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A b s t r a c t .  Information reconciliation and privacy amplification are im- 
portant tools in cryptography and information theory. Reconciliation 
allows two parties knowing correlated random variables, such as a noisy 
version of the partner's random bit string, to agree on a shared string. 
Privacy amplification allows two parties sharing a partially secret string, 
about which an opponent has some partial information, to distill a short- 
er but almost completely secret key by communicating only over an in- 
secure channel, as long as an upper bound on the opponent's knowledge 
about the string is known. The relation between these two techniques has 
not been well understood and it is the purpose of this paper to provide 
the missing link between these techniques. The results have applications 
in unconditionally secure key agreement protocols and in quantum cryp- 
tography. 

1 I n t r o d u c t i o n  

One of the fundamentM problems in cryptography is the generation of a shared 
secret key by two parties, Alice and Bob, not sharing a secret key initially, in 
the presence of an enemy Eve. One generally assumes that  Eve can eavesdrop 
on the communicat ion between Alice and Bob who are connected only by a 
public channel. I t  is easy to see tha t  if this public channel is not assumed to be 
authentic,  then such key agreement is impossible. We therefore assume that  any 
modification or insertion of messages can be detected by Alice and Bob. 

This  problem can be solved by applying public-key cryptography [8], where 
one assumes tha t  Eve's  computing power is limited. In the recent years, key 
agreement protocols have been developed tha t  are secure against adversaries 
with unlimited comput ing power [1, 10]. The motivat ion for investigating such 
protocols is two-fold: First, one avoids having to worry about  the generality of 
a part icular  computat ional  model, which is of some concern in view of the po- 
tential realizability of quantum computers (e.g. [4, 9, 12]). Secondly, and more 
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importantly, no strong rigorous results on the difficulty of breaking a cryptosys- 
tern have been proved, and this problem continues to be among the most difficult 
ones in complexity theory. 

Unconditionally secure secret-key agreement [10, 11] takes place in a scenario 
where Alice, Bob and Eve know the correlated random variables X, Y and Z, 
respectively, distributed according to some joint probability distribution that 
may be under partial control of Eve (like for instance in quantum cryptography 
[1]). One possible scenario considered by Maurer [10] is that X, Y and Z result 
from a binary random string broadcast by a satellite and received by Alice, Bob 
and Eve over noisy channels. Secret-key agreement is possible even when Eve's 
channel is much more reliable than Alice's and Bob's channels. 

A key agreement protocol for such a scenario generally consists of three 
phases: 

Advan tage  Dist i l lat ion:  The purpose of the first phase is to create a random 
variable W about which either Alice or Bob has more information than Eve. 
Advantage distillation is only needed when such a W is not immediately 
available from X and Y, for instance, when Eve's channel is superior in the 
above satellite scenario. Alice and Bob create W by exchanging messages, 
summarized as the random variable C, over the public channel. 

I n f o r m a t i o n  Reconci l ia t ion  [1, 6]: To agree on a string T with very high 
probability, Alice and Bob exchange redundant error-correction information 
U, such as a sequence of parity checks. After this phase, Eve's (incomplete) 
information about T consists of Z, C and U. 

Pr ivacy  Ampl i f ica t ion  [2~ 3]: In the final phase, Alice and Bob agree publicly 
on a compression function G to distill from T a shorter string S about 
which Eve has only a negligible amount of information. Therefore, S can 
subsequently be used as a secret key. 

Information reconciliation and privacy amplification are fundamental for uncon- 
ditionally secure key agreement and quantum key distribution. 

If after the first phase Alice knows a string about which Bob has more in- 
formation than Eve, Alice and Bob can choose W to be this string. In other 
words, using information-theoretic terms, W is a random variable such that 
H(W[XC) -- 0 and H(W[YC) < H(W[ZC). In such a case, Bob tries to de- 
termine W from Y and the reconciliation string U, which could simply be an 
error-correction string sent by Alice or could result from an interactive commu- 
nication with Alice. (Note that H(U) >_ H(WIYC ) is a necessary condition.) 
Hence reconciliation serves to establish H(W[YCU) ~ 0 while Eve still has a 
substantial amount of uncertainty about W: H(W[ZCU) > 0. After privacy 
amplification, H(S) should be as large as possible, and Eve's information about 
S should be arbitrarily close to zero: I(S; ZCUG) = H(S) - H(S[ZCUG) ~ O. 
Note that A~ice and Bob can both compute S, i.e., H(S[WG) - O. 

