in [9] observed that  having a finite collection of random variables, 
we will get a polymatroid by assigning the entropy to each subset. The following 
proposition can also be found in [11]. 

Proposit ion 3 
polymatroid. 

By defining f (A)  = H(A)/H(s)  for each A _C e U {s} we get a 

Proof. We check (i)-(iii) of the definition of the polymatroid. (i) is immediate 
since the entropy is always non-negative. (ii) follows from (2) by letting X = B, 
Y = A. Then X Y  = X U Y  = X,  i.e. 

f (B)  - f (A)  = H ( X Y )  - H(Y)  = H ( X I Y  ) >_ O. 

Similarly, (iii) follows easily from (3) and from the fact that  the conditional 
mutual  information I(X; Y[Z) >_ O. 
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Unfortunately, it is not known whether the converse of this proposition holds, 
i.e. all polymatroids over a finite set can be got as the entropy of appropriately 
chosen random variables [7]. We shall elaborate on this later. 

In our case the random variable s, the "secret" plays a special role. By our 
extra assumption on the conditional entropies containing s, we can calculate the 
value of f (As)  from f (A)  for any A C P,  see [4, 11]. 

Proposition 4 I f  the secret sharing scheme is perfect, then for any A C P we 
have 

i rA  E `4 then f (As)  = f(A); 
i f  A ~ `4 then f (As)  = f (A)  + 1. 

Proof. If A E `4 then A is a qualified subset, an thus H(slA ) = 0. By definition, 
H(slA ) = H(sA) - H(A), and the first claim follows. 

If A ~ `4 then A is an unqualified subset, and then H(slA ) = H(s), which 
yields the second claim. 

Now let us consider the function f defined in Proposition 3 restricted to the 
subsets of P.  From this restriction we can calculate easily the whole function; 
and since the extension is also a polymatroid, the restriction will satisfy some 
additional inequalities. 

Proposition 5 The function f defined in Proposition 3 satisfies the following 
additional inequalities: 

(i) if A C B, A ~ .4  and B E .4 then f (B)  > f(A) + 1; 
(ii) irA E .4, B E ,4 bu tAOB ~ ,4 then f ( A ) + f ( B )  > f ( A f q B ) + f ( A O B ) + l .  

Proof. If A C_ B then As C_ Bs, therefore by the monotonicity of f we have 

f (A)  + 1 = f (As)  < f (Bs)  = f (B)  

which gives (i). Similarly, using the submodularity for the sets As, Bs we get 
(ii). 

The claim of this proposition can be reversed: given any polymatroid f on 
the subsets of P satisfying (i) and (ii) above and extending f to the subsets of 
P tJ {s} as defined in Proposition 4, we get a polymatroid. 

3 R e s u l t s  

We start  by proving 

T h e o r e m 6 .  In any perfect secret sharing scheme, all important participant 
must have a share at least as large as the secret itself. 
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Proof. Suppose an access structure `4 is given on the set P of participants, x E P 
is an important  person shown by C C_ P,  i.e. C ~ ,4 but  Cx E ,4. Also let us 
given any perfect secret sharing scheme, and consider the function f defined in 
Proposition 3. Since f (x)  = H(x)/H(s) ,  f (x)  > 1 implies H(x) > H(s), i.e. that  
the (average) size of x's share must be at least as large as the (average) size of 
the secret. Thus we have to show only that  f (x)  > 1. 

Since C ~ `4 and Cx E `4, by Proposition 5 (i) we have f (Cx)  > f (C)  + 1. 
f is submodular on the subsets of P,  so we also have 

f (C)  -t- f (x)  ~ f (Cx)  -4- f (C  CI {x))  = f (Cx)  -4- f(O) = f (Cx)  

since z ~ C. Combining this with f (Cx)  ~ f (C) + 1 we get the desired result. 

T h e o r e m  7. For each n there exists art access structure A on n participants so 
that any perfect secret sharing scheme assigns a share of length about n/  log n- 
times the length of the secret to some participant. 