In the following, let V = [Z,C] summarize Eve's total knowledge about 
W before reconciliation. For deriving lower bounds on Eve's final information 
about the secret key S one can either consider a particular value V -- v that 
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Eve knows or one can average over all possible values of V. Note that  results 
for a particular V = v, which will be considered in this paper, are stronger 
than averaging results because they are known to hold for the very instance of 
the protocol execution. In other words, Eve's information about W is modeled 
by the probability distribution PwIv=v about which Alice and Bob have some 
incomplete knowledge. In particular, they know a lower bound on the collision 
entropy (see below) of the distribution Pww=v but they do not know v. 

It is known [2] that  the collision entropy after reconciliation with U = u (i.e., 
of the distribution PwIv=v,v=u) is a lower bound on the size of the secret key 
that  can be distilled safely by privacy amplification. This paper is concerned 
with understanding the reduction of the collision entropy induced by the side in- 
formation U, either for a particular value U = u, or averaged over all values of U. 
Although this question is fundamental for any proof in the area of key-agreement 
protocols, it has previously not been well understood because the behavior of 
collision entropy is different from that  of Shannon entropy with respect to side- 
information. Existing proofs such as the ingenious Big-Brother argument of [1] 
work only for particular probability distributions and reconciliation protocols. 

The paper is organized as follows. Section 2 reviews privacy amplification 
and the definition of collision entropy. Section 3 presents upper bounds on the 
reduction of collision entropy due to side-information for arbitrary probability 
distributions. Non-interactive reconciliation protocols with uniform and close- 
to-uniform probability distributions are investigated in Section 4. 

2 R e v i e w  o f  P r i v a c y  A m p l i f i c a t i o n  a n d  C o l l i s i o n  E n t r o p y  

We assume that  the reader is familiar with the notion of entropy and the ba- 
sic concepts of information theory [5]. In privacy amplification, a different and 
non-standard entropy measure, collision entropy, is of central importance [2]. 
Collision entropy is also known as Rdnyi entropy of order 2. To distinguish col- 
lision entropy from entropy in the sense of Shannon, we will always refer to the 
latter as Shannon entropy. All logarithms in this paper are to the base 2, and 
entropies are thus measured in bits. 

Privacy amplification was introduced by Bennett, Brassard and Robert [3] 
and investigated further in [2]. Assume Alice and Bob share an n-bi t  string 
W about which an eavesdropper Eve has incomplete information characterized 
by a probability distribution Pww=v over the n-bit  strings, where v denotes 
the particular value taken on by the random variable V summarizing her side- 
information. Alice and Bob have some knowledge of the distribution PwIv=,, 
but they do not know exactly what is compromised about their string. Using a 
public channel, which is totally susceptible to eavesdropping, they wish to agree 
on a function g : {0, 1} n --+ {0, 1} r such that  Eve, despite her partial knowledge 
about W and complete knowledge of g, almost certainly knows nearly nothing 
about g(W). This process transforms a partially secret n-bit  string W into a 
highly secret but shorter r -bi t  string g(W) which can be used as a secret key. 
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The method for selecting the function g proposed in [3] is to choose it at 
random from a publicly-known universal class of hash functions [7] mapping 
n-bit strings to r-bit strings. 

Bennett, Brassard, Crdpeau and Maurer [2] showed that  the collision entropy 
(defined below) of Eve's distribution about W provides a lower bound on the size 
r of the secret key distillable from W by privacy amplification with a universal 
hash function. 

De f in i t i on  1 [2]. Let X be a random variable with alphabet 2' and distribution 
Px. The collision probability Pc(X) of X is defined as the probability that  X 
takes on the same value twice in two independent experiments, i.e., 

Po(X) = Px(x) 2 
xEX 

The collision entropy of X is defined as the negative logarithm of its collision 
probability: 

He(X) = - log Pc(X). 

For an event g, the collision entropy of X conditioned on g, Hc(XIg), is de- 
fined naturally as the collision entropy of the conditional distribution Pxle. The 
collision entropy conditioned on a random variable, Hc(X[Y), is defined as the 
expected value of the conditional collision entropy: 

Hc(XIY) = y~PY(y)  Hc(XIY = y). 
Y 

Equivalently, He(X) can be expressed as He(X) = -logE[Px(X)],  where 
E[.] denotes the expected value. Shannon entropy H(X) can be expressed sim- 
ilarly as H ( X ) = - E [ l o g P x ( X ) ] .  It follows from Jansen's inequality (see [5], 
p. 428) that  collision entropy is upper bounded by the Shannon entropy: 

He(X) < H(X), 

with equality if and only if Px is the uniform distribution over X or a subset 
of X. Similarly, we have H(XIY ) > Hc(XIY ). Note that collision entropy (like 
Shannon entropy) is always positive. 

The following theorem is the main result of [2]: 

T h e o r e m  2. Let X be a random variable on alphabet X with probability distri- 
bution Px and collision entropy He(X). Further, let G be the random variable 
corresponding to the random choice (with uniform distribution) of a member of 
a universal class of hash functions from X ---, {0, 1} r. Then 

2r-H~(X) 
H(G(X)IG) >_ H~(G(X)IG) > r ln2 
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Note that  G is a random variable and that  the quantity H(G(X)IG ) is an av- 
erage over all choices of the function g. It is possible that  H(g(X)lg ) = U(g(X)) 
differs from r by a non-negligible amount for some g, but such a g can occur 
only with negligible probability. 

This theorem clearly applies also to conditional probability distributions such 
as PwIv=v discussed above, ff  Eve's collision entropy Hc(WIV = v) is known to 
be at least t and Alice and Bob choose S = G(W) as their secret key, then 

H~(SIG, V = v) = H~(G(W)IG, V = v) >_ r - 2" - t / In2 .  

The key S is indeed virtually secret because H(SIG, V = v) >_ H~(SIG , V = v) 
and hence H(S[G, V = v) is arbitrarily close to maximal. More precisely, if 
r < t, then Eve's total information about S decreases exponentially in the excess 
compression t - r. 

It  should be pointed out that  Theorem 2 cannot be generalized to colli- 
sion entropy conditioned on a random variable, i.e., Hr ) >_ r -  
2r-Hr is false in general. 

3 The Effect of Side Information on ColliSion Entropy 

As described above, the reconciliation step consists of Alice and Bob exchanging 
suitable error-correction information U over the public channel. This information 
decreases Eve's (Shannon and collision) entropy about W. For non-interactive 
reconciliation, Alice chooses an appropriate error-correction function f and sends 
U = f ( W )  to Bob who can then reconstruct W from U and his prior knowledge 
YC.  

The results of this paper will be derived for an arbitrary random variable X 
with probability distribution Px and a side-information random variable U joint- 
ly distributed with X according to Pxv .  However, they can just as well be ap- 
plied to conditional distributions; our intended application is the key agreement 
scenario mentioned in the introduction, i.e., when Px and Pxtu are replaced by 
Pwlv=~ and Pwlv=v,v, respectively. 

In general, giving side-information implies a reduction of entropy. Our goal is 
to derive upper bounds on the size of this reduction. Giving as side-information 
the fact that  U takes on a particular value u, it is possible for both, Shannon 
and collision entropies, that  the entropy increases or decreases. Moreover, the 
size of a reduction can be arbitrarily large. 

However, the expected reduction (for all values of U) of the Shannon entropy 
of X by giving U, called the mutual information between X and U, is bounded 
by H(U): 

H ( X ) -  H(XIU ) = I(X; U) <_ H(U) (1) 

which follows from the symmetry of I(X; U) and the fact that  Shannon entropy 
(conditional or not) is always positive. 