Proof. Suppose an access structure .4, to be defined later, is given on the n- 
element set P of participants. Let k be the largest integer with 2 k + k - 2 < n. 
Suppose also that  a perfect secret sharing scheme is given, and consider again 
the function f defined in Proposition 3. We have to find a participant x E P 
such that  f ( x )  at least (2 k - 1)/k which is approximately equal to n/ logn (for 
example, it is always between n/2 log n and n/log n). 

We illustrate the construction by an example for k = 2. Let a, b, c, d be 
different members of P .  (Since 2 k + k - 2 = 4 < n there are at least four 
members in P.)  Let the sets ab, ca, and cdb be minimal sets in the Sperner 
system .4, i.e. none of their proper subsets are in ,4 (see Figure 1, elements o f ,4  
are denoted by full dots). 

�9 cdab 

�9 / c d a ~ .  ~ / . ~ a b  �9 ab 

F i g .  1 .  T h e  c a s e  k = 2 

Now consider the following differences: 

(i) f(cdab) - f(cd); 
(ii) f(cab) - f(c);  

(iii) f(ab) - f(O) 

Since cdab E .4 and cd ~ A, by Proposition 5 (i) we have (i) > 1. We claim that  
each difference is at least 1 larger than the previous one. To show this, we use 
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Proposition 5 (ii) and the submodularity of f as follows. Since cdb, and cab are 
both in .A, but their intersection, cb ~ .4, we have 

f(cdb) -4- f(cab) > f(cdab) q- f(cb) "4- 1. 

Applying the submodulari ty to cd and cb we have 

f(cd) + f(cb) >_ f(cdb) + f(c). 

Adding up and rearranging the terms we get 

f(cab) - f(c) >_ f(cdab) - f(cd) + 1 

which shows that  (ii) > (i) + 1. 
Similarly, applying Proposition 5 (ii) to ca and ab and the submodularity to 

c and a we get (iii) > (ii) + 1 _> (i) + 2 _> 3. Now since f(a) + f(b) >_ f(ab) (by 
submodulari ty again) which is > 3, either f(a) or f(b) must be at least 1.5, i.e. 
either a or b must have a share with size 50% bigger than the size of the secret. 
This was the main result in [4] using a slightly different access structure. 

Now let us turn to the general construction. Let A be a k-element set of 
individuals, and A = A0, A1, . . . ,  A2k_l = ~ be a decreasing enumeration of all 
of its subsets so that  if i < j then Ai ~= Aj. Let B ---- {bi, b2, . . . ,  b2k_2} be 
disjoint from A, our set of individuals will be A U B. Since k + 2 ~ - 2 < n we 
can pick A and B from P.  Let B0 = 0, and in general Bi = {hi, b2, ..., hi}. 
The minimal elements of the access structure .4 will be Ui = Ai U Bi for i = 0, 
1, . . . ,  2 k - 2. They are pairwise incomparable, i.e. none of them is a subset of 
the other; this means that  they indeed can form the minimal elements in an 
access structure. To check it, let i < j ,  then b E Uj - Ui (i.e. Uj q~ Ui), and 
0#Ai-A  _c Vi -Uj  (i.e. g Uj). 
L e m m a 8 .  Under these assumptions, for each 0 <_ i < 2 ~ - 2 

[f(Bi U A) - f(Bi)] - [f(Si+l U A) - f(Bi+l )1 >_ 1. 

Proof. Just mimic the proof for the case k = 2. Choosing X = Bi U A, Y = 
Bi+i UAi+I, both of them are in ,4 since X D Ui, and Y = Ui+l, while X N Y  = 
Bi U Ai+i r ,4. To see this it is enough to check that  for all j, Uj = Aj U Bj ~= 
Bi U Ai+i. Indeed, if j < i then Aj g- Ai+l ; if j > i then Bj ~- Bi. Therefore by 
Proposition 5 (ii) we have 

f ( X )  + f ( Y )  > f ( X  U Y)  + f ( X  N Y) + 1, 

or, by rearranging, 

[f(Bi tO A) - f (Bi  O Ai+I)] - [f(Bi+l tO A) - f(Bi+l to Ai+I)] > 1. (4) 

The submodulari ty of s t applied to X = Bi to Ai+i and Y = Bi+l gives 

f ( X )  + f ( Y )  >_ f ( X  U Y) + f ( X  N Y), 

i.e. also by rearranging the terms 

[f(Bi t_J Ai+i) - f (Bi) ]  - [f(Bi+i to Ai+l) - f(Bi+l)] >_ O. (5) 

By adding up inequalities (4) and (5) we get the claim of the lemma. 
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L e m m a  9. f (A )  >_ 22.-  1. 

Proof. Note that  f ( A U  B2k_2)-  f(B2k_2) > 1 by Proposition 5 (i) since A �9 ,4 
but  Buk_2 ~ ,4. Now adding this to the inequality in Lemma 8 for all 0 < i < 
22 - 2 we get 

f (Bo U A) - f (Bo)  > 22 - 1, 

which, by B0 = 0, gives the result. 

Finally, by iterated application of the submodularity inequality, 

f (a l )  + f (a2)  T . . . +  f (ak)  > f (A)  

thus at least one of f ( a l )  > (2 k - 1)/k, which was to be proven. 

We show that  apart  from the log n factor, our result is the 'bes t  possible. 
Namely, the method cannot give better lower bound than n times the length of 
the secret. 

T h e o r e m l O .  Given any access structure `4 on the n-element set P, we can 
always find a polymatroid function f so that 

(i) f satisfies the conditions of Proposition 5; 
(ii) f ( x )  < n for all elements z E P. 

Proof. Let A be a k-element subset of P ,  define 

f (A )  = n +  ( n -  1) + . . . +  ( n +  1 -  k). 

This function assigns n to each one-element set. If A is a proper subset of B 
then f ( B )  - f (A )  is the sum of IB - A I consecutive positive integers, therefore 
it is >_ 1, and equality holds only if B = P and A is an n - 1-element subset. 
This proves (i) of Proposition 5, and also proves the monotonicity of f .  To check 
(ii), suppose that  A N B is a proper subset of both A and B. Observe that  the 
( A U B ) - A  and B - ( A N B )  is the same non-empty set, and suppose this difference 
contains, say g _> 1 elements. Then both f ( A  U B) - f (A)  and f ( B )  - f ( A  rl B) 
is the sum of ~ consecutive integers, and since A U B has more elements than 
B, each number in the first sum is bigger than the corresponding number in the 
second sum. Thus 

f ( A  O B) - f (A )  > f (B )  - f ( A  N B), 

and since the values are integers, the difference between the two sides is at least 
1, as was required. 
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4 C o n c l u s i o n  a n d  f u t u r e  w o r k  

We have constructed an access structure .A on n elements so that any perfect 
secret sharing scheme must assign a share which is of size at least n / l o g  n times 
the size of the secret. The best previous upper bound was 1.5 [4]. From the other 
size, for our access structure we can construct a scheme which, for each secret 
bit, assigns at most n bits to each participant. This means that  in this case the 
upper and lower bounds are quite close. 

Recall that  the access structure ,4 is generated by the minimal subsets Ui for 
i = 0, 1, . . . ,  2 k - 2. Let s be a secret bit, and for each i pick IU/} random bits 
so that  their mod 2 sum equM to s. Distribute these bits among the members 
of Ui. Each participant gets as many bits as many U/'s he or she is in, thus each 
share is at most 2 k - 1 < n bits. 

We have seen in Theorem 10 that  using polymatroids we cannot prove es- 
sentially bet ter  lower bounds. For general access structures, however, the known 
general techniques produce exponentially large shares [10]. In order to turn the 
construction in Theorem 10 into an actual secret sharing scheme, and thus prov- 
ing that  every access structure can be realized within an n-factor blow-up in 
shares, the first obstacle is the following problem. 

Problem 11. Can every polymatroid be represented as the entropy of appropri- 
ately chosen random variables? 

An affirmative answer would help in completing the construction. However, in- 
tuition says that  the answer is no [7], and sometimes the size of a share must 
be much larger. In this case we have to look after additional inequalities the 
entropy function does not share with polymatroids. These might help in estab- 
lishing bet ter  lower bounds for the size of the shares. 
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