271 

The example below illustrates two facts. First, the reduction of collision en- 
tropy implied by giving side-information U = u can exceed the reduction of 
Shannon entropy, i.e., 

He(X) - He(XIU = u) > H(X)  - H(XIU = u) 

is possible. Second, it shows that  the natural generalization of (1) to collision 
entropy, namely He(X) - Hc(X]U) < He(U), is not true in general. However, 
Theorem 3 demonstrates that  the weaker inequality He(X) -He(X]U)  < H(U) 
is always satisfied. 

Example. Let X be a random variable with alphabet X = {51, . . . ,  al0, b l , . . . ,  bl0}: 
distributed according to Px(ai) = 0.01 and Px(bi) = 0.09 for i = 1 , . . . ,  10. We 
have H(X)  ~ 3.79 and He(X) ,~ 3.61. Let f : R' --* {0, 1} be defined as 

{01 if x E {a l , . . . ,a9 ,  blo} 
f (x)  = if x E {al0, bl , . . . ,  b9} 

and let U = f (X) .  Then H(X[U = 0) ~ 2.58 and He(XIU = 0) ~ 1.85. 
The reduction of collision entropy when given U = 0 exceeds the reduction of 
Shannon entropy, i.e., He(X) - He(XIU = 0) ~ 1.76 whereas H ( X ) -  H(X[U = 
0) ~ 1.21. 

The expected entropy reductions are H ( X ) - H ( X I U  ) ~ 0.69 (in fact H ( X ) -  
H(XIU ) = H(U) because f is deterministic) and Hc(X)-He  (XIU) ~ 0.65. Note 
that  He(U) ~ 0.50 and H e ( X ) -  He(XIU) is indeed greater than He(U) but less 
than H(U). 

H(U) is not only the maximal expected decrease of Shannon entropy, but 
H(U) is also an upper bound on the expected decrease of collision entropy, as 
the following theorem demonstrates. (All theorems will be proved in the full 
version.) 

T h e o r e m  3. Let X and U be two random variables with alphabets X and H, 
respectively. The expected reduction of the collision entropy of X ,  when given U, 
does not exceed the Shannon entropy of U, i.e., 

He(X) - Hr ) < H(U), 

with equality if and only if U is defined uniquely for each x E 2d and Ptr is the 
uniform distribution over H or a subset of H. 

For a positive-valued random variable X, E[X] < t implies that  P[X >_ kt] < 
1/k. Hence, according to Theorem 3, the probability that  the leaking information 
U = u decreases collision entropy by more than kH(U) is at most l / k ,  i.e., 
P[He(X) - Ho(XIU = u) _> a n ( u ) ]  _< 1/k. However, such a high probability 
of partially exposing the string W is unacceptable in a key-agreement scenario. 
The following theorem provides a much stronger result by showing that  the 
above probability decreases in fact exponentially in k if H(U) is replaced by an 
expression roughly twice as large. 
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T h e o r e m 4 .  Let X and U be random variables with alphabets X and H, respec- 
tively, and let s > 0 be an arbitrary security parameter. With probability at least 
1 -  2 -~, U takes on a value u for  which 

He (X)  - H~(XIU = u) < 21oglUl + 2s. 

Remark. The statement  of the theorem is equivalent to 

Pv(u)  > 1 - 2-% 
u: Hc(X) -Hc(XIU=u)  < 2log lUl+2s 

Equivalently, but  less intuitively, we can write 

P[H~(X)  - Hc(XIU = u) < 21oglUl +2s]  > 1 - 2 - ' ,  

if we view Hr = u) as a function of u. (Note that  this probability is defined 
although u could be a function of x, and that  He(X)  is a constant that  does not 
depend on x or u.) 

Because of its importance we restate Theorem 4 for the key-generation sce- 
nario, replacing P x  by P w w = , ,  with the side-information consisting of k bits, 
for instance k parity checks of W when W is an n-bit string. 

C o r o l l a r y  S. Let W be a random variable with alphabet W,  let v and u be 
particular values of the random variables V and U, correlated with W ,  and let 
s > 0 be a given security parameter. Then, with probability at least 1 - 2 - s ,  
U takes on a value u such that the decrease in collision entropy by giving u, 
H e ( W [ V  = v) - Hr  = v, V = u), is at most 2k + 2s. 

4 A l m o s t  U n i f o r m  D i s t r i b u t i o n s  

As shown above, giving side information of the form U = u can reduce the 
collision entropy by an arbitrary amount,  although the probability that  this 
happens is bounded by Theorem 4. In this section we derive better bounds on the 
reduction for non-interactive reconciliation and special probability distributions. 
It is easy to see that  for uniform distributions and deterministic side-information 
U = f ( W ) ,  the reduction of collision entropy depends only on the size of the 
preimage of u = f (x) :  

L e m m a 6  [2]. Let X be a random variable with alphabet X ,  let f : X --+ H 
be an arbitrary function taking on values in a given set H, let U be defined as 
u = f ( x ) ,  and set = {= X : f(=) = u}. If x is distributed uniformly 
over X ,  then 

H~(X) - Hr -- u) = log IXl Ix l 
In particular, if f is symmetr ic  (i.e., IXul is the same for  all u e lg), knowledge 
of U = u reduces the collision entropy by log IU I. 
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Theorem 7 states a bound on the reduction of collision entropy for almost 
uniform distributions. 

T h e o r e m  T. For given c~ > 1 and /3 > 1, let X be a random variable with 
alphabet X and probability distribution Px such that a - ~  <- Px(x)  <_ ~x[ for 
all x E X.  Define f ,  U and Xu as in Lemma 6. Then 

Hr H~(XIU u) < l o - [ X [  - = _ g ~ - ~  + 4 log ot + 2 log/~. 

In particular, i f / i s  symmetric, then Hr  = u) < log I/ /[+4 logo~+ 
2 log/3. 

This result can be applied to the important  class of scenarios where a cer- 
tain random experiment is repeated independently a large number of times. For 
example, W could be the result of receiving independently generated bits over a 
memoryless channel, as in the satellite scenario mentioned earlier. A fundamen- 
tal theorem of information theory [5] states that  in such a scenario all occurring 
sequences can be divided into a typical set and a non-typical set, where the 
probability that  a randomly selected sequence of length n lies in the typical set 
approaches 1 for all sufficiently large n. Furthermore, all sequences in the typical 
set are almost equally probable. As will be shown in the final version of the pa- 
per, this crucial observation allows us to bound the decrease of collision entropy 
for the sequences in the typical set by Theorem 7, leading to a result similar to 
Lemma 6. 

5 C o n c l u s i o n s  

The described link between information reconciliation and privacy amplification 
for unconditionally secure secret-key agreement can be summarized as follows. 
Assume that  Alice knows a random variable W and that  Bob and Eve have 
partial knowledge about W, characterized by the random variables W I and V, 
respectively. These random variables could for instance result from the described 
satellite scenario with W and W' being functions of IX, C] and [Y, C], respec- 
tively, and with V = [Z, C]. In order to state the results in the strongest possible 
form we consider a particular value V = v held by Eve rather than the average 
over all values of V. 

When V gives less information than W' about W, i.e., H(WIV) > H(WIW') ,  
and a lower bound t > 0 on the collision entropy of Eve's probability distribution 
of W is known, i.e., He(WIV = v) > t, then Alice and Bob can generate a shared 
secret key S as follows. Alice and Bob exchange error-correcting information U 
consisting of k > H ( W I W  ~) bits over the public channel such that  Bob can 
reconstruct W, i.e., H(WIW'U ) ~ O. Eve gains additional knowledge about  W 
by seeing U = u. However, Corollary 5 shows that  with probability at least 
1 - 2 -s  (over all values of U) where the security parameter  s can be chosen 
arbitrarily, her collision entropy is bounded from below by Hr = v, U = 
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u) > t - 2k - 2s. Using privacy amplification, Alice and Bob can now generate 
an r-bit secret key S, where r has to be chosen smaller than t - 2k - 2s and 
Eve's total information about S is exponentially small in t - 2k - 2s - r, namely 
less than 2 r - ( t -2k -2" ) / ln2  bits. 

The main advantage of Theorem 4 is that  it applies to any distribution and 
any reconciliation protocol whereas previously obtained results held only for par- 
ticular distributions and protocols. However, as was demonstrated in Section 4, 
a larger secret key than suggested by Theorem 4 can be obtained by Alice and 
Bob for special distributions. 
